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Abstract: Despite the great potential of octahedral tungsten cluster complexes in fields of biomedical
applications such as X-ray computed tomography or angiography, there is only one example of a
water-soluble W6Q8-cluster that has been reported in the literature. Herein we present the synthesis
and a detailed characterization including X-ray structural analysis, NMR, IR, UV–Vis spectroscopies,
HR-MS spectrometry, and the electrochemical behavior of two new cluster complexes of the general
formula W6Q8L6 with phosphine ligands containing a hydrophilic carboxylic group, which makes
the complexes soluble in an aqueous medium. The hydrolytic stability of the clusters’ aqueous
solutions allows us to investigate for the first time the influence of W6-clusters on cell viability. The
results obtained clearly demonstrate their very low cytotoxicity, comparable to the least-toxic clusters
presented in the literature.
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1. Introduction

The discovery of X-rays by Wilhelm Conrad Röntgen and the printing of the first
“medical” X-ray image of his wife’s hand in 1895 has resulted in a breakthrough in medical
diagnostic procedures [1]. However, since X-rays are absorbed strongly by hard tissues (e.g.,
bones) and weakly by soft tissues (e.g., muscles, blood vessels), in 1896 radiocontrast media
(bismuth, lead, and barium salts) were first utilized to precisely distinguish soft tissues.
Nowadays, much safer radiopaque agents based on 1,3,5-triiodobenzene derivatives (e.g.,
iohexol, iopamidol, etc.) are used in medical practice [2]. However, the improvement
of the parameters of contrast agents towards increasing their safety and image quality is
still required [3–6]. An alternative way to solve this problem is to develop new highly
hydrophilic and structurally stable compounds with high atomic numbers Z.

In review article by Yu and Watson [7] published in 1999, the authors mentioned that
heavy metal clusters with different nuclearity are of great interest as components of X-ray
contrast media. For example, di- and trinuclear tungsten clusters with cores {W2O2Q2}
(Q = O or S), {W3Q2}, and {W3Q4}, grafted by polycarboxylic ligands such as ethylenedi-
aminetetraacetate, triethylenetetramine-N,N,N′,N′′,N′ ′ ′,N′ ′ ′-hexaacetate, ethyleneglycol-
bis-(β-aminoethylether)-N,N,N′,N′-tetraacetate, 3,3′-[ethane-1,2-diylbis(oxy)]dipropanate,
etc., have shown encouraging results in both in vitro and in vivo X-ray imaging studies
providing high-contrast enhancement, with noticeable improvements in image quality
along with suitably low acute toxicities in mice [7–11]. Nowadays, the chemistry of cluster
compounds with such low nuclearity is being actively studied [12,13], but investigation
from the point of view of application as radiocontrast agents is limited by the works
noted above.

Metal cluster complexes with an octahedral cluster core, such as {M6X8} and {M6X12}
(M = Ta, W, Re; X = halogen or chalcogen), represent another promising class of X-ray
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contrast agents. Due to the presence of six heavy metals and eight heavy inner ligands
X (when X = I or Te), such clusters demonstrate multiplied X-ray attenuation relative
to iodinated contrast agents [14–19]. At the moment, the octahedral cluster complexes
most studied in terms of X-ray contrast agents are rhenium clusters with functionalized
phosphines [{Re6Q8}(PR3)6]n− (Q = S, Se; PR3 = P(CH2CH2CONH2)(CH2CH2COOH)2,
P(CH2CH2COOH)3 or PPh2CH2CH2COOH). The compounds obtained are highly water-
soluble, have low cellular and acute toxicities and can act as highly radiopaque agents for
angiography and computed tomography [15,20–22]. In spite of all of the positive properties
of rhenium clusters, the low world production of rhenium in cooperation with its high
cost stimulates the study of the closest analogues of Re6Q8-clusters—octahedral tungsten
cluster complexes with the general formula [{W6X8}L6], where X is halogen or chalcogen
and L is terminal inorganic or organic ligands.

Halide, and especially iodide W6-clusters, have shown high X-ray attenuation, indicat-
ing perspectives for further study [14,16]. However, such clusters have two disadvantages.
Firstly, they are hydrolytically unstable and form a precipitate of aquahydroxocomplexes
[{W6X8}L6-x-y(H2O)x(OH)y] in aqueous media [16,23]. Secondly, {W6X8}-clusters can act
as powerful photosensitizers of singlet-oxygen generation under X-ray irradiation [16,24].
Both of these disadvantages are a serious obstacle in the development of a radiopaque
agent based on halide W6-clusters. It is important to note that some Re6-clusters can also act
as moderate photosensitizers under X-ray irradiation, which also limits the development
of contrast agents based on them [22,25].

Octahedral tungsten chalcogenide clusters [{W6Q8}L6] (Q—S, Se, Te) are free of both
of these drawbacks. They are more hydrolytically stable than tungsten halides, and no
examples of their photosensitizing properties are known to date. However, the pool of
such clusters is not large enough due to the synthetic problems: only 36 individual cluster
complexes (31 for Q = S, 2 for Q = Se, and 3 for Q = Te) with different organic or inorganic
terminal ligands were described [26–43]. Moreover, only one of the known W6Q8-clusters is
soluble in water, namely [{W6S8}(CN)6]6− [38]. Hence, the preparation of new water-soluble
W6Q8-based cluster complexes is still an important task.

