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Abstract: Olivomycin A (OA), an antibiotic of the aureolic acid family, interferes with gene transcrip-
tion upon forming complexes with GC-rich regions in the DNA minor groove. We demonstrate that
the mechanism of transcriptional deregulation is not limited to OA interaction with GC-containing
binding sites for transcription factors. Using electrophoretic mobility shift assays and DNAse I foot-
printing of cytomegalovirus (CMV) promoter fragments carrying OA-preferred GC tetrads (CMVwt),
we showed OA binding specifically to GC islands. Replacement of G for A in these tetrads (CMVmut)
abrogated OA binding. Furthermore, OA decreased RNA polymerase II (RNAPII) binding to the
CMVwt promoter and inhibited the reporter gene expression. In line with the absence of OA binding
sites in CMVmut DNA, the expression driven from this promoter was weakly sensitive to OA. In
the endogenous genes OA decreased RNAPII on promoters and coding regions. In certain cases this
phenomenon was concomitant with the increased histone 3 abundance. However, the sensitivity
to OA did not correlate with GC patterns around transcription start sites, suggesting that certain
GC stretches play unequal roles in OA-induced transcriptional perturbations. Thus, OA affects tran-
scription via complex mechanisms in which GC tetranucleotide binding causes RNAPII/chromatin
alterations differentially manifested in individual gene contexts.

Keywords: aureolic-acid-derived antibiotics; olivomycin A; RNA polymerase II; chromatin; tran-
scription; gene expression

1. Introduction

Gene transcription, a fundamental process in all living organisms, is an attractive
target for the treatment of cancer and other diseases [1–3]. Pharmacological inhibition of
transcription, decades ago pioneered by actinomycin D [4], remains part of therapeutic
regimens in patients with soft-tissue malignancies [5]. A plethora of novel transcriptional
inhibitors of different chemical classes is being investigated in preclinical trials [6]. One class
is a family of aureolic acid (AA) antibiotics produced by various strains of actinomycetes
includes mithramycin, chromomycin A3, and olivomycin A (OA). These agents have been
investigated as drug candidates due to a remarkable cytotoxic potency attributed to inter-
ference with global gene transcription [7]. Biosynthesis of mithramycin, chromomycin A3,
and their derivatives has been investigated in detail [8]. In addition to their antiproliferative
potency, AA antibiotics demonstrate an antiviral activity [9,10]. Mithramycin has been
tested as a neuroprotector for Huntington’s disease and neuronal death [11,12].

Mechanistic studies proved that AA-derived antibiotics demonstrate a strong prefer-
ence for GC-rich DNA sequences [13,14]. These compounds bind as dimers to the minor
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groove of the DNA double helix and form stable complexes with three (mithramycin [15])
or four (chromomycin A3 [16] and olivomycin A [17]) consecutive G/C base pairs. Con-
formational changes upon drug–duplex complex formation are thought to be responsible
for alterations of the transcriptional machinery. Recent in vitro experiments have demon-
strated that OA has similar binding affinity to different G/C tetranucleotide stretches
although the rate of dissociation of OA–DNA complexes differs depending on specific
G/C sequences. In the cell-free system, the GC context influenced the effects of OA on the
traverse of T7 RNA polymerase along the DNA template [17]. In cell-based studies the AA
family of antibiotics was investigated as DNA ligands capable of modulating the function of
GC-preferred transcription factors. Ewing sarcoma is characterized by the t(11;22) (q24;q12)
translocation that generates the Ewing sarcoma breakpoint region 1 and Friend leukemia
virus integration 1 (EWS-FLI1) fusion transcription factor. Using high throughput mRNA
analysis, Grohar et al. screened 50,000 small-molecular-weight compounds for the ability to
inhibit EWS-FLI1-driven reporter gene transcription. In this series mithramycin showed the
best (at nanomolar concentrations) inhibitory potency that paralleled its antitumor efficacy
in vivo against xenografts [18]. EWS-FLI1 preferentially binds purine-rich microsatellite
sequences that contain >9 5′-GGAA/T-3′ repeats [19]. Furthermore, Sp1 transcription factor
binds to a GC-rich sequence (generalized formula 5’-(G/T)GGGCGG(G/A)(G/A)(C/T)-3’).
In the cell-free system, mithramycin displaced Sp1 from its binding sites and protected
c-Myc promoter from DNAse I [20]. AA antibiotics recruited to Sp1-activated genes disturb
transcription [21,22] and decrease the amounts of Sp1 protein [23]. These data substan-
tiate the perspective of AA antibiotics as antitumor drug candidates with the definitive
molecular target, that is, GC specificity.

