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Abstract: Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic
conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially
when physical activity decreases. Intensive care unit-acquired weakness is a common and highly
serious neuromuscular complication in critically ill patients. It is a consequence of critical illness
and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes
the development of multiple organ dysfunction. Muscle dysfunction is an important component
of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The
population of critically ill is aging; thus, we face another negative effect—sarcopenia—the age-related
decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over
time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The
cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical
manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular
damage, and a common mechanism—mitochondrial dysfunction. In this review, we compare the
molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding
possible shared molecular mechanisms, and whether critical illness accelerates the aging process.

Keywords: intensive care unit-acquired weakness; sarcopenia; proteostasis; ubiquitin–proteasome
system; rapamycin system; muscle atrophy

1. Introduction

Intensive care unit-acquired weakness (ICUAW) brings about skeletal muscle wasting
due to critical illness and has important clinical implications, significantly impacting
rehabilitation, and increasing both morbidity and mortality. ICUAW is sometimes referred
to as critical illness polyneuromyopathy—being called critical illness polyneuropathy
(CIP) when nerve involvement predominates, or critical illness myopathy (CIM) where
muscle involvement is crucial. It manifests as muscle weakness that develops rapidly,
prior to any detectable muscle wasting. We typically see symmetrical limb weakness,
which is more pronounced in the proximal limbs (shoulders, hips). The diaphragm and
intercostal muscles are also affected, with associated difficulties in discontinuing artificial
lung ventilation (failure to withdraw mechanical ventilation) and long-term disability,
known as ventilator-induced diaphragmatic dysfunction [1,2].

It has an incidence ranging from 25–31% [3], with the extent depending on the disease
itself, but also on patient treatment. Muscle atrophy is aggravated by glucocorticoid therapy,
prolonged analgosedation, neuromuscular blocking agents, immobilization, and artificial
pulmonary ventilation. These are typical procedures for patients with ARDS, including
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patients with COVID-19. In patients with respiratory insufficiency on artificial lung venti-
lation, severe ICUAW is found in 25–75% of patients [4]. Inflammatory factors can cause
axonal swelling in motor neurons, resulting in “denervation” or neurapraxia. Rapid muscle
loss occurs in septic states in response to microbial invasion (PAMPs, pathogen-associated
molecular pathways) or in synergy with alarmins released from damaged organs (DAMPs,
damage-associated molecular pathways), which leads to the activation of stress metabolism.
Muscle loss is further accelerated by metabolic acidosis and insulin resistance. In cases of
severe injury, mitochondrial damage is significant, inducing progressive persistent inflam-
mation and catabolism (Persistent inflammation, Immunosuppression, and Catabolism
syndrome or PICS), and subsequently, muscle loss [5].

Sarcopenia is age-related skeletal muscle decline. Sarcopenia is characterized by low
levels of response to three parameters: (1) muscle strength, (2) muscle quantity/quality, and
(3) physical performance—an indicator of severity. The loss of muscle mass (cross-sectional
area) and strength begins to manifest after the age of 55 due to an imbalance between protein
synthesis and protein breakdown. Its occurrence is highly variable, depending on many
factors, of which endurance training, sedentary lifestyle, healthy diet, and protein intake
seem to be crucial. From approximately 50 years of age, muscle volume begins to decline
by about 1% per year, or 8% per decade, and muscle strength declines by 1–5% per year.
Elderly patients with already expressed sarcopenia are among those with the highest risk
of developing ICUAW [6,7].

In addition to enabling movement and maintaining postural tone, muscles also have
an endocrine role. The muscle cell produces myokines during contraction, which act
on virtually all organs, from the CNS (its metabolism of kynurenine with reduction of
depression has a neuroprotective effect), through affecting immune function by suppressing
inflammation, to having important roles in protein and sugar metabolism, acting on the
liver, pancreas, intestine, and improving insulin sensitivity. Thus, muscle loss has severe
long-term consequences [8].

ICUAW is fundamentally a clinical state, and it was our aim in this review to em-
phasize that aspect, especially from the point of view of clinicians and intensive care
specialists. Upon recovering from critical illness, often including organ support (such as
long-term ventilation support, renal replacement therapy, or ECMO), patients often suffer
long-term adverse consequences—mainly polyneuromyopathy, with cognitive and mental
impairment—which significantly decreases quality of life.

