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Abstract: The raffinose synthetase (RFS) and galactinol synthase (GolS) are two critical enzymes for
raffinose biosynthesis, which play an important role in modulating plant growth and in response
to a variety of biotic or abiotic stresses. Here, we comprehensively analyzed the RFS and GolS gene
families and their involvement in abiotic and biotic stresses responses at the genome-wide scale in
kiwifruit. A total of 22 GolS and 24 RFS genes were identified in Actinidia chinensis and Actinidia
eriantha genomes. Phylogenetic analysis showed that the GolS and RFS genes were clustered into four
and six groups, respectively. Transcriptomic analysis revealed that abiotic stresses strongly induced
some crucial genes members including AcGolS1/2/4/8 and AcRFS2/4/8/11 and their expression levels
were further confirmed by qRT-PCR. The GUS staining of AcRFS4Pro::GUS transgenic plants revealed
that the transcriptionlevel of AcRFS4 was significantly increased by salt stress. Overexpression of
AcRFS4 in Arabidopsis demonstrated that this gene enhanced the raffinose accumulation and the
tolerance to salt stress. The co-expression networks analysis of hub transcription factors targeting key
AcRFS4 genes indicated that there was a strong correlation between AcNAC30 and AcRFS4 expression
under salt stress. Furthermore, the yeast one-hybrid assays showed that AcNAC30 could bind the
AcRFS4 promoter directly. These results may provide insights into the evolutionary and functional
mechanisms of GolS and RFS genes in kiwifruit.
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1. Introduction

The productivity, development and growth of plants can be seriously affected by di-
verse environmental stresses, such as low or high temperatures, drought, salinity, pests and
diseases [1]. Under stress conditions, plants perform a series of physiological and biochem-
ical responses, cellular and molecular mechanisms by activating many stress-responsive
genes or transcription factors and synthesizing various functional proteins [2]. At the cellu-
lar level, plants produce many compatible molecules solutes, such as mannitol, proline and
oligosaccharides (galactinol, trehalose, raffinose and stachyose), which serve as regulatory
compounds to deal with these abiotic stresses [3]. Raffinose family of oligosaccharides
(RFOs), especially raffinose, plays an essential role in increasing the osmotic pressure in
cells. Furthermore, raffinose also acts as antioxidants, signals, transport and storage of
carbon, and membrane stabilizer to protect the plant cell from dehydration [4].

It is well known that raffinose and galactinol are two major oligosaccharides. Galacti-
nol synthase (GolS; EC: 2.4.1.123) is responsible for raffinose biosynthesis in the initial
stage, which is catalyzed by the reaction of Myo-inositol and UDP-galactose to generate
galactinol [5]. Galactinol synthase is an important enzyme regulating the osmoprotectant
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function of RFOs in plants [6]. It has been reported that CsGolS1 was up-regulated by abiotic
stresses and CsGolS2 were up-regulated by biotic stress in Camellia sinensis [7]. Recently, Cui
et al. reported that over-expression of DaGolS2 in rice increased the tolerance to drought
and cold stresses by inducing the accumulation of raffinose and decreasing ROS levels [8].
Regarding wheat, TaGolS1, TaGolS2 and TaGolS3 have been well clarified. Over-expression
of TaGolS1 or TaGolS2 in rice was found to accumulate the content of galactinol and raffi-
nose, then improved cold stress tolerance [9]. The mRNA level of AtGolS1 and AtGolS2 in
Arabidopsis were expressed under drought and salinity stresses, while AtGolS3 responded
to cold [10,11]. Higher galactinol and raffinose contents were exhibited, and increased
tolerance to water deficit in the apple MdGolS2 transgenic Arabidopsis plants, compared
with the wild type [12]. To date, the GolS genes have been identified in Nicotiana tabacum
and Brassica napus [13], Zea mays [14], Manihot esculenta Crantz [15], Solanum lycopersicum
and Brachypodium distachyum [16], and Sesamum indicum [17] at the genome-wide level.
Raffinose synthase (RFS, EC 2.4.1.82) another key enzyme for raffinose synthesis, also plays
a crucial role in response to abiotic and biotic stresses [4]. The RFS genes were isolated from
Pisum sativum [18], Gossypium [19], Cucumis sativus [20], Oryza sativa [21] and Arabidopsis
thaliana [22]. PtrERF108 played a positive role in cold tolerance by modulation of raffinose
synthesis via regulating PtrRafS in Poncirus trifoliata [23]. The latest report indicated that the
Vitis vinifera VviRafS5 was up-regulated by cold and ABA but not by heat and salt stresses.
Overexpression of VviRafS5 in yeast, can significantly increase the content of raffinose [24].
To the best of our knowledge, neither GolS nor RFS gene has been identified in kiwifruit.

Kiwifruit belongs to Actinidia, which contains 55 species and approximately 75 taxa
originated from China [25]. It is commonly called “the king of fruits” as its remarkably
high nutritional value including vitamin C and minerals [26]. In recent years, more and
more varieties of kiwifruit were commercialized. Notably, the yield and quality of kiwifruit
can be impaired by abiotic and biotic stresses, including drought, salinity, low or high
temperatures and bacterial canker [27–31]. So far, four kiwifruit genomes have been
sequenced, one belonging to A. eriantha and the rest belonging to A. chinensis [32–35]. There
is still no comprehensive study of the evolution and expression patterns of the RFS and
GolS gene family in kiwifruit. Gene structure, phylogenetic analyses, chromosomal location
and conserved motifs were performed in the present study. In addition, we also analyzed
transcript profiles of the AcGolS and AcRFS gene family in different tissues and under
abiotic and biotic stress. Key AcRFS and AcGolS genes with high expression levels under
salt, cold and bacterial canker stress were selected to construct co-expression networks with
all transcription factors in kiwifruit. Finally, the biological functions of AcRFS4 under salt
stress were also investigated by stable transformation of Arabidopsis. The results suggested
that AcRFS4 might enhance salt tolerance in plants by modulation of raffinose content.