Although the details of OA–DNA binding have been studied largely in cell-free
systems, the role of the cellular context, that is, regulation of individual gene expression in-
cluding the chromatin level, remains less understood. Several studies demonstrated that in-
cubation of tumor cells with AA antibiotics changed the balance of acetylation/methylation
of DNA and histones [24–26]. Furthermore, binding of AA antibiotics to the minor groove
of DNA can induce dissociation of the chromatin-remodeling complex from DNA and
inhibit the activity of Dnmt3a methyltransferase [27,28]. Additionally, the affinity of AA
antibiotics to DNA is significantly affected by nucleosome density because these agents
and N-terminal tails of histone 3 compete for binding to the minor groove [29,30]. These
findings indicate that drug–duplex interaction, definitely the primary event causatively as-
sociated with the efficacy of AA antibiotics, has many consequences, therefore a simplified
model of blocked RNA polymerase II (RNAPII) movement may be insufficient. In partic-
ular, do AA antibiotics modulate gene transcription by binding to randomly located GC
tetrads or specifically to the consensus binding sites for GC-preferred transcription factors?

In this study we analyzed OA binding to the chimeric DNA construct in vitro and
the effects of this interaction in the cellular context. We found that steady-state mRNA
levels as well as distribution of RNAPII, histone H3, and BRG1 ATPase of SWI/SNF
remodeling complex on the promoters and coding DNA regions varied in endogenous
genes differentially sensitive to OA. Our findings demonstrated that, although GC tetramers
are the critical targets for transcriptional deregulation by OA in the cell-free system, the
roles of individual tetrads in the endogenous genes differed, and so did the molecular
events mechanistically associated with OA–DNA complex formation.

2. Results and Discussion
2.1. GC Tetrads in the Cytomegalovirus Promoter Are Critical for OA–DNA Complex Formation:
An In Vitro Study

GC tetrads with specific positions of G/C nucleotides have been shown to be critical
for OA–DNA complex formation in vitro [17]. These short DNA repeats in gene promoters
are responsible for binding of cognate transcription factors such as Sp1 and others [31,32].
However, Sp1 binding site(s) in the promoter may not be necessary for transcriptional
intervention in the cellular context because OA suppressed transcription of the gene driven
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by the promoter that lacked Sp1 binding sites [33]. To investigate whether GC tetrads
beyond transcription-factor binding sites are critical for OA mediated transcriptional
inhibition we constructed two vectors with minimal CMV promoter. As shown in Figure 1A,
this promoter contains GC tetrads with individual nucleotide residues at different positions
(green boxes 1–5; see also Supplementary Materials, Schemes S1 and S2 for full DNA
sequence), the potential OA binding sites. No Sp1 consensus binding sites were present
in this promoter. We cloned the full-length luciferase (Luc) gene under the wild type
(CMVwt) or mutant (CMVmut) CMV promoter. In the latter construct, each of tetrads 1–5
was mutagenized by replacing G for A (Figure 1A). Substitution of the guanine residue in
central GC base pairs is expected to completely abrogate the binding of the antibiotic since
the amino group of guanine is absolutely required for interaction with the aglycon moieties
in the OA dimer [17]. The restriction site MluI at the 5′ end of the construct remained intact
(yellow square in Figure 1A).
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Figure 1. GC tetrads as sites of OA–DNA complex formation. (A) Tentative OA binding sites in
minimal CMVwt promoters are marked in yellow and green. The yellow site used for cloning
remained intact whereas in sites 1–5 (green) guanine residues were substituted for adenine (red).
(B) EMSA of OA complexes with CMVwt and CMVmut DNA fragments. Note the more slowly
migrating DNAs after incubation of CMVwt fragment with 5 µM or 10 µM OA. (C) DNase I probing
of CMVwt and CMVmut fragments. Forward (left) or reverse (right) strands were 5′-end labeled
with FAM (red circles). GF and GR are guanine sequencing lanes for the sense and complementary
strands, respectively, obtained by treatment of DNA fragments with dimethylsulfate (see text and
Section 3 for details). Positions of tetranucleotides 1–5 are shown in green as in (A).