In this work we report the synthesis detail characterization including single-crystal
structure analysis; 1H, 13C, 31P, and 77Se NMR; the high-resolution mass spectromet-
ric, electrochemical study of tungsten clusters with functionalized phosphine ligand
PPh2CH2CH2COOH, namely neutral [{W6Q8}(PPh2CH2CH2COOH)6] (Q = S (H6-1), Se
(H6-2)) and its water-soluble sodium salts Na6[{W6Q8}(PPh2CH2CH2COO)6] (Q = S (Na6-1)
and Se (Na6-2)). Furthermore, stability in physiological medium and cytotoxic studies of
water-soluble clusters were investigated.

2. Results and Discussion
2.1. Synthesis and Characterization

The compound H6-1 was prepared according to the modified method published for
the cluster with phosphine P(C2H4CN)3 as a ligand, namely [{W6S8}(P(C2H4CN)3)6] [43].
Briefly, the reaction mixture of (Bu4N)2[{W6I8}I6]/NaHS/tBuOK/PPh2CH2CH2COOH
in a molar ratio of 1:16:8:16 in dry DMF was heated in a sealed glass tube at 100 ◦C
for 4 days, resulting in the complete substitution of inner and terminal iodine ligands
with a good yield (69%). Another synthetic approach was applied to obtain H6-2 with a
good yield (75%). Se2−-anions were generated in dry DMF under Ar atmosphere from
elemental Se and NaBH4 in a molar ratio of 1:2, than a DMF solution of (Bu4N)2[{W6I8}I6]
and PPh2CH2CH2COOH was added to the reaction mixture, keeping the molar ratio of
the initial cluster, chalcogen and ligand, as well as reaction conditions, similar to sulfide
analogue. After the reaction, the desired compounds were in the precipitate, which was
washed successively with DMF and acetonitrile (to remove the residues of the reaction
mixture and byproducts). The resulting powder was soluble in water (apparently due
to the sodium salts formed during the synthesis). The solution was separated from the
insoluble byproducts, and the final product was precipitated with a 0.1 M hydrochloric acid
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solution. In this case, only the complex precipitates were obtained, while all inorganic salts
remained in solution and were removed by washing the complex with water. Therefore,
this approach allowed us to obtain clusters of composition [{W6Q8}L6] in one step from the
halide complex (Bu4N)2[{W6I8}I6] (without using [{W6S8}(TBP)6] or [{W6S8}(nBuNH2)6],
which were applied in past works [33–35,39–42]). It should be noted that H6-2 is the first
example of a {W6Se8}-cluster with a phosphine ligand.

The composition of compounds was proven by elemental analysis and energy-dispersive
X-ray spectroscopy (EDS). All characteristic vibrations of the ligand were observed in both
compounds’ FTIR spectra (Figures S1 and S2, Supplementary Materials). Moreover, the
crystal structures of H6-1 and H6-2 as solvates with diethyl ether and water molecules
(H6-1·7H2O·2.5Et2O and H6-2·3H2O·Et2O) were determined using single-crystal X-ray
structural analysis (SCXRD).

Both compounds are isostructural to each other and to molybdenum analogs [{Mo6Q8}
(PPh2CH2CH2COOH)6]·4.5H2O·2.5Et2O [44] and crystallize in triclinic space group P1
(Z = 1). The crystallographic data are summarized in Table S1, Supplementary Materials.
The unit cell contains three independent W atoms and four S/Se atoms belonging to the
same cluster unit. All atoms in the crystal structures are in general positions, while the
center of the cluster coincides with the special crystallographic position (0, 1

2 , 0) with Ci
site symmetry. Phosphine ligands are coordinated to W atoms by a phosphorus atom
(Figure 1). A similar type of coordination of PPh2CH2CH2COOH was previously reported
for molybdenum and rhenium clusters, namely [{Mo6Q8}(PPh2CH2CH2COOH)6] and
[{Re6Q8}(PPh2CH2CH2COOH)6]2+ [22,44]. An analysis of the bond lengths shows differ-
ences in the M–P distances for the cluster family [{M6Q8}(PPh2CH2CH2COOH)6]n (M = Mo,
W, Re) (Table 1). M–P bond length decreases, and hence bond strength increases in the order
Mo—W—Re. Neutral clusters in structures H6-1·7H2O·2.5Et2O and H6-2·3H2O·Et2O are
densely packed and participate in a number of strong hydrogen bonds between carboxylic
groups and solvate molecules (O . . . O distances are 2.649–2.758) or between carboxylic
acid groups of neighboring clusters (O . . . O distances are 2.642 and 2.634 for Q = S, Se
correspondingly). The space between the clusters is occupied by various solvate molecules.
No other remarkable interactions were observed in the crystal structures.
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Figure 1. Structure of neutral cluster complexes [{W6Q8}(PPh2C2H4COOH)6]. Two phosphine
ligands are omitted for clarity. W—blue, Q—orange, P—purple, C—grey, H—white, O—red.

We also studied the compounds obtained in a DMSO-d6 solution using NMR spec-
troscopy. On 1H NMR spectra (Figure 2a), clusters’ phenyl protons are not shifted relative
to the uncoordinated ligand, while methylene protons split into two groups with shifts
(for P-CH2- ∆ = 0.24 (overlap with DMSO signal) and 0.38 ppm, for -CH2-COO ∆ = −0.15
and −0.32 ppm for H6-1 and H6-2, correspondingly), which prove ligand coordination
to the cluster core. Furthermore, both 31P NMR spectra (Figure 2b) contain one signal
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of coordinated PPh2CH2CH2COOH (shifted by 4.2 and −2.05 ppm for H6-1 and H6-2,
correspondingly), which confirms the symmetric coordination of apical ligands, while
the presence of satellites with J = 230.7 and 208.6 Hz for H6-1 and H6-2, correspondingly,
prove W–P bonding. The shift of the phosphorus signal in opposite directions may indicate
a different electronic configuration of the cluster core: the more electronegative sulfur
withdraws the electron density from tungsten more strongly, due to which phosphorus
donates more to the tungsten, while in the case of selenium the electron density on tungsten
is higher and therefore, apparently, a slight donation from the metal to the phosphorus
atom was observed. Moreover, for the first time for clusters with a {W6Se8} core, 77Se NMR
spectroscopy was used for the characterization of H6-2 (Figure 2c), indicating one signal at
1018 ppm.