2. Results
2.1. Identification, Characterization, and Phylogenetic Analysis of the GolS and RFS Genes
in Kiwifruit

Using seven AtGolS proteins from A. thaliana as query sequences, Twenty-two GolS
genes in kiwifruit were identified (Additional file 1: Table S1). We named AcGolS1-AcGolS9
in A. chinensis and AeGolS1-AeGolS13 in A. eriantha based on the gene names in A. thaliana.
Twenty-four RFS genes were also identified in the kiwifruit genome, and designated
as AcRFS1-AcRFS12 in A. chinensis and AeRFS1-AeRFS12 in A. eriantha (Additional file 1:
Table S1). The characterization information of the GolS and RFS genes in kiwifruit, including
locus ID, linkage group distribution, the length of coding sequences, molecular weight
(MW), theoretical isoelectric point (pI), and subcellular localization prediction were listed
in Additional file 1: Table S1.

Phylogenetic trees based on four species were created to describe the evolutionary of
the RFS and GolS gene families. As shown in Figure 1A, four and two GolS genes from
A. eriantha and A. chinensis, respectively, were found in GolS-I. In the clade GolS-II, only
AeGolS6 was found. Six members of GolS-III were found, including three GolS genes from
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A. chinensis and A. eriantha, respectively. GolS-VI was the largest clade, with nine members,
including five and four GolS genes of A. chinensis and A. eriantha, respectively. The result
showed that the RFS genes were classified into six groups (RFS-I to RFS-VI) (Figure 1B).
Like GolS genes, RFS genes in kiwifruit have a closer relationship with Camellia sinensis. In
the clade RFS-IV, all RFS1 genes were found from C. sinensis, A. thaliana, A. eriantha and A.
chinensis (Figure 1B).
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Figure 1. Phylogenetic analysis of kiwifruit and other species GolS and RFS proteins. The phylogenetic
trees were conducted based on the full-length amino acid sequences using MEGA 6.0 by the neighbor-
joining method with 1000 bootstrap replicates. (A) The deduced full length amino acid sequences
of A. chinensis (AcGolS), A. eriantha (AeGolS), C. sinensis (CsGolS) and A. thaliana (AcGolS) were used
for phylogenetic tree construction. (B) The deduced full length amino acid sequences of A. chinensis
(AcRFS), A. eriantha (AeRFS), C. sinensis (CsRFS) and A. thaliana (AcRFS) were used for phylogenetic
tree construction.

2.2. Structure, Protein Motif, and Cis-Element in Promoter Regions of the GolS and RFS Genes

To investigate the exon-intron organization of AcGolS and AeGolS genes, five and
four introns were observed in most GolS genes in kiwifruit (Figure 2A). We saw only one
exon in AcGolS6 and AeGolS13 (Figure 2A). AeGolS5 contained the five introns, which had
the most significant introns in GolS genes from A. eriantha (Figure 2A). Many GolS genes
in the same groups had similar exon-intron structure, which was highly conservative in
kiwifruit (Figure 2A). The numbers of RFS introns varied from 3 to 14 (Figure 2B). The RFS
genes belonging to RFS-III and RFS-IV had more introns than other (Figure 2B). AeRFS5
contained 14 introns in RFS-III, while other genes contained 13 exons (Figure 2B). The
distribution of exons indicated that RFS genes belonging to the same group had similar
gene structures and exon numbers (Figure 2A,B). A total of 10 motifs named motif1 to
motif10 were predicted in the kiwifruit RFS and GolS genes. Except for AeGolS5/6/7/8, all
GolS genes contained motif2 (Figure 2A). Two motifs were found in AcGolS6 and AcGolS8
(Figure 2A). Motif3 was distributed on GolS-II-IV (Figure 2A). All motifs were observed
in AeRFS1/4/6/10 (Figure 2B). There were more than seven motifs in most RFS genes in
kiwifruit (Figure 2B). The 2000 bp sequences upstream of the start codon of AcGolS and
AcRFS genes were used to analyze cis-elements in their promoter regions by PlantCARE.
Sixteen putative cis-elements responsive to biotic stresses [including W-box, TC-rich repeats
(defense and stress-responsive element), and WUN-motif (wound-responsive element),
LTR (low-temperature responsive element), MBS (MYB binding site), and phytohormones
such as ABA [abscisic acid, ABRE (ABA-responsive element)], auxin (TGA-element, AuxRR-
core), GA (gibberellin, GARE), JA (jasmonic acid, CGTCA-motif), SA (salicylic acid, TCA-
element) and endosperm development (P-box) were present in the promoters of GolS and
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RFS genes in kiwifruit (Additional file 1: Supplementary Figure S1). The same conserved
motifs in homologous RFS genes might have similar functions and correlations between
evolutionary relationships and conserved motifs.
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Figure 2. Conserved motifs and exon-intron organization of GolS and RFS genes in two kiwifruit
species. (A) Neighbour-joining phylogenetic tree, gene structures, and conserved motifs of the GolS
genes in A. chinensis and A. eriantha. (B) Neighbour-joining phylogenetic tree, gene structures, and
conserved motifs of the RFS genes in A. chinensis and A. eriantha.