To test whether OA is able to bind tetrads 1–5 we used electrophoretic mobility
shift assay (EMSA) and DNase I footprinting. For OA–DNA binding assays, a 144 bp
fragment amplified from CMVwt or CMVmut DNA was incubated with OA and resolved
by electrophoresis in 8% non-denaturing polyacrylamide gel. At <2 µM OA CMVwt,
fragments migrated as one single band (Figure 1B). With bigger OA concentrations we
detected additional slowly migrating bands attributable to DNA complexes with one or
more OA dimers. In contrast, fragments amplified from CMVmut demonstrated only a
slight shift of in-gel mobility due to the complex formed by OA with the sole non-mutated
site (Figure 1A).
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To substantiate the role of specific GC tetrads in OA–DNA complex formation, we
identified DNA stretches protected from digestion by DNase I. We used PCR-based fluores-
cent labeling of each strand that allowed for a reliable reading of the footprint from both
ends of the fragment (Figure 1C). The addition of OA to CMVwt fragments resulted in the
protection of individual regions from cleavage by DNAse I. This effect was not observed in
CMVmut fragments where the patterns of DNase I cleavage in the presence and absence of
OA were identical (Figure 1C, green bars).

Sites of CMVwt DNA fragments protected by the antibiotic may not exactly coincide
with putative GC tetranucleotide sites. Moreover, the degree of protection of individual
sites is different. DNase I seems an ideal probe for OA footprinting because this enzyme
also interacts with the double helix in the minor groove. However, the enzymatic efficacy of
DNAse I is sensitive to the geometry of the double helix. AA antibiotics are known to bend
and disturb the structure of the DNA duplex, therefore their binding may distort the double
helix even at considerable distances from the site of enzyme–DNA interaction [34,35].

2.2. OA–DNA Complex Formation Impedes Transcription Driven by CMVwt but Not Cmvmut

With the knowledge about in vitro OA–DNA binding sites in the promoter-Luc con-
structs, we next used the cellular context to study the role of GC tetrads as targets for
transcriptional deregulation by OA. CMVwt-Luc or CMVmut-Luc constructs (Figure 2A)
were introduced into HEK293T cells followed by selection of stable transfectants with
puromycin (HEK293T-CMVwt-Luc and HEK293T-CMVmut-Luc sublines). The expression
of Luc transcripts driven from the respective CMV-derived promoter was determined at
different distances from TSS and normalized on the abundance of RPLP0 mRNA. Levels
of Luc mRNA driven from CMVwt promoter were taken as 1. Importantly, basal Luc
expression from the CMVwt construct was ~7–8 times more pronounced compared to
CMVmut-Luc (Figure 2B), further substantiating the critical role of promoter GC islands in
transcription.

The HEK293T-CMVwt-Luc and HEK293T-CMVmut-Luc cells were exposed to 100 nM
OA for 1–24 h. Amounts of Luc mRNA transcribed from CMVwt promoter decreased in a
time-dependent manner, with a significant decrease by 24 h (>30% compared to untreated
control; Figure 2C). In contrast, the abundance of Luc mRNA in HEK293-CMVmut-Luc
cells did not decrease gradually but varied over time (Figure 2D). In each subline the
0.2 kb, 0.4 kb, and 1 kb transcripts changed coordinately, that is, OA caused no preferential
deregulation of the shorter vs. longer mRNAs. These results indicated that, in the absence
of GC tetrads in the promoter, OA did not efficiently interfere with transcription regardless
of the presence of GC tetrads in CDS.