Table 1. M–P bond length analysis (M = Mo, W, and Re).

Cluster Compound M–P Distances, (Average), Å Refs.

H6-1·7H2O·2.5Et2O 2.522(2)–2.536(2)

this workH6-2·3H2O·Et2O 2.524(2)–2.539(2)

Na6-1·7.5H2O·Me2CO 2.538(3)–2.562(3)

[{Mo6S8}(PPh2CH2CH2COOH)6]·4.5H2O·2.5Et2O 2.5444(9)–2.5594(8)
[44]

[{Mo6Se8}(PPh2CH2CH2COOH)6]·4.5H2O·2.5Et2O 2.544(2)–2.560(2)

[{Re6Se8}(PPh2CH2CH2COOH)6]Br2·6H2O·Et2O 2.481(2)

[22]Na4[{Re6S8}(PPh2CH2CH2COO)6]·4H2O 2.4842(8)–2.4913(7)

Na4[{Re6Se8}(PPh2CH2CH2COO)6]·4H2O 2.4849(8)–2.4909(8)

2.2. Redox Properties

Octahedral chalcogenide transition metal clusters are known for their redox activity.
Usually, {W6Q8}-clusters with phosphine ligands have CV curves with two reversible
one-electron reduction and oxidation processes and two irreversible oxidation processes at
high positive potentials. In [42] authors showed that [{W6S8}(PEt3)6], containing 20 metal-
based valence electrons per cluster (VEC), possesses reversible reduction (E1/2 = −1.28 V
vs. Ag/AgCl) from 20 to 21 VEC and oxidation (E1/2 = 0.1 V vs. Ag/AgCl) from 20 to
19 VEC. Molybdenum analogues [{Mo6Q8}(PEt3)6] (Q = S, Se) showed the same behavior
but are shifted compared to {W6Q8}-clusters’ potentials—E1/2 = −1.05 V vs. Ag/AgCl for
reduction and E1/2 = 0.22 V vs. Ag/AgCl for oxidation—with no difference between S and
Se clusters [45].

In this work, the electrochemical properties of {W6S8} and {W6Se8} clusters with the
same apical ligands were compared for the first time. Solutions of H6-1 and H6-2 in DMSO
were studied by cyclic voltammetry (CV). According to CV curves (Figures 3 and S3–S6,
Supplementary Materials), both complexes demonstrate similar behavior and have re-
versible one-electron reduction with E1/2 = −0.9 V vs. Ag/AgCl, relating to transition from
20 to 21 VEC and reversible one-electron oxidation from 20 to 19 VEC at E1/2 = 0.39 and
0.35 V vs. Ag/AgCl for H6-1 and H6-2, correspondingly. It is important to mportant to
note that chalcogen in the cluster core does not significantly affect the redox potentials of
compounds, indicating the metal-centered nature of the redox processes.

2.3. Water-Soluble Salts

Since neutral forms are only soluble in some organic solvents, those that are soluble in
water anionic complexes were formed by the deprotonation of the carboxyl groups with
alkali, resulting in hexasodium salts Na6-1 and Na6-2. The composition of compounds was
proven by elemental analysis and EDS, while FTIR for both salts contained all characteristic
peaks of the pro-ligand with shifts for C=O vibration due to the deprotonation of the
carboxyl group (Figures S1 and S2, Supplementary Materials).
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For Na6-1, the single crystal suitable for X-ray structural analysis was obtained by
acetone diffusion in an aqueous/ethanol solution of the cluster. According SCXRD, Na6-
1·7.5H2O·Me2CO crystalizes in triclinic space group P1 (Z = 1). The crystallographic
data are summarized in Table S1. The unit cell contains three independent W atoms
and four S atoms belonging to the same cluster. All atoms in the crystal structure are
in general positions, while the center of the cluster coincides with the centrosymmetric
special crystallographic position ( 1

2 , 1
2 , 0). As well as for neutral cluster H6-1, in Na6-1, the

coordination of the phosphine ligand to the cluster core by the P atom is preserved. The
W–P bond lengths are slightly longer than those for H6-1 (see Table 1).

Figure 2. 1H (a), 31P (b), 77Se (c), and NMR spectra of H6-1 and H6-2 in DMSO-d6 in comparison to
PPh2C2H4COOH.