2.3. Duplication, Synteny, and Chromosomal Distribution of GolS and RFS Genes

The segmental and whole genome duplications of GolS and RFS genes were deter-
mined in A. chinensis and A. eriantha. A total of 18 pairs of GolS genes segmental duplicates
were observed in the kiwifruit genome (Figure 3A). All RFS genes within the kiwifruit
genome had segmental duplicates, suggesting a high level of conservation of the RFS gene
family (Figure 3B). A comparative syntenic map of A. chinensis, A. eriantha and A. thaliana
was constructed (Additional file 2: Figure S2A). Interestingly, we found that 6 AcGol and 9
AeGolS genes had a syntenic relationship with AtGolS genes and located on chr1 (Additional
file 2: Figure S2A,B). 7 AcRFS and 8 AeRFS genes had a syntenic relationship with AtRFS
genes and located on chr1, chr3, chr4 and chr5 (Additional file 2: Figure S2C,D). All GolS
and RFS in kiwifruit were mapped to the 37 chromosomes. The chromosomal distribution
information of GolS and RFS genes was shown in Additional file 2: Figure S3.
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between the kiwifruit RFS genes.

2.4. Expression Patterns Analysis of AcGolS and AcRFS Genes in Different Plant Tissues, during
the Fruit Development and under Hormone-Induced Conditions

As shown in Figure 4A, six of nine AcGolS g enes (except AcGolS1/3/5) were highly
expressed in the leaf. AcGolS3 expression was higher in the stem than in other tissues.
AcGolS1 was found to be highly expressed in the shoot. AcGolS2/5/8/9 were mildly expressed
in the shoot (Figure 4A). Only three AcGolS genes (AcGolS3/5/8) had low expression during
the fruit development. Six of nine AcGolS genes were induced by abscisic acid (Figure 4A).
AcGolS1/2/5/7 were induced in response to GA (gibberellins). Only AcGolS9 was strongly
expressed under salicylic acid (SA) treatments (Figure 4A).

AcRFS8/9/10 exhibited specific high expression in stem (Figure 4B). AcRFS3/4/12 exhib-
ited relatively low expression levels in all tissue (Figure 4B). AcRFS1/2/11 were strongly
expressed in the flower. Only AcGolS9 was strongly expressed under salicylic acid treat-
ments (Figure 4B). Among AcRFS genes, only AcRFS5 had a high expression in the shoot
(Figure 4B). Six AcRFS genes (except AcRFS1/3/5) were highly expressed in the leaf
(Figure 4B). Five AcRFS genes (AcRFS2/3/4/6/12) were expressed during the fruit devel-
opment (Figure 4B). More than 60% of the AcRFS genes were significantly induced in
response to ABA treatments (Figure 4B). Moreover, AcRFS10 and AcRFS11 were signifi-
cantly up-regulated in response to JA treatments (Figure 4B).
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2.5. Expression Profiles Analysis of AcGolS and AcRFS Genes in Response to Abiotic and
Biotic Stresses

To further explore the potential function of AcGolS and AcRFS genes under abiotic and
biotic stresses, the expression pattern of 9 AcGolS and 12 AcRFS genes was analyzed through
the transcriptome data (Additional file 1: Table S4). As indicated in Figure 5A, AcGolS4/6/7
exhibited similar expression patterns in response to cold stress between cold-sensitive
A. arguta variety ‘Kuilv male’ (KL) and cold-tolerant A. arguta variety ‘Ruby-3’ (RB), and
their expression in RB was significantly higher in KL after cold stress, whereas AcGolS2/5/8
exhibited no significant change. Under salt stress, AcGolS2 and AcGolS4 were up-regulated
and peaked at 10d in salt-tolerant A. deliciosa variety ‘Guichang’ (GC), and more highly
in salt-tolerant than in salt-sensitive A. chinensis variety ‘Hongyang’ (HY) (Figure 5A).
Transcript levels of AcGolS1 and AcGolS6/7 in HY were instantaneously up-regulated at 10d,
but these genes in GC were not significantly affected across all the time points (Figure 5A).
AcGolS3/4/8 were significantly induced at 24 h after Pseudomonas syringae pv. actinidiae (Psa)
treatment in resistant A. eriantha variety ‘Huate’ (HT), and were significantly higher than
susceptible A. chinensis variety ‘Hongyang’ (HY) at all-time points (Figure 5A). AcGolS6 and
AcGolS7 were significantly up-regulated (fold change >2) from 48 h to 96 h in A. chinensis
variety ‘Hongyang’ (HY), while were relatively low at whole time points in A. eriantha
variety ‘Huate’ (HT) under Psa treatment (Figure 5A).

AcRFS11 and AcRFS12 were down-regulated under cold stress at whole time points
in the A. arguta variety ‘Ruby-3’ (RB) (Figure 5B). AcRFS1 and AcRFS8 were significantly
induced at 1h in RB while they were no significant changes in A. arguta variety ‘Kuilv
male’ (KL) after cold stress treatment (Figure 5B). 80% of the AcRFS genes had the highest
expression level at 10d in A. deliciosa variety ‘Guichang’ (GC) with salt treatment (Figure 5B).
AcRFS1/5/8 were down-regulated under salt stress in both GC and HY varieties. At 24 h,
the transcriptional levels of AcRFS5 and AcRFS8 in the A. eriantha variety ‘Huate’ (HT) were
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considerably higher than those in the A. chinensis variety ‘Hongyang’ (HY) in response to
Psa (Figure 5B). The expression levels of AcRFS11 in HT increased from 0 h to 24 h and
then decreased (Figure 5B). The expression of AcRFS11 was 2-fold lower in HY during the
whole Pas treated time than in HT at 24 h (Figure 5B).
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2.6. Network Analysis of Hub TF Targeting to Key AcGolS and AcRFS Genes