2.3. Reversibility of OA-Induced Transcriptional Attenuation

Because AA-derived antibiotics bind DNA non-covalently, their effects may be re-
versible, as has been shown for mithramycin [19]. The initial decrease of Luc mRNA
abundance in HEK293T-CMVwt-Luc cells by 3 h with OA (Figure 2C) continued after drug
removal and incubation in the antibiotic-free medium for 1 h (Figure 3A). By 1 h in OA-free
medium, relative abundances of 0.2 kb and 0.4 kb transcripts were ~30% of respective val-
ues before OA removal (100 %). During the course of incubation in the drug-free medium
mRNAs gradually increased with time, reaching ~70% of the level before OA removal by
19 h (Figure 3A). In contrast, the longer (1 kb) transcripts were significantly repressed: the
initial decrease to ~20% at 1 h remained consistently low for up to 19 h in the drug-free
medium (<30%). These data indicated that, after OA washing, transcription resumed
in an asynchronous manner. Re-appearance of long mRNAs was delayed compared to
shorter transcripts. One may hypothesize that GC tetrads in the promoter or gene body
are functionally non-equivalent, otherwise, posttranscriptional regulation (i.e., message
stability) cannot be excluded.
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Figure 2. Effects of OA on transcription depend on GC tetrads in the promoter. (A) Schematic
representation of GC tetrads in CMV-Luc constructs. Green stripes in the CMVwt construct represent
SGSS and SSCS tetrads (S stands for G or C). These sites were mutated in the CMVmut-Luc promoter
(no green strips). Arrows are the same as in Figure 1A. (B) Basal Luc transcription depends on intact
GC tetrads in the promoter. Expression of CMVmut was taken as 1, expression of CMVmut-Luc
normalized to CMVwt-Luc. (C,D) Time-course of relative abundance of Luc transcripts (normalized
to mRNA of RPLP0). Experiments were performed twice, each measurement in triplicate.

In line with qRT-PCR data, the chromatin immunoprecipitation (ChIP) analysis
showed time-dependent changes of the presence of total RNA polymerase II (RNAPII) on
the promoter and 3′ Luc gene regions proximal to TSS. Incubation of HEK293T-CMVwt-Luc
cells with 100 nM OA for 3 h decreased RNAPII presence on 0.2 kb and 0.4 kb DNAs. This
decrease was sustained within 3 h after OA washing followed by gradual restoration of
RNAPII by 6 h on each of studied gene regions (Figure 3B). Thus, the effects of OA on
RNAPII abundance were directly associated with the presence of the antibiotic in the cul-
ture medium. However, the rate of transcriptional recovery along the gene can be different
given that newly detectable RNAPII molecules on the promoter retarded compared to CDS
regions. In turn, this difference might be attributed to an unequal functional significance of
GC tetrads in individual gene loci.