The compound Na6-1·7.5H2O·Me2CO contains six Na+, which compensates for the
high negative charge of the cluster anion [{W6S8}(PPh2CH2CH2COO)6]6−. Each oxygen
atom of the carboxylic group of the ligand (except O22) interacts with alkali cations, partially
filling their coordination sphere, while molecules of water and acetone occupy the rest of
the coordination spheres. The remaining disordered water molecule (O6W) unassociated
with sodium cations is involved in hydrogen bonds with the carboxylic groups of the
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ligands (O . . . O distances of 2.717 and 3.094 Å). The solvated alkali cations are island-like
packed, and link two cluster anions with the formation of infinite chains—{alkali cations-
cluster anions}∞ (Figure S7, Supplementary Materials). These chains are stacked in parallel
and do not interact with neighboring ones. However, there is still a volume available
for the solvent in the crystal structure between the chains. According to the PLATON
software [46,47], a void with the volume of 553 Å3 and about 111 electrons was found
(Figure S7, Supplementary Materials). This electron density could be attributed to 11 water
molecules occupying a minimum 440 Å3 or other solvent molecules, i.e., acetone or ethanol.
No other remarkable interactions were observed in the crystal structure.
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1H and 31P NMR spectroscopy were used to confirm the preservation of clusters in
alkali solutions (Figures S8 and S9, Supplementary Materials). Thus, there are shifts for
both phenyl (∆ = 0.13–0.18 and 0.15–0.18 ppm for Na6-1 and Na6-2, correspondingly) and
methylene (for P-CH2- ∆ = 0.22 and 0.35 ppm and for -CH2-COO ∆ =−0.26 and−0.37 ppm
for Na6-1 and Na6-2, correspondingly) protons in the 1H NMR spectra that indicates the
coordination of PPh2CH2CH2COOH. The 31P NMR spectra contain only one shifted signal
for each compound (∆ = 5.31 and−2.76 ppm), with satellites of W–P bonding with coupling
constants 231.4 and 208.2 Hz for Na6-1 and Na6-2, correspondingly. As well as H6-2, Na6-2
has only one signal at 998 ppm in the 77Se NMR spectrum in a wide field range (Figure S10,
Supplementary Materials).

Furthermore, according to high-resolution mass spectrometry, water solutions of
Na6-1 and Na6-2 contain cluster forms with six ligands and various cationic compositions
(Figures 4 and S11, Supplementary Materials), additionally indicating the existence of
clusters in aqueous solutions.

2.4. Stability in Culture Medium

To the best of our knowledge, only (Alk)6[{W6S8}(CN)6] (Alk = Na, K) is water-soluble
among all {W6Q8}-clusters. Jin et al. [38] showed the stability of this cluster in deoxygenated
water using 13C NMR spectroscopy. In this work, we studied the behavior of water-soluble
Na6-1 and Na6-2 in culture medium (Dulbecco’s Modified Eagle’s Medium, DMEM) by
UV–Vis spectroscopy. As can be seen in Figure 5, spectra profiles were unchanged, while
absorptions remained almost at the same level after 72 h for both salts, which, in total,
proved the hydrolytic stability of the clusters.
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2.5. Cytotoxicity

The MTT assay is a classic test for estimating cytotoxicity. It is based on the reduction
of a bright yellow MTT reagent to violet formazan by the mitochondrial activity of the
cells. However, in this work, we demonstrate the ability of the clusters to reduce MTT
by themselves. After the mixing of the Na6-1 or Na6-2 solutions with the solution of the
MTT reagent, a violet, poorly soluble in water but highly soluble in iPrOH precipitate is
rapidly formed. A broad signal in the range of 500–600 nm appeared on the UV–Vis spectra
of aqueous solutions after reactions (Figure S12, Supplementary Materials), in which the
profile and position coincide with the UV–Vis spectrum of the violet precipitate in iPrOH
and with the literature data for formazan. At the same time, no changes were observed in
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the profiles and positions of the clusters’ signals. Such an observation can be explained by
the redox properties of clusters, which, as demonstrated above, almost does not depend
on chalcogen in the cluster core. Since the cluster complex was in excess with respect to
the MTT reagent (molar ratio v4:1), no significant changes in the absorption spectra were
found. Despite the fact that the reduction of the MTT reagent by various compounds is not
new [48,49], such a result has not been previously reported for octahedral cluster complexes
of transition metals.

Due to the data obtained, the cytotoxicity studies were carried out using double stain-
ing with Hoechst 33342/propidium iodide (PI) (Figure 6). Due to the fact that propidium
iodide penetrates only into dead cells with impaired membrane integrity, and Hoechst
33342 stains the chromatin of all cells, the double-staining method allows us to calculate
the percentage of living and dead cells for each investigated concentration of the Na6-1 or
Na6-2. In addition, this method also allows one to distinguish apoptotic cells. In apoptotic
cells, chromatin is condensed, and, while staining with Hoechst 33342, a brighter signal
is observed. Na6-1 and Na6-2 were incubated with Hep-2 cells for 48 h. The IC50 values
for the clusters synthesized here in comparison with those for rhenium analogues are
presented in Table 2. It should be noted that such studies for tungsten chalcogenide cluster
compounds were carried out for the first time.
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Table 2. The IC50 values of [{M6Q8}(PPh2CH2CH2COO)6]n (M = W, Re) clusters.

Cluster Complex IC50 Value, µM Refs.

Na6-1 1680 ± 70
this work

Na6-2 240 ± 20

Na4[{Re6S8}(PPh2CH2CH2COO)6] 1150 ± 180
[22]