Co-expression network of hub transcription factors targeting key AcGolS and AcRFS
genes was constructed under cold, salt and Psa stresses. AcGolS4 under cold treatment,
AcGolS2 under salt treatment and AcGolS3 under Psa treatment were selected as key AcGolS
genes and all transcription factors (2000 TFs) for co-expression analysis. AcRFS4 under cold
and salt treatment and AcRFS7 under Psa treatment were selected as key AcRFS gene and
all transcription factors (2000 TFs) for co-expression analysis. As shown in Figure 6, the
hub AcNAC, AcMYB, AcERF, AcWRKY, AcbHLH and so on transcription factors related to
abiotic and biotic stresses were observed. There was a strong correlation between AcNAC30
and AcRFS4 with high expression levels under salt treatment (Figure 6B). Co-expression
network analysis indicated that these hub transcription factors genes in the network might
play an important role in responding to the abiotic (cold and salt) and biotic stresses (Psa).
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2.7. Verification of Key AcGolS and AcRFS Genes Expression under Abiotic Stresses

To further validate the expression pattern of AcGolS and AcRFS genes under abiotic
stresses, the stress-responsive AcGolS (AcGolS1/2/4/8) and AcRFS (AcRFS2/4/8/11) genes
were selected for qRT-PCR analysis. As shown in Figure 7A, AcGolS1 and AcGolS2 were
significantly induced after NaCl, drought (DT), and waterlogging (WT) stresses. AcGolS4
showed the highest expression level in response to cold and heat stresses. AcRFS2/4/11
were significantly up-regulated in response to cold and NaCl treatments. Only AcRFS8 was
strongly expressed under heat and cold treatments. The results confirmed that these genes
were really induced by abiotic stresses.

2.8. Salt Stress Regulating AcRFS4 Promoter

To further investigate salt-induced AcRFS4 expression, the 2000 bp promoter se-
quence of AcRFS4 was fused to the β-glucuronidase (GUS) coding region and trans-
formed into wild-type Arabidopsis (WT). Analysis of three independent transgenic plants
(AcRFS4Pro::GUS-1, -2, and -3) revealed that salt treatment strongly induced GUS expres-
sion in the transgenic lines relative to controls (Figure 8). This finding indicated that the
transcription of AcRFS4 was enhanced by salt stress.
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Figure 7. Expression levels of key AcGolS and AcRFS genes under abiotic stresses (heat, cold, salt,
drought, waterlogging) by quantitative real-time RT-PCR. (A) Expression levels of AcGloS1/2/4/8.
(B) Expression levels of AcRFS2/4/8/11. Three biological and technical replicates calculated the error
bars. Asterisks indicated the corresponding gene significantly up or down-regulated under the
different treatments using t-test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; one-way ANOVA
test by Tukey’s test). Ns indicated the corresponding gene no significantly up or down-regulated
under the different treatments using t-test.
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2.9. Functional Characterization of AcRFS4 in Response to Salt Stress

To assess the role of AcRFS4 under salt stress, three transgenic homozygous T3-
generation Arabidopsis (OE1, OE2 and OE3) were obtained. As shown in Figure 9A, wild-
type (WT) and transgenic plants grew well, without obvious difference, under normal
conditions (control, CK). Under 150 mmol L−1 NaCl, transgenic plants survived but WT
were very small and their leaves turned yellow (Figure 9B). Quantitative measurements
indicated that the root lengths of transgenic plants were significantly longer than wild-type
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under salt stress (Figure 9C). These results indicated that AcRFS4 over-expression indeed
increased the tolerance to salt stress in transgenic Arabidopsis. Moreover, the raffinose
contents in OE plants were significantly higher than that of WT under control condition
(Figure 9D), suggesting that AcRFS4 has a conserved role in raffinose biosynthesis. Under
salt stress, OE plants accumulated even more raffinose than WT (Figure 9D), indicating
that AcRFS4 increased the salt tolerance possibly by enhancing raffinose accumulation.
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Figure 9. Overexpression of AcRFS4 results in enhanced salt tolerance. (A) Observation of the
root length of wild type (WT) and T3 AcRFS4-transgenic Arabidopsis seedlings (OE1, OE2 and OE3)
under 0 mM NaCl. (B) Observation of the root length of wild type (WT) and T3 AcRFS4-transgenic
Arabidopsis seedlings (OE1, OE2 and OE3) under 150 mM NaCl. (C) Measurement of the root length of
wild type (WT) and T3 AcRFS4-transgenic Arabidopsis seedlings (OE1, OE2 and OE3) under different
concentrations of NaCl. (D) Raffinose content of wild type (WT) and T3 AcRFS4-transgenic Arabidopsis
seedlings (OE1, OE2 and OE3) under different concentrations of NaCl. Three biological replicates
and technical replicates calculated the error bars. Asterisk indicates significant difference compared
to WT (* p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA test by Tukey’s test). NS indicates no
significant difference compared to WT.

2.10. Subcellular Localization of the AcNAC30 Protein

The transient expression of 35S::GFP plasmid showed that GFP fluorescence was
observed throughout the cells, while the green fluorescence signals of the 35S::AcNAC30-
GFP plasmid were specifically found in the nucleus (Figure 10). This result indicated
that AcNAC30 might encode a nuclear-localized protein, which was consistent with its
functional characteristics in regulating gene transcription.