2.4. Differential Effects of OA on Gene Occupancy by Total RNAPII

Next, we investigated whether transcriptional deregulation by OA involves an altered
presence of RNAPII molecules along the gene, and whether these effects depend on the
GC context of the promoter. ChIP assays were used to compare the abundance of total
RNAPII in OA-treated HEK293T-CMVwt-Luc or HEK293T-CMVmut-Luc cells. Amounts of
total RNAPII on the CMVwt promoter and Luc CDS had decreased within 1 h (Figure 4A).
This effect remained sustained for 12 h, in line with the time-dependent decrease of Luc
mRNA. On the contrary, the abundance of RNAPII on the CMVmut promoter did not
change markedly during the course of OA treatment (Figure 4B). These results strongly
suggested that the formation of complexes of OA and GC tetrads on the CMVwt promoter
is detrimental for transcription whereas the absence of sites for strong complexes in the
CMVmut promoter alleviates the inhibitory effect of OA. Nevertheless, GC tetrads in
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the Luc CDS remained intact; accordingly, with OA, in HEK293T-CMVmut-Luc cells,
RNAPII molecules on Luc CDS decreased by 6 h (Figure 4B). One may hypothesize that
OA interaction with GC tetrads in the Luc gene body provides conformational hindrances
for polymerases that reached these sites. Thus, GC tetrads in the promoter, or, to a lesser
extent in the gene body, are major sites for OA to interfere with transcription.
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Figure 3. Time- and size-dependent restoration of transcripts after OA washing. HEK293T-CMVwt-
Luc cells were treated 100 nM OA for 3 h, washed with saline, and incubated in OA-free medium for
indicated time intervals. (A) qRT-PCR analysis of Luc mRNAs of different length. Values (normalized
to RPLP0 signal) are relative to those prior to OA washing (0 h). (B) Abundance of total RNAPII on
the Luc gene (ChIP assays).
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Figure 4. OA modulates the abundance of molecules depending on promoter GC context. HEK293T-
CMVwt-Luc (A) or HEK293T-CMVmut-Luc (B) cells were treated with 100 nM OA for indicated time
intervals followed by ChIP assays (see Section 3). Shown are enrichments in total RNAPII molecules
on the Luc promoter and on CDS. RNAPII enrichment in untreated samples (0 h, input) was taken as
100%. Data are mean ± SD of two independent experiments, each value measured in triplicate.

2.5. Does the GC Context Matter?

Effects of AA derivatives may not be confined to transcriptional inhibition of endoge-
nous genes. Based on previous studies [21,36,37] we selected a set of genes known to be
markedly deregulated by AA-family antibiotics, namely, genes encoding transmembrane
proteins (SLC38A2, ARL6IP1, and TMEM123), transcription factors (c-Myc, PHLDA1, ETS2,
and LHX2), and the NFkB pathway (NFkBIA and TRIB3) to analyze transcriptional re-
sponses to OA. The HCT116 human colon carcinoma cell line served as a test system for
consistency with previous reports [37,38]. Cells were incubated with 100 nM OA for 1–12 h
and processed for qRT-PCR and ChIP assays. Genes fell into three groups according to
their response to OA: (I) highly sensitive (mRNAs decreased two-fold within 1–6 h and
continued to decrease until 12 h: SLC38A2, PHLDA1, c-Myc, and TRIB3), (II) averagely
sensitive (mRNAs decreased by ~50% by 12 h: ETS2, LHX2, NFkBIA, and p21), and (III)
weakly sensitive (mRNAs changed insignificantly: ARL6IP1 and TMEM123) (Figure 5A).

Next, we used ChIP [39] to analyze whether the OA-altered expression of individual
genes is associated with the abundance of total and elongating (phosphorylated at Ser-
2; S2P [40]) RNAPII molecules, the core histone H3 and BRG1 subunit of the SWI/SNF
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chromatin remodeling complex. In all genes except PHLDA1, p21, and LHX2, treatment
with 100 nM OA for 12 h caused a decrease of total RNAPII levels near TSS and/or on
CDS (Figure 5B, blue curves). In the ETS2, c-Myc, LHX2, NFκBIA, and ARL6IP1 genes
this effect was preceded by a sharp increase of total RNAPII detectable as early as after
1–3 h. Amounts of elongating RNAPII-S2P in some genes did not change or even increased
around TSS and on CDS of ARL6IP1, TRIB3, ETS2, and p21 genes (Figure 5B, red curves).

Noticeable changes were also detectable with the core histone H3. In the c-Myc, LHX2,
p21, SLC38A2, NFκBIA, ETS2, and TMEM123 genes, treatment with OA was associated
with a statistically significant increase of histone H3 around TSS or on CDS (Figure 5B,
green curves). This important observation, namely, induction of nucleosomal occupancy in
the course of gene inhibition, reflects a previously unattended mechanism of transcriptional
deregulation by OA. AA antibiotics have been shown to compete with the N-terminal
domain of histone H3 for minor DNA groove-binding [29,30]. In this regard, it is interesting
to reveal how DNA-associated OA can regulate the nucleosome occupancy.