Na4[{Re6Se8}(PPh2CH2CH2COO)6] 730 ± 260

The difference in the toxicity of tungsten and rhenium clusters can be associated with
different charges of complexes, which leads to different charge distribution and osmolality
and hence, different chaotropic effect (specific ion effect) [50,51] of the clusters. However,
for both types of the clusters, an increase in toxicity was observed while changing the
inner ligand from sulfur to selenium. Indeed, a series of cluster complexes, [{Re6Q8}L6]
(varying L), was previously shown to possess different biological effects: cytotoxicity,
cellular uptake, and acute toxicity in mice depending on inner ligand [18,20–22,52–55].
For example, this tendency was observed in the cytotoxic effects of clusters with different
ligand natures, namely [{Re6Q8}(CN)6]4− (Q = S, Se, Te), [17,18] [{Re6Q8}(trz)6]4−, [55]
[{Re6Q8}(PPh2CH2CH2COO)6]4− [22] and [{Re6Q8}(P(CH2CH2COO)3)6]16− [21] (Q = S, Se;
trz = 1,2,3-triazole, 1,2,4-triazole or benzotriazole), studied in normal and cancerous cell
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lines. Specifically, in the case of clusters with acidic ligands, like triazoles and phosphines,
the selenium-containing clusters have a more pronounced cytotoxic effect than sulfur ones.
This behavior is obviously related to the stronger electron-accepting properties of sulfur
atoms in the cluster core than those of selenium ones, which lead to the higher acidity
of terminal ligands. Moreover, the higher acidity of the ligands increases the charge of
the cluster in a solution, resulting in a lower chaotropic effect (due to the higher charge
density) of the complex and, at the same time, a lower cytotoxicity. On the other hand,
chaotropic agents are known to disrupt the hydrogen bonding network and to reduce
the stability of the native state of intracellular proteins by weakening the hydrophobic
effect [56]. Toxicology research and investigations of chaotropic effects for [{Re6Q8}(CN)6]4−

(Q = S, Se, Te) are one of the examples of links between specific ion effects and cytotoxicity.
The least-toxic cluster complex [{Re6Te8}(CN)6]4− is the least chaotropic agent, while the
more toxic [{Re6S8}(CN)6]4− is the more chaotropic [17,18,57–59]. Apparently, in the case
of the highest chaotropic effect, the strong supramolecular binding of clusters to various
intracellular organelles and biomolecules is possible, while the least chaotropic compounds
practically do not participate in any interactions. In this work, according to 31P NMR data
(Figure S9, Supplementary Materials), different electron densities on phosphorus atoms
(different chemical shifts) confirm the effect of chalcogen in the cluster core on the acidic
properties of the carboxylic groups of ligands and, therefore, the chaotropic effect of the
clusters, which is probably the reason for the higher cytotoxicity of Na6-2.

While lower toxicity was shown for Na6-1, Na6-2 can also be considered a promising
compound due to its tendency to cause cell death through the mechanism of apoptosis.
Unlike necrosis, ferroptosis, and autophagy, apoptosis does not cause a significant inflam-
matory response in the body [60]. In concentrations from 19.5 to 156.3 µM, one can see
the predominance of apoptotic cells over cells with impaired membrane integrity (stained
with propidium iodide). This suggests that the Na6-2 in this concentration range causes a
sufficient toxic effect to cause apoptosis but not enough to lead to membrane destruction
and necrotic cell death. At the moment, it is impossible to explain exactly the reason for
this effect, since apoptosis can be caused by both extracellular and intracellular (mito-
chondrial) signaling pathways [60]. More detailed study of this process is a goal of our
further research.

To confirm that Na6-2 is able to initiate the apoptosis of tumor cells, an additional study
was conducted. Hep-2 cells were incubated with Na6-2 at concentrations of 78.1, 156.3, and
312.5 µM and stained with fluorescein isothiocyanate (FITC) conjugated with Annexin V
and propidium iodide (PI). PI enters the cell if the cellular membrane is disrupted, binds
to the DNA, and becomes intensely fluorescent, indicating necrosis. Annexin V binds
to phosphatidylserine, which is a marker of apoptosis on the plasma membrane’s outer
layer. Thus, cells stained only with Annexin V indicate an early stage of apoptosis, while a
double-positive signal shows late apoptosis.

In the population of apoptotic cells, late apoptotic cells predominate in all three
concentrations studied. With such a long incubation time (24 h), it is expected that cells
have already passed the stage of early apoptosis and now enter late apoptosis. One can
see in Figure 7 that the total number of early and late apoptotic cells at a concentration
of 78.1 µM is 20.7% (green A+ PI− and purple A+ PI+ squares). At a concentration of
156.3 µM, the number of apoptotic cells increases to 26.9%, and the number of necrotic cells
also increases to 11.1%. At a concentration of 312.5 µM, the population of necrotic cells
prevails over the population of apoptotic cells, reaching 23.9% (red A− PI+ square). It is
important to note that the concentration of dead cells was even higher, because these cells
could be lost during the washing of the samples. Despite the predominance of necrotic
cells, the number of apoptotic cells in the concentration of 312.5 µM is still high and reaches
18.4%. These results correlate with the data obtained in the double-staining experiment.
Thus, we can state that Na6-2 causes the concentration-dependent initiation of apoptosis in
cancer cells. The peak concentration for this effect is at 156.3 µM. A lower concentration
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causes a less pronounced cellular response, while a higher concentration has a stronger
toxic effect, causing necrosis.
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plot of fluorescent positive cells stained with dyes at different cluster concentration.

3. Materials and Methods
3.1. Materials

All reagents and solvents employed were commercially available and used as received
without further purification. (Bu4N)2[{W6I8}I6] was prepared according to the procedure
described in [16].