2.11. AcNAC30 a Key Transcription Factor Regulating AcRFS4

The transcript level of AcNAC30 was significantly up-regulated upon salt application
(Figure 11A). Compared with control, the transcript level of AcNAC30 was nearly 25 times
higher after salt treatment (Figure 11A). Promoter self-activation of Y1H Gold showed that
≥150 ng mL−1 aureobasidin A (AbA) inhibited the growth of Y1H Gold containing the
pABAi-AcRFS4-Pro recombinant plasmid (Figure 11B). Only the positive control strain and
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transformed Y1H Gold harboring both pABAi-AcRFS4-Pro and pGADT7-AcNAC30 could
grow in a medium without leucine (-Leu) (150 ng mL−1 AbA), validating protein-DNA
interaction of AcNAC30 and the AcRFS4 promoter (Figure 11B).
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Figure 11. Identification of AcNAC30 transcription factor modulating AcRFS4 in kiwifruit. (A) Ex-
pressions analysis of AcNAC30 under abiotic stresses. (B) Interaction of AcNAC30 with the promoter
of AcRFS4 in the Y1H assay. Three biological replicates calculated the error bars. Asterisks indicated
the corresponding gene significantly up-or down-regulated under the different treatments using
t-test (*** p < 0.001, **** p < 0.0001).
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3. Discussion

Raffinose, the smallest member of RFOs, is widely found in the leaves, roots, seeds
and tubers of plants, for instance, Arabidopsis thaliana [36], Brassica napus [37], Nicotiana
tabacum [13], Zea mays [14], Cicer arietinum [38], Gossypium hirsutum [39], Sesamum in-
dicum [17] and so on. As two significant oligosaccharides in the raffinose family, raffinose
and galactinol play a vital role in responding to abiotic and biotic stresses in the plant [4].
Galactitol and raffinose synthase enzymes are critical for raffinose synthesis [5]. To date,
there were a few reports regarding GolS and RFS genes in horticultural crops, such as
cucumber [40], peas [41], apple [12], banana [42], tea [7] and grapevine [24]. Kiwifruit is
an important horticultural crop with enriching in vitamin C [26]. Here, we identified 22
GolS and 24 RFS genes from the genome sequence of A. chinensis variety ‘Hongyang’ and
A. eriantha variety ‘White’. As shown in Figure 1A, phylogenetic analysis showed that
21 GolS genes were classified into four subgroups (Figure 1A), which is consistent with
that previously reported in other species, such as cotton [19], tomato [16], tobacco [13],
and sesame [17]. As shown in Figure 1B, phylogenetic analysis showed that 24 RFS genes
were classified into six subgroups, consistent with cotton [19]. A similar exon/intron
structure with 1 to 5 and conserved motifs of most RFS gene members shared in the same
group was found in kiwifruit, which was also supported by phylogenetic relationships
(Figure 2B). In short, these results showed that RFS gene family in kiwifruit might be
relatively conservative during evolution.

The previous studies showed that gene family expansion and evolution of new func-
tions frequently occurred during gene duplication, particularly in adaptation to abiotic
and biotic stresses [43]. The segmental and tandem gene duplications as two significant
factors in gene family generation and maintenance may correspond to functional differ-
ences among gene family members during gene evolution [44]. In the current study, only
one tandem duplication event of GolS gene family was found in A. chinensis, while it was
not found in A. eriantha (Additional file 2: Figure S3). This result is consistent with that
previously reported in Casava [15]. High segmental duplications (more than 80% of genes)
were observed in kiwifruit GolS and RFS gene families (Figure 3), as suggested by previous
findings in Solanum lycopersicum and Brachypodium distachyon [16]. Segmental duplication
exhibited exceptionally different expression patterns. There was often a strong link between
the function and expression pattern of segmental repeat genes. AcGolS4/6/7 genes belonging
to segmentally duplicated gene pairs in the same subgroup (Figure 1) respond to cold, salt
and Psa stresses (Figure 5A). Together, these results indicated that gene duplication might
play potential roles in providing genetic sources with novel biological functions during the
evolution of the kiwifruit GolS and RFS gene family.