Compared to RNAPII and histone H3, treatment with OA weakly changed BRG1.
However, on the c-Myc and LHX2 genes, BRG1 accumulated in the vicinity of TSS within
1–3 h. The presence of histone H3 increased along with BRG1 albeit to a different extent:
13-fold on the LHX2 gene vs. 2-fold on the c-Myc gene. Interestingly, by 6 h c-Myc mRNA
decreased by >50% whereas LHX2 mRNA changed moderately (Figure 5A). One may
hypothesize that, despite the increased density of nucleosomes near the promoter, chro-
matin remodeling on LHX2 can proceed more efficiently than on c-Myc. Alternatively, or in
addition, BRG1 can act as a transcriptional repressor [41]. Posttranscriptional modifications
are also important since c-Myc mRNA is known to be short-lived [42].

2.6. Sensitivity of Individual Genes to OA Is Independent of GC Tetrad Location

According to previous results [17], we mapped GC tetrads as tentative OA binding
sites in the region −2500 to +2500 bp around TSS. No dependence between the presence or
distribution of GC tetrads and the sensitivity to OA was revealed (Figure 6, the top panel
SGSS in each gene block). Indeed, the most ‘irresponsive’ genes, ARL6IP1 and TMEM123,
contained several GC tetrads close to TSS. In contrast, in the SLC38A2 gene, only a few GC
tetrads were found 5′ from TSS whereas OA strongly inhibited the expression of this gene
(Figure 5A). Moreover, even within the group of highly sensitive genes the number and
localization of putative OA binding sites differed significantly. Although the analysis of a
bigger set of genes is worthy, the present data argue against direct relationship between the
number of OA binding sites and the effects on transcription.

Interference with transcription factors for binding to the duplex can be attributable
for transcriptional deregulation by OA. To identify transcription factors in addition to the
canonical Sp1, we analyzed the regions from −2500 bp to +2500 bp from TSS of studied
genes (Figure 6, colored stripes). The Encode database (https://www.encodeproject.org/,
accessed on 24 May 2022) contains 17 ChIPseq tracks of transcription factors for the HCT116
cell line, three of which (ELF1, REST, and ZNF274) were not found in the vicinity of TSS
in the studied genes. Distribution of binding peaks of 14 transcription factors around TSS
relative to potential sites of OA–DNA interaction (d(SGSS)) is shown in Figure 6. One may
suggest that OA can compete with many transcription factors.

To get an initial insight into the involvement of individual transcription factors we
analyzed the positions of their binding sites in genes that differentially responded to OA
(Figures 5A and 6). Binding peaks of Max, Sp1, CTCF, YY1, TCF7L2, ZBTB33, and FOSL1
were present in promoters of the majority of genes regardless of their sensitivity to OA.
Peaks for JUND, CEBPB, EGR1, USF1, ATF3, SRF, and TEAD4 were found only in the genes
whose expression was attenuated by OA suggesting that the latter factors and OA may
compete for binding to DNA. However, our search was confined to a limited gene set; a
reliable statistical analysis requires a genome-wide study.

https://www.encodeproject.org/
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Figure 5. Differential gene sensitivity to the inhibitory effect of OA. (A) HCT116 cells were incubated
with 100 nM OA for up to 12 h. Relative mRNA levels were determined by qPCR and normalized
to RPLP0 mRNA. Signals in untreated cells (0 h) were taken as 1 (dotted line). In each group of
four bars (from left to right): 1 h, 3 h, 6 h, and 12 h, respectively. (B) Time-dependent changes of
total RNAPII, elongating RNAPII-S2P, core histone H3, and BRG1 around TSS or on CDS. Data are
mean ± SD of three measurements. Genes were grouped according to their sensitivity to OA: highly
sensitive genes (I, left panel), averagely sensitive genes (II, middle panel), and weakly sensitive genes
(III, right panel).
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3. Materials and Methods
3.1. Cell Lines and Treatment