3.2. Methods

Elemental analyses were obtained using a EuroVector EA3000 Elemental Analyser
(EuroVector S.p.A., Milan, Italy). FTIR spectra were recorded on a Bruker Vertex 80 (Bruker
Optics GmbH & Co. KG, Ettlingen, Germany) as KBr disks. Energy-dispersive X-ray
spectroscopy (EDS) was performed on a Hitachi TM3000 TableTop SEM (Hitachi High-
Technologies Corporation, Tokyo, Japan) with Bruker QUANTAX 70 EDS equipment.
Thermal properties were studied on a Thermo Microbalance TG 209 F1 Iris (NETZSCH)
from 25 to 800 ◦C, at a rate of 10 ◦C·min−1 in He flow (30 mL/min). The absorption
spectra were investigated using an Agilent Cary 60 UV–Vis spectrophotometer (USA).
High-resolution electrospray mass spectrometric (HR-ESI-MS) detection was performed at
the Center of Collective Use “Mass spectrometric investigations” SB RAS in negative mode
within the 500–3000 m/z range on an electrospray ionization quadrupole time-offlight (ESI-
q-TOF) high-resolution mass spectrometer Maxis 4G (Bruker Daltonics, Bremen, Germany).
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3.2.1. NMR Studies

The 1D and 2D NMR spectra of salts and acids were recorded from a D2O and DMSO
solutions, respectively, at room temperature on a Bruker Avance III 500 FT-spectrometer
(Bruker BioSpin AG, Faellanden, Switzerland) with working frequencies 500.03, 125.73,
202.42, and 95.36 MHz for 1H, 13C, 31P, and 77Se nuclei, respectively. The 1H and 13C
NMR chemical shifts are reported in ppm of the δ scale and referred to DSS signal as
an internal standard for water solutions (δ(1H, 13C) = 0.0 ppm) and to the signals of the
methyl group for DMSO solutions (δ(1H) = 2.50 ppm, δ(13C) = 39.50 ppm). Chemical shifts
for the 31P spectra are referred to the external standard of 85% H3PO4 (δ(31P) = 0.0 ppm).
The 77Se chemical shifts are referred to the external standards of a 1M SeO2 solution in
D2O (δ(77Se) = 1282 ppm). The assignment of the signals was carried out using 2D 1H,
13C-HMBC NMR techniques.

3.2.2. CV Studies

Cyclic voltammetry was carried out with an Elins P-20X8 voltammetry analyzer
(Electrochemical Instruments, Chernogolovka, Russia) using a three-electrode scheme with
GC working, Pt auxiliary, and Ag/AgCl/3.5M KCl reference electrodes. Investigations
were carried out for 5·10−4M solutions of corresponding cluster compounds in 0.1 M
Bu4NClO4 in DMSO under Ar atmosphere.

3.2.3. Crystallography

Single-crystal X-ray diffraction data were collected using a Bruker Nonius X8 Apex
4K CCD diffractometer with graphite monochromatized MoKα radiation (λ = 0.71073 Å).
Absorption corrections were made empirically using the SADABS program [61]. The struc-
tures were solved by the direct method and further refined by the full-matrix least-squares
method using the SHELXTL program package [61,62]. All non-hydrogen atoms were re-
fined anisotropically. The hydrogen atoms of solvate water molecules, as well as the acidic
hydrogen atoms of (2-carboxyethyl)diphenylphosphane ligands in H6-1·7H2O·2.5Et2O,
were not located. Table S1 summarizes crystallographic data, while CCDC 2190918-2190920
contains the supplementary crystallographic data for this paper.

3.2.4. Cell Culture

The human larynx carcinoma cell line (Hep-2) was purchased from the State Research
Center of Virology and Biotechnology VECTOR and cultured in Eagle’s Minimum Essen-
tial Medium (EMEM, pH = 7.4) supplemented with a 10% fetal bovine serum under a
humidified atmosphere (5% CO2 and 95% air) at 37 ◦C.

3.2.5. Viability, Apoptosis and Proliferation Assay

Cell viability, apoptosis, and proliferation were detected by Hoechst 33342/PI staining
as previously described by Lee et al. [63] The Hep-2 cells were seeded on 96-well plates at
5 × 103 cells per well in a medium containing Na6[{W6Q8}(Ph2PC2H4COO)6] at concentra-
tions from 4.9 µM to 2.5 mM and incubated for 48 h. The cells incubated in the absence
of cluster compounds were used as a control. Treated cells and control cells were stained
with Hoechst 33342 (Sigma-Aldrich, Saint Louis, MO, USA) for 15 min at 37 ◦C and PI
(Sigma-Aldrich, Saint Louis, MO, USA) for 10 min at 37 ◦C. An IN Cell Analyzer 2200 (GE
Healthcare, Chalfont Saint Giles, UK) was used to perform the automatic imaging of six
fields per well under 200× magnification, in brightfield and fluorescence channels. The
images produced were used to analyze live, apoptotic, and dead cells among the whole
population using the IN Cell Investigator software (GE Healthcare, UK).

3.2.6. Flow Cytometric Analysis of Cell Death

A flow cytometry analysis was applied to quantify the ratio of live, early-apoptotic,
late-apoptotic, and dead-cell populations. Hep-2 cells were seeded into 48-well plates at a
starting density of 8 × 103/well. Cells were treated with 78.1, 156.3, or 312.5 µM of Na6-2
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for 24 h. A FITC-Annexin V Apoptosis Detection Kit with PI (Bio-Rad, Hercules, CA, USA)
was used to label cells according to the manufacturer’s instructions. The samples were
measured with a CytoFLEX Flow Cytometer (Beckman, Brea, CA, USA). Double-negative
(Annexin V−/PI−) cells were considered live. Annexin V positive (Annexin V+/PI−)
and double-positive (Annexin V+/PI+) cells were identified as early and late apoptotic,
respectively. PI positive cells (Annexin V−/PI+) were identified as necrotic. In order
to preserve the dead cells when washing the samples, the medium with dead cells was
collected from a 48-well plate and centrifuged separately at 1000 rpm, after which the
resulting precipitate was added to the suspension of living cells at the time of staining
the samples.