It has been reported that GolS and RFS genes may play a key role in synthesizing
galactinol or raffinose and regulating the response to abiotic and biotic stresses [4]. There
are still no papers investigating GolS and RFS gene-mediated tolerance to abiotic and
biotic stresses in kiwifruit despite extensive researches on other plant species. Comprehen-
sive expression profiles of AcGolS and AcRFS genes under different hormone and abiotic
stresses treatments were analyzed via transcriptome data from this study and previous
studies (Additional file 1, Table S4). AcGolS2 and AcGolS3 were slightly induced by JA
treatments (Figure 4A), which is consistent with the report by Li et [15], Under high concen-
trations of ABA treatment, galactitol, raffinose contents and galactitol synthase activities
were significantly higher than those in control, indicating that exogenous ABA induces
the accumulation of RFO in somatic embryos of alfalfa (Medicago sativa L.) [45]. In this
study, we found that most AcGolS and AcRFS genes were significantly activated by ABA
(Figure 4A), suggesting that ABA signaling may regulate these genes. Seki et al. (2002)
suggested that AtGolS1 and AtGolS2 slightly induced ABA, while ABA does not induce
AtGolS3 in A. thaliana [46]. Promoter analysis of the Chickpea CaGolS gene revealed that
CaGolS2 was more sensitive to ABA treatment, which might be related to the ABRE core
sequence (ACGT) enriched in its promoter sequence [47]. Under ABA treatment, ZmVP1
and ZmABI5 interacted to regulate ZmGolS2 expression to promote raffinose accumulation
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in maize seeds [48]. So far, few articles have shown that ABA treatment can promote the
expression of RFS genes. Notably, the gene expression up-regulation of six AcRFS genes
(AcRFS1/4/6/7/10) was induced transcriptionally in ABA treatment (Figure 4B), suggesting
that activation of AcRFS gene might be positively correlated with ABA levels. Exogenous
ABA-treated improved levels of VvRafs1 gene expression in grapevine buds [49]. Unsur-
prisingly, abiotic stresses induced GolS and RFS genes in plants [50]. Over-expression
of CsGolS1 in cucumber enhanced the assimilate translocation efficiency and accelerated
the growth rates of sink leaves, fruits and whole plants under cold stress [51]. The nor-
mal growth and physiological processes in kiwifruit were seriously affected under salt
stress [28]. Under salt stress, AcGolS2 and AcGolS4 up-regulated and peaked at 10d in
salt-tolerant A. deliciosa variety ‘Guichang’ (GC) and more highly than in salt-sensitive
A. chinensis variety ‘Hongyang’ (HY) (Figure 5A), which suggested that they were salt-
responsive AcGolS genes. As above-mentioned, MeGolS1 reached a rapid peak expression
at 12 h in response to salt conditions [15]. TsGolS2 was up-regulated under salt stress, and
overexpression of TsGolS2 enhanced tolerance to salt in Arabidopsis [52]. In addition, over-
expression of PtrGolS3 resulted in higher RFO content and other stress-related metabolites
(proline, salicylic acid, amino acids, etc.) compared with wild type, which may increase
RFO in woody plants under short-term salt treatment understanding of metabolism [53]. In
Arabidopsis, AtRS5 (At5g40390) was reported to participate in abiotic stresses using a reverse
genetic approach [22]. ZmRFS overexpressing Arabidopsis plants displayed a significantly
tolerance to drought stress [54]. In this study, the expression levels of AcRFS2/4/8/11 were
higher in abiotic stress-tolerant (cold and salt) kiwifruit cultivars and significantly higher
than those in abiotic stress-insensitive kiwifruit cultivars (Figure 5B), which suggests that
these AcRFS genes might be positively involved in cold and salt tolerances of kiwifruit. A
previous study indicated that Na+ is toxic for kiwifruit [55]. Therefore, we can’t exclude the
possibility that the increased expression of AcRFS genes under salt stress might be caused
by the toxicity of Na+, although there is no report indicating that Na+ is toxic to all kiwifruit
varieties. Besides, our study found that overexpression of AcRFS4 in Arabidopsis enhanced
the salt tolerance of transgenic plants. More raffinose was significantly accumulated in
AcRFS4-OE Arabidopsis lines than in WT under salt stress (Figure 9D). Therefore, we specu-
late that overexpression of AcRFS4 would accumulate more raffinose for combating with
the salt stress in kiwifruit. So far, a few studies have shown how GolS and RFS genes are
transcriptionally regulated under abiotic and biotic stresses. The BhWRKY1 transcription
factor was involved in dehydration tolerance by regulating BhGolS1 gene in Boea hygro-
metrica [56]. ZmDREB1A directly regulated ZmRFS to improve raffinose biosynthesis and
enhance plant tolerance to cold stress [57]. Many elements related to phytohormones, biotic
and abiotic stresses were observed in the upstream 2000 bp promoter of the GolS and RFS
genes in A. chinensis and A. eriantha (Additional file 2: Figure S1). There was a strong
correlation between AcNAC30 and AcRFS4 by WGCNA analysis under salt (Figure 6).
AvNAC030 can increase plants’ salt tolerance by improving ROS removal efficiency and
maintaining the intracellular and extracellular osmotic balance to protect the integrity of the
membrane [58]. By qRT-PCR analysis, it was shown that the transcription of both AcNAC30
and AcRFS4 was significantly induced under salt stress (Figures 7B and 11A). Apart from
this, GUS staining result of AcRFS4 promoter revealed that the transcription of AcRFS4
was induced by salt stress (Figure 8). Considering the results of Y1H, we believe that
the transcription factor AcNAC30 may activate AcRFS4 expression by directly binding its
promoter (Figure 11B). This work provides a foundation for future investigation of AcGolS,
AcRFS and AcNAC30 gene functions for kiwifruit’s abiotic and biotic stresses tolerance.

4. Materials and Methods
4.1. Identification and Phylogenetic Analysis of GolS and RFS Genes

The A. chinensis variety ‘Hongyang’ v3.0 and A. eriantha variety ’White’ genome
sequences were obtained from the Kiwifruit Genome Database (http://kiwifruitgenome.
org/ (accessed on 4 May 2021)) [59]. First, the BLASTP tool was used to screen AtGolS and

http://kiwifruitgenome.org/
http://kiwifruitgenome.org/
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AtRFS genes in Arabidopsis against all of the protein sequences in each kiwifruit genome,
using an E-value threshold of 1.0. Secondly, the profile hidden Markov model (PF05691
and PF01501) of the Pfam 32.0 database (http://pfam.xfam.org/ (accessed on 2 June 2021))
was further applied to confirm the hits under an E-value <1.0 [60]. We removed the
genes, which did not include conserved domains of GolS and RFS genes. Finally, these
remaining candidate protein sequences were used to calculate physicochemical properties
by the online tool ProtParam, including molecular weight (MW), theoretical isoelectric
point (pI), and hydrophilic mean (GRAVY). The possible subcellular location of GolS and
RFS genes in kiwifruit was predicted using the WolfPSORT tool [61]. Multiple protein
sequences were aligned by using MUSCLE [62]. The Neighbor-Joining (NJ) phylogenetic
trees were constructed using MEGA software with 1000 bootstrap replicates [63]. AtGolS
and AtRFS amino acid sequences were downloaded from TAIR (https://www.arabidopsis.
org/ (accessed on 2 August 2021)) in this study.