The colon carcinoma HCT116 and human embryonic kidney HEK293T (both from
American Type Culture Collection, Manassas, VA, USA) cell lines and the genetically
modified sublines generated in this study were cultured in Dulbecco modified Eagle’s
medium (PanEco, Moscow, Russia) supplemented with 10% fetal bovine serum (HyClone,
Logan, UT, USA), 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin
(PanEco, Russia) at 37 ◦C, 5% CO2 in a humidified atmosphere. OA was produced at the
pilot plant of Gause Institute of New Antibiotics, Moscow [43] and provided by Professor
A.N. Tevyashova. The stock solution of OA in DMSO (10 mM) was stored at −20 ◦C. Serial
dilutions in the culture medium were prepared immediately before experiments.
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3.2. Antibodies

The anti-BRG1 antibody was produced as described [44]. Antibodies against histone
H3 (Ab18521) and RNAPII-S2P (Ab252855) were from Abcam (Cambridge, UK). Anti-
RNAPII (#151247) was from Active Motif (Carlsbad, CA, USA).

3.3. Plasmids, Cloning, and Cell Transfection

To create CMVwt-Luc reporter-expressing vector, minimal CMVwt promoter DNA
was PCR amplified from pcDNA3.1 vector (ThermoFisher Scientific, Waltham, MA, USA)
and cloned into pcDNA-3Fl vector. The full-length Luc gene DNA was cloned from
pBV-Luc wt MBS1-4 (Plasmid #16564) into pcDNA-CMVwt-3Fl. Synthesis of CMVmut
fragment and assembly of the CMVmut-Luc vector based on the existing CMVwt-Luc
construct was made in Evrogen (Moscow, Russia). Vector DNA sequences are given
in Schemes S1 and S2. HEK293T cells were plated in 6 cm Petri dishes. After reaching
70–80% confluence cells were transfected with the respective vector DNA (6 µg) using 12 µL
polyethylenimine (Polysciences, Warrington, PA, USA) in 600 µL OptiMEM (ThermoFisher
Scientific, Waltham, MA, USA) for 24 h, and washed with PBS. To select the cells with
inserts puromycin (PanEco, Russia; 0.5 mg/mL) was added to the culture medium for
14 days.

3.4. Real-Time qPCR

Total RNA from cultured cells was isolated using the ExtractRNA (Evrogen) according
to the manufacturer’s manual. Coding DNA was obtained by reverse transcription of
1–2.5 µg of total RNA using the Revert Aid Kit (ThermoFisher Scientific, Waltham, MA,
USA). Gene expression was evaluated by real-time qPCR (Roshe LightCycler, Basel, Switzer-
land) using EvaGreen dye (Biotium, Fremont, CA, USA). The RPLP0 mRNA levels were
used for signal normalization. Results were analyzed using delta-delta Ct method. The list
of primers is given in Table S1. Experiments were carried out as at least two independent
biological replicates, each reaction run in triplicate. Values are mean ± SD, statistical
analysis was performed using GraphPad Prism 8.

3.5. Chromatin Immunoprecipitation

Immunoprecipitation of chromatin was performed essentially as described [45]. Briefly,
1 × 106 cells per 10 cm Petri dishes were incubated with 100 nM OA, then cross-linked with
1% formaldehyde for 10 min, treated with by 2.5 M glycine, and washed in
3 × 1 mL saline supplemented with protease inhibitor cocktail (Sigma-Aldrich, Burling-
ton, MA, USA). Chromatin was sonicated to produce ~500 bp fragments, samples were
centrifuged (13,000× g, 4 ◦C 15 min) and incubated with bovine-serum-albumin-blocked
MabSelect beads (GE Health, Waltham, MA, USA) and anti-RNAPII (1:5), anti-RNAPII-S2P
(1:5), anti-H3 (1:5), or anti-BRG1 (1:2) antibodies overnight at 4 ◦C. Samples prior to im-
munoprecipitation were used as the input control. The precipitated beads were washed
and the DNA of input and precipitated samples was eluted and extracted by the phenol–
chloroform method. DNA fragments were amplified by PCR. The list of primers is given
in Table S1. The input was adjusted according to the dilution factor. Protein enrichments
were calculated as the percentage of the initial input (100%) calculated by the delta-delta Ct
method. Experiments were conducted at least twice, each reaction run in triplicate.