3.3. Synthetic Procedures
3.3.1. Synthesis of [{W6S8}(Ph2PC2H4COOH)6] (H6-1)

A total of 150 mg (0.044 mmol) of (Bu4N)2[{W6I8}I6], 40 mg (0.713 mmol) of NaHS,
40 mg (0.357 mmol) of tBuOK, and 184 mg (0.713 mmol) of Ph2PC2H4COOH were dissolved
in 3 mL of dry DMF. The reaction mixture was heated at 100 ◦C for 96 h in a sealed glass tube
and cooled to room temperature. The resulting precipitate was washed with acetonitrile
until the filtrate was colorless, then it was dissolved in water, precipitated with 0.1 M HCl,
and dried in air after washing twice with water. Yield: 89 mg (69%). Anal. Calcd. for
[{W6S8}(Ph2PC2H4COOH)6]: C, 37.2; H, 3.1; S, 8.8; found C, 37.5; H, 3.2; S, 8.6. EDS: W/S/P
atomic ratio was equal to 6:8.2:6.3. FTIR (KBr, cm−1): ν(C=O)—1705 and all the other
expected peaks for the phosphine ligand without any significant shifts were observed. 1H
NMR (500 MHz, DMSO): δ 2.06–2.16 (m, 2H, -CH2-COO), 2.49 (m, 2H, -CH2-P), 7.26–7.36
(m, 6H, o,p-Ph), 7.53 (t, 4H, J = 7.8 Hz, m-Ph). 13C{1H} NMR (126 MHz, DMSO): δ 26.83
(d, 1JCH = 129 Hz, 1JPC = 25.1 Hz, -CH2-P), 28.78 (s, 1JCH = 129 Hz, -CH2-COO), 127.56 (d,
1JCH = 160 Hz, 3JPC = 8.8 Hz, o-Ph), 128.99 (s, 1JCH = 160 Hz, p-Ph), 132.58 (d, 1JCH = 161 Hz,
2JPC = 10.6 Hz, m-Ph), 136.83 (d, 1JPC = 35.6 Hz, i-Ph), 173.48 (d, 3JPC = 16.0 Hz, COO)
(Figure S13). 31P NMR (202 MHz, H3PO4): δ −12.25 (JPW = 230.7 Hz). The TG analysis
indicated stability up to 230 ◦C (Figure S14). UV–Vis: λ = 412 nm, ε = 12567 M−1·cm−1

(Figure S15). Single crystals of H6-1·7H2O·2.5Et2O suitable for X-ray structural analyses
were obtained with the slow diffusion of diethyl ether in the ethanol solution of H6-1.

3.3.2. Synthesis of [{W6Se8}(Ph2PC2H4COOH)6] (H6-2)

A total of 75 mg (0.951 mmol) of Se was placed in a glass tube containing 2 mL of dry
DMF. The mixture was heated to 70 ◦C under Ar atmosphere, and 72 mg (1.902 mmol)
of NaBH4 was added. After the resulting dark red solution was discolored, 1 mL of dry
DMF containing 200 mg (0.059 mmol) of (Bu4N)2[{W6I8}I6] and 245 mg (0.951 mmol) of
Ph2PC2H4COOH was added. The reaction mixture in a sealed glass tube was heated at
100 ◦C for 96 h. The resulting precipitate was washed with DMF and acetonitrile until
the filtrates were colorless, then it was dissolved in water, precipitated with 0.1 M HCl,
and dried in air after washing thrice with ethanol. Yield: 145 mg (75%). Anal. Calcd. for
[{W6Se8}(Ph2PC2H4COOH)6]: C, 32.9; H, 2.8; found C, 32.6; H, 2.9. EDS: W/Se/P atomic
ratio was equal to 6:8.9:6.6. FTIR (KBr, cm−1): ν(C=O)–1708 and all the other expected peaks
for the phosphine ligand without any significant shifts were observed. 1H NMR (500 MHz,
DMSO): δ 1.96 (dt, 2H, 4JPH = 8.0 Hz, 3JHH = 6.5 Hz, -CH2-COO), 2.60–2.70 (m, 2H, -CH2-P),
7.29–7.37 (m, 6H, o,p-Ph), 7.37–7.43 (m, 4H, J = 7.8 Hz, m-Ph). 13C{1H} NMR (126 MHz,
DMSO): δ 29.50 (s, 1JCH = 129.8 Hz, -CH2-COO), 30.09 (d, 1JCH = 129.8 Hz, 1JPC = 24.8 Hz,
-CH2-P), 127.50 (d, 1JCH = 161.6 Hz, 3JPC = 8.6 Hz, o-Ph), 128.94 (s, 1JCH = 160.0 Hz, p-Ph),
132.40 (d, 1JCH = 160.0 Hz, 2JPC = 9.6 Hz, m-Ph), 138.61 (d, 1JPC = 35.8 Hz, i-Ph), 173.41 (d,
3JPC = 15.0 Hz, COO) (Figure S13). 31P NMR (202 MHz, H3PO4): δ −18.53 (JPW = 208.6 Hz).
77Se (95 MHz, SeO2) δ 1018. The TG analysis indicated stability up to 230 ◦C (Figure S14).
UV–Vis: λ = 486 nm, ε = 9316 M−1·cm−1 (Figure S15). Single crystals of H6-2·3H2O·Et2O
suitable for X-ray structural analyses were obtained by the slow diffusion of diethyl ether
in the acetone solution of H6-2.
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3.3.3. General Synthetic Procedure for Na6[{W6Q8}(Ph2PC2H4COO)6] (Na6-1, Na6-2)

A total of 128 mg of H6-1 or 145 mg of H6-2 (0.044 mmol) were dissolved in 5 mL of
water containing 12 mg of NaOH (molar equivalents are 1:7). The target products were
precipitated with acetone, washed twice with ethanol to remove excess alkali, and dried
in air.