4.2. Analysis of Gene Structure, Protein Motif and Cis-Element in Promoter Regions

The gene structures were presented using the online Gene Structure Display Service
(http://gsds.cbi.pku.edu.cn (accessed on 10 August 2021)) [64]. The conserved motifs were
displayed by using the online tool MEME Suite5.1.1 (version 5.1.1; http://meme-suite.org/
(accessed on 16 August 2021)) [65]. The gene promoters from the initiation codon (2000 bp
before ATG) were retrieved from the kiwifruit genome. Then, the putative cis-regulatory
elements in the promoter region sequences were predicted via the PLACE database (http:
//www.dna.affrc.go.jp/PLACE/ (accessed on 30 August 2021)).

4.3. Analysis of Gene Duplication, Synteny and Chromosomal Locations

The potential gene duplication and events synteny relationships between kiwifruit
and A. thaliana of GolS and RFS gene families were determined using MSCanX software [66].
The physical location maps of chromosomes were drawn using MapInspect 1.0 software.

4.4. Expression Analysis of AcGolS and AcRFS Genes

The RNAseq raw sequence data of 78 samples covering diverse tissues at different
developmental time points were downloaded from the NCBI website (Bioproject ID PR-
JNA324539) [67]. The raw transcriptome data of two A. arguta genotypes, ‘Kuilv male’ (KL)
and ‘Ruby-3’ (RB), with high and low freezing tolerance, respectively, at −25 ◦C for 0 h, 1 h,
and 4 h were obtained from the NCBI database, with project number PRJNA248163 [68].
We also downloaded the RNA sequencing raw data of resistant A. eriantha variety ‘Huate’
and susceptible A. chinensis variety ‘Hongyang’ at 0, 12, 24, 48, and 96 h after inoculation
with Psa from the NCBI (Bioproject ID PRJNA514180) [31]. The rest of the transcriptome
raw data (unpublished) came from our own research group. Trimmomatic was performed
to filter the raw sequence datas [69]. The clean datas were adopted to map the reference A.
chinensis variety ‘Hongyang’ v3.0 genome using HISAT2 [70]. The genes were quantified
with the featureCounts package in R. The heatmaps were constructed using the TBtools
software [71].

4.5. Co-Expression Network Analysis of Hub Transcription Factors

Co-expression network hub transcription factors targeting key AcRFS and AcGolS
genes were analyzed by using the ‘cor’ function of the R package with Pearson’s correlation
coefficients (r ≥ 0.9 or r ≤ −0.9 and p-values ≤ 0.05) under cold, salt and Psa stresses
conditions. Cytoscape 3.4.0 software (http://www.cytoscape.org/ (accessed on 30 August
2021)) was used to visually describe co-expression network results [72]. The degree >N50
was used to identify the genes of hub transcription factors.

4.6. Plant Material and Abiotic Stresses Treatments

A. chinensis variety ‘Hongyang’ (HY) tissue culture seedlings were transferred to a
soil mixture of perlite and sand (3:1, v/v). All seedlings were grown in a growth chamber
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at a temperature of 18 ◦C (night) and 24 ◦C (day), relative humidity of 60–80%, and a
14/10 h photoperiod (daytime, 06:00–20:00). The seedlings were irrigated with water
once every two days. After two months, they were randomly divided into six groups
for stresses treatments. For heat and cold stress treatment, the seedlings were transferred
into two chambers with the temperature set at 48 ◦C and 4 ◦C, respectively [73]. Treated
seedlings were harvested at 6 h after treatment. For salt, drought and waterlogging stresses,
the seedlings were soaked in 0.6% NaCl for 6 days [28]. the seedlings were flooded for
7 days [74], and the seedlings were dried for 14 days [75]. Non-treated seedlings were used
as the control (CK). All samples were immediately frozen in liquid nitrogen and stored at
−80 ◦C.

4.7. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis

According to the manufacturer’s instructions, total RNA was extracted from all sam-
ples using the RNAprep pure Plant Kit (TIANGEN, Beijing, China). For qRT-PCR analysis,
first-strand cDNAs were synthesized from DNaseI-treated total RNA using the Hifair®III
1st Strand cDNA Synthesis kit (Yeasen, Shanghai, China) according to the manufacturer’s
instructions. qRT-PCR was performed on the Biorad CFX96 real-time PCR system using the
ChamQ SYBR qPCR Master Mix (Vazyme, Nanjing, China). The relative expression levels
were calculated by using 2−∆∆Ct method. The qRT-PCR assays were performed with three
biological and technical replicates. The gene-specific primers are listed in Supplementary
Additional file 1: Table S2.

4.8. Isolation of the AcNAC30 and AcRFS4 Full-Length CDS, and AcRFS4 Promoter Sequence

The CTAB method was implemented to extract the total DNA of A. chinensis variety
‘Hongyang’ (HY)leaves [76]. Transcription factor AcNAC30 was identified based on the
sequence in the kiwifruit database (http://kiwifruitgenome.org/ (accessed on 6 October
2021), Accession Nos. Actinidia09980). AcNAC30 and AcRFS4 full-length CDS were cloned
from reverse-transcribed cDNA with specific primers (Additional file 1: Table S3). The
AcRFS4 promoter was cloned from extracted DNA with AcRFS4-Pro primers (Additional
file 2: Supplementary Table S3). The cloning conditions were as follows: predenaturation
for 3 min at 98 ◦C; 30 cycles of template denaturation for 10 s at 98 ◦C, primer annealing
for the 60 s at 58 ◦C, and 30 s at 72 ◦C; and a final extension step of an additional 5 min at
72 ◦C. The amplified products were connected to the pESI-T vector and transferred into
DH5α Chemically Competent Cell, and the recombinant plasmids were obtained through
white spot screening.