3.6. EMSA

OA–DNA complexes were formed in the binding buffer (20 mM Tris-HCl pH 8.0,
50 mM KCl) with 500 nM of DNA fragments and indicated OA concentrations for 20 min at
25 ◦C. Samples were resolved in a 8% non-denaturing polyacrylamide gel electrophoresis
and visualized on a Typhoon FLA 9500 fluorescence scanner (GE Healthcare, Chicago, IL,
USA) equipped with a 473 nm blue LD laser and LBP filter.
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3.7. DNAse I Protection Assays

Fragments (144 bp) of CMVwt and CMVmut promoter DNA were amplified from re-
spective Luc vectors. Primer pairs FAM-cmvF/cmvR: 5′-FAM-GATATACGCGTCGAGGTA/
GTACCAGGAGGCTGGAT-3′ or cmvF/FAM-cmvR: 5′-GATATACGCGTCGAGGTA/FAM-
GTACCAGGAGGCTGGAT-3′ were used to generate 5′-end labeled fluorescent sense or
antisense DNA strands, respectively. Complexes of OA (10 µM) with FAM-labeled CMVwt
or CMVmut DNA fragments (500 nM each) were preincubated in the binding buffer sup-
plemented with 2 mM MgCl2 at 25 ◦C for 20 min and then digested for 2 min with 0.03
units of DNase I (ThermoFisher Scientific). Reactions were stopped by the addition of
ethanol. Guanine sequencing lanes were obtained by incubating DNA fragments in 2%
dimethylsulfate at room temperature for 3 min followed by ethanol precipitation and
incubation (30 min, 95 ◦C) in the loading buffer (90% formamide, 0.025% bromophenol
blue, 0.025% xylene cyanol). The digested products were separated by electrophoresis in a
denaturing 10% polyacrylamide gel containing 7M urea and visualized on a Typhoon FLA
9500 fluorescence scanner.

3.8. Mapping GC Tetrads and TF Consensus Binding Sites

Location of GC tetrads was analyzed using the code available at GitHub:
https://github.com/uzhny/olivomycin-2022 (accessed on 25 July 2022). The code marked
all SGSS type tetrads (S = G or C) in red [10]. The code mapped the binding sites of Max,
Sp1, CTCF, YY1, TCF7L2, ZBTB33, FOSL1, JUND, CEBPB, EGR1, USF1, ATF3, SRF, and
TEAD4 (Encode database).

3.9. Statistical Analysis

Experiments were carried out at least in two biological replicates, each measurement
in triplicate. qRT-PCR data are presented as mean ± SD. Statistical analysis was performed
using GraphPad Prism 8 and MO Excel software.

4. Conclusions

In summary, our results with genetically defined cell-free systems and in cell culture
indicated the critical role of complex formation by OA and GC tetrads in transcriptional
deregulation. The lack of correlation between the presence/positioning of binding sites
for GC-preferred transcription factors and the responsiveness of individual genes to the
antibiotic argues against the explanation of OA effects solely by competition with transcrip-
tion factors for duplex availability. Randomly located GC tetranucleotides rather than the
consensus sequences for GC-specific transcription factors appeared to be necessary for OA
to exert its anti-transcriptional effect. These findings broaden the functional significance of
OA–target interaction.

However, the roles of certain GC tetrads vary. Although numerous GC tetrads across
the genome can bind OA, we demonstrated the differential responsiveness of individual
genes to the antibiotic. Importantly, epigenetic factors such as chromatin context emerged
as the mechanisms of transcriptional inhibition by OA. Within the set of studied genes the
chromatin events were present to a varying extent, adding another level of complexity to the
mechanistic model. Altogether, binding to random GC tetrads is a necessary prerequisite
for transcriptional deregulation by OA, this key event alone would cause local conforma-
tional hindrances for the traverse of the transcriptional complex. Other mechanisms such
as chromatin changes (wherever relevant) and posttranscriptional modifications further
determine the life-time of individual transcripts.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23168871/s1.
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