Na6-1. Yield: 128 mg (95%). Anal. Calcd. for Na6[{W6S8}(Ph2PC2H4COO)6]: C, 35.5;
H, 2.8; S, 8.4; found C, 35.3; H, 2.7; S, 8.2. EDS: W/S/P/Na atomic ratio was equal to
6:8.1:6.3:6.3. FTIR (KBr, cm−1): ν(C=O)–1573 and all the other expected peaks for the
phosphine ligand without any significant shifts were observed. 1H NMR (500 MHz, DSS):
δ 2.00 (m, 2H, -CH2-COO), 2.55 (m, 2H, -CH2-P), 7.26-7.37 (m, 6H, o,p-Ph), 7.53 (t, 4H,
J = 7.5 Hz, m-Ph). 13C NMR (126 MHz, DSS): δ 31.38 (d, 1JPC = 24.6 Hz, -CH2-P), 34.87 (s,
-CH2-COO), 130.57 (d, 3JPC = 8.8 Hz, o-Ph), 132.15 (s, p-Ph), 135.65 (d, 2JPC = 10.3 Hz, m-Ph),
139.52 (d, 1JPC = 36.7 Hz, i-Ph), 183.89 (d, 3JPC = 14.6 Hz, COO) (Figure S16). 31P NMR
(202 MHz, H3PO4): δ −10.69 (JPW = 231.4 Hz). The TG analysis indicated stability up to
310 ◦C (Figure S14). HR-ESI-MS (–): 975.6430 ([NaH2{W6S8}(PPh2C2H4COO)]3−), 982.9703
([Na2H{W6S8}(PPh2C2H4COO)]3−), 990.2976 ([Na3{W6S8}(PPh2C2H4COO)]3−), 1485.9505
([Na3H{W6S8}(PPh2C2H4COO)]2−), 1496.9414 ([Na4{W6S8}(PPh2C2H4COO)]2−). Single
crystals of Na6-1·7.5H2O·Me2CO suitable for X-ray structural analyses were obtained by
the slow diffusion of acetone in the aqueous/ethanol solution of Na6-1.

Na6-2. Yield: 142 mg (94%). Anal. Calcd. for Na6[{W6Se8}(Ph2PC2H4COO)6]: C, 31.6;
H, 2.5; found C, 30.6; H, 2.7. EDS: W/Se/P/Na atomic ratio was equal to 6:8.3:6.1:6.2.
FTIR (KBr, cm−1): ν(C=O)–1570 and all the other expected peaks for the phosphine lig-
and without any significant shifts were observed. 1H NMR (500 MHz, DSS): δ 1.83–1.95
(m, 2H, -CH2-COO), 2.60–2.77 (m, 2H, -CH2-P), 7.26–7.42 (m, 6H, o,p-Ph), 7.53 (t, 4H,
J = 8.0 Hz, m-Ph). 13C{1H} NMR (126 MHz, DSS): δ 34.53 (d, 1JPC = 24.6 Hz, -CH2-P), 35.60
(s, -CH2-COO), 130.34 (d, 3JPC = 8.6 Hz, o-Ph), 131.95 (s, p-Ph), 135.52 (d, 2JPC = 9.61 Hz,
m-Ph), 141.83 (d, 1JPC = 36.2 Hz, i-Ph), 183.86 (d, 3JPC = 13.7 Hz, COO) (Figure S16). 31P
NMR (202 MHz, H3PO4): δ −18.76 (JPW = 208.2 Hz). 77Se NMR (95 MHz, SeO2): δ 998.
The TG analysis indicated stability up to 220◦C (Figure S14). HR-ESI-MS (–): 1093.8371
([H3{W6Se8}(PPh2C2H4COO)]3−), 1101.1644 ([NaH2{W6Se8}(PPh2C2H4COO)]3−), 1108.4917
([Na2H{W6Se8}(PPh2C2H4COO)]3−), 1641.2595 ([H4{W6Se8}(PPh2C2H4COO)]2−), 1652.2505
([NaH3{W6Se8}(PPh2C2H4COO)]2−), 1663.2415 ([Na2H2{W6Se8}(PPh2C2H4COO)]2−).

4. Conclusions

To conclude, in this work, two new chalcogenide octahedral tungsten clusters with
phosphine ligands were obtained and characterized. Experimental data have shown that
the compounds are redox-active, showing reversible oxidation and reduction without
the destruction of the structure. Complexes can be readily dissolved in an alkaline aque-
ous solution (due to the presence of six carboxyl groups) and demonstrate high stability
towards hydrolysis. Besides the known (Na/K)6[{W6S8}(CN)6] cluster, the compounds
obtained are the only examples of water-soluble complexes of such a type. The high sta-
bility of the clusters in cultural medium allowed us to investigate, for the first time for
octahedral tungsten clusters, the cytotoxicity on cancerous cell line Hep-2. The inner-ligand-
dependent cytotoxicity observed is presumably due to specific ion (chaotropic) effects aris-
ing from the different acidity properties of the terminal ligands. To date, the cluster complex
Na6[{W6S8}(PPh2CH2CH2COO)6] is one of the least-cytotoxic among all studied octahedral
clusters, which opens up horizons for further investigation on small laboratory animals in
terms of radiopaque media. For Na6-2, the ability for the concentration-dependent initia-
tion of apoptosis in Hep-2 cancer cells was shown. This feature has been demonstrated for
the first time for cluster complexes and might be a perspective for using this substance as a
theranostic agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
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