4.9. Analysis of AcRFS4 GUS Histochemical Staining and AcNAC30 Protein Subcellular
Localization Assay

The 20,000 bp AcRFS4 promoter sequence was inserted into pCAMBIA1301 to drive
the GUS reporter gene by using BglII and BamHI. AcRFS4Pro::GUS transgenic Arabidopsis
of 10-day-old seedlings in MS/2 media. Then, transgenic Arabidopsis were treated with
150 mM NaCl for 24 h. Finally, transgenic Arabidopsis were used for histochemical staining.
GUS staining was performed according to Jefferson et al. [77]. Primers for construction of
the AcRFS4Pro::GUS vector were provided in Additional file 1: Table S3.

The CDS of AcNAC30 without the stop codon was constructed into the vector pCAMBI
A1305-35S-GFP vector using double enzyme digestion (cut with Xbal and BamHI). Then,
the plasmid (35S::AcNAC30-GFP) was transferred into Agrobacterium strain EHA105. This
strain was injected into 1-month-old tobacco leaves. Finally, the GFP fluorescence was de-
tected by confocal laser scanning microscopy. Primers used to construct the 35S::AcNAC30-
GFP vector were provided in Additional file 1: Table S3.

4.10. Transcription Activation Assay in Yeast

The yeast one-hybrid (Y1H) assays were conducted based on the method previously
described [78]. The AcRFS4 promoter sequence containing three core cis-elements (CATGT

http://kiwifruitgenome.org/


Int. J. Mol. Sci. 2022, 23, 8836 16 of 20

binding site) was inserted into a pAbAi vector via the HindII and SalI sites (pABAi-AcRFS4-
Pro primers in Additional file 1: Table S3). The recombinant vector of pABAi-AcRFS4-Pro
was linearized with BstBI and transferred into Y1H Gold through PEG/LiAc. The full-
length region of AcNAC30 was embedded into the pGADT7 vector (AD) through EcoRI
and SalI sites (pGADT7-AcNAC30 primers in Additional file 1: Table S3). Transformed
Y1H Gold harboring pABAi-AcRFS4-Pro and pGADT7-AcNAC30 were cultured to test the
interaction on SD/-Leu with aureobasidin A (150 ng mL−1 AbA) for three days at 30 ◦C.
Finally, an autoactivation analysis was conducted according to the manufacturer’s protocol.
The p53-promoter fragment and pGADT7-Rec (AD-Rec-P53) co-transform Y1H Gold as a
positive control. Empty pGADT7 was transformed in Y1H Gold with pABAi-AcRFS4-Pro
as a negative control.

4.11. Plasmid Construction, Transgenic Arabidopsis Generation and Salt Stress Tolerance

Complete CDS of AcRFS4 was cloned between the NcoI and BstEII sites of the pCAM-
BIA1302 vector with the In-Fusion and a pair of primers (Additional file 1: Table S3). The
AcRFS4-1302 vector was initially transformed to Agrobacterium strain GV3101. Finally,
it was transformed to Arabidopsis using the floral dip method [79]. The AcRFS4-1302
transgenic Arabidopsis of T1, T2, and T3 generations was selected on 1/2 MS medium with
25 mg·L−1 Hygromycin B (HYG). T3 homozygous of these transgenic lines were used for
salt stress tolerance assays. The seeds of WT and homozygous T3 transgenic Arabidopsis
(OE1, OE2 and OE3) were separately placed on 1/2 MS medium containing 150 mmol·L−1

NaCl. After 7 days, the root lengths of WT and transgenic Arabidopsis was measured by
using Image J 1.8.0. The leaves of WT and transgenic Arabidopsis under salt stress treat-
ments were collected, then raffinose were extracted from WT and transgenic Arabidopsis
leaves according to Li et al. [80]. Raffinose was determined by high performance liquid
chromatography (HPLC) with amide column (4.6 mm × 150 mm id., 5 µm;). A Waters
X-bridge amide column (Waters, USA) was washed by methanol/H2O (90:10) as the mobile
phase at speed of 0.5 mL/min for separation of soluble sugar components. An evaporative
light-scattering detector (ELSD; Waters 2424) was applied to monitor the sugar signal.

5. Conclusions

The galactinol synthase (GolS) and raffinose synthetase (RFS) are two critical enzymes
synthesizing raffinose, which play an important role in modulating plant growth and a
variety of biotic or abiotic stresses. A total of 22 GolS and 24 RFS genes were identified in A.
chinensis and A. eriantha, respectively. We comprehensively analyzed the GolS and RFS gene
families and their involvement in kiwifruit’s abiotic and biotic stresses responses at the
genome-wide scale. RNA-seq and qRT-PCR analyses revealed that AcGolS1 and AcGolS2
were significantly induced after NaCl, DT, and WT stresses. AcRFS4 was significantly
up-regulated in response to NaCl treatments. The GUS staining result revealed that the
transcriptional regulation of AcRFS4 was influenced by salt stress. Overexpression of
AcRFS4 in Arabidopsis proved that this gene enhanced the salt tolerance of transgenic plants
at physiologic (higher raffinose content). A yeast one-hybrid assay demonstrated that
AcNAC30 could interact with the AcRFS4 promoter. Therefore, we speculate that AcNAC30
promotes the expression of AcRFS4 gene to increase the accumulation of raffinose, thereby
improving the salt stress tolerance of kiwifruit.
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