2. Proteostasis

In healthy muscles, there is a constant turnover of muscle proteins, and a balance
between proteosynthesis and proteolysis is essential for maintaining muscle mass. These
processes alternate according to anabolic stimulation (diet, exercise). Proteosynthesis
occurs in the postprandial phase, whereas proteolysis occurs in the postabsorptive inter-
meal period. This ability of muscle mass to constantly renew itself allows it to respond
to the rapidly changing needs of the organism. Once muscle glycogen is depleted, the
muscle releases amino acids as an energy source for gluconeogenesis. Recovery of muscle
fibers following exertion allows stimulation of proteosynthesis by dietary protein (leucine,
hydroxymethylbutyrate) and peptides from damaged fibers (myofibrils) [9,10].

With advancing age, anabolic stimulation is rendered “dull”, and proteosynthesis is no
longer capable of reaching the necessary turnover, and higher doses of protein are needed
to stimulate postprandial proteosynthesis. This advancing anabolic resistance is due to
insulin resistance, poorer blood supply to muscles with reduced nutritive flow, reduced
endothelial function, etc. Proteolysis is largely unchanged, gradually leading to loss of
muscle mass, muscle atrophy, and sarcopenia [11] (Figure 1).

The balance between proteosynthesis and proteolysis is shifted in favor of catabolism
in critically ill patients due to a variety of causes such as sepsis, SIRS, immobilization,
etc., and following a rapid decline in muscle strength, leads to muscle atrophy, and the
development of ICUAW. Several pathophysiological changes occur as the body attempts
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to survive as part of the body’s metabolic response to stress (sepsis, acute illness, trauma,
surgery): activation of the sympathetic nervous system, the release of catabolic hormones
(catecholamines, glucocorticoids) and pro-inflammatory cytokines. The resulting anabolic
resistance then inhibits proteosynthesis, and massive proteolysis is activated [12] (Figure 1).
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meals postabsorptively does not change significantly. In critically ill patients, on the one hand, pro-
teosynthesis is affected due to anabolic resistance, but above all, proteolysis is markedly activated, 
for the need of protein as source of stress metabolism-activated gluconeogenesis. Protein balance is 
strongly negative; ICUAW develops rapidly. 
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Figure 1. Protein turnover in the young, the old, and the critically ill partly according to [11]: In
old patients, protein synthesis decreases postprandially due to anabolic resistance; compared to
young patients, the protein balance becomes negative over time, leading to sarcopenia. Proteolysis
between meals postabsorptively does not change significantly. In critically ill patients, on the one
hand, proteosynthesis is affected due to anabolic resistance, but above all, proteolysis is markedly
activated, for the need of protein as source of stress metabolism-activated gluconeogenesis. Protein
balance is strongly negative; ICUAW develops rapidly.

2.1. Stress Metabolism

These are several mechanisms, well proven over the course of evolution, allowing the
rapid restoration of organismal homeostasis. Sir David Cuthbertson divided this stress re-
sponse into two phases. In the initial ebb phase, there is a transient drop in energy turnover
for a few hours. This is followed by a significantly longer hypermetabolic flow phase
when energy turnover increases. The sympathetic nervous system reacts first, releasing
noradrenaline and adrenaline, allowing control over internal organs. Subsequently, the
hypothalamic–pituitary–adrenal axis is activated. Catabolic hormones (catecholamines,
cortisol, glucagon), counteract the anabolic insulin and growth hormone. This supplies
the body with sufficient energy in the form of glucose. The degree of hyperglycemia in
a critically ill patient reflects the degree of catabolism: the severity of the clinical condi-
tion. Glycogenolysis and subsequent gluconeogenesis in the liver ensure glucose supply,
which is additionally redirected to vital organs by peripheral insulin resistance. Unlike
peripheral tissues and muscles, the heart and brain are not dependent on insulin (GLUT1,3
transporters). Insulin resistance results from defects in the post-receptor insulin signaling
pathways and from the downregulation of glucose transporters (GLUT4) in skeletal muscle
and fat tissue. Muscle is a source of amino acids for gluconeogenesis. Fat utilization is
suppressed in the acute phase by catabolic hormones. Over time, mitochondrial DNA is
damaged by pro-inflammatory cytokines (TNF, IL1, IL6) and an increase in oxidative stress
(reactive oxygen species, ROS). The extent to which mitochondrial function (the Krebs
cycle, aerobic metabolism, and ATP production) is impaired will affect the prognosis of the
patient [12–14].
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2.2. Upregulation of Muscle Protein Breakdown

The stress metabolism described above is an evolutionarily validated mechanism to
survive critical disease. However, the organism pays a “tax” in the form of muscle loss. The
upset balance, uncontrolled degradation of muscle protein, and massive losses of myosin
and other proteins (especially branched-chain amino acids, BCAA) are consequences of
the activation of four main proteolytic systems: the ubiquitin–proteasome system (UPS),
calpain, caspase, and the autophagy–lysosomal system [3,13,14].

2.2.1. The Ubiquitin–Proteasome System (UPS)

UPS is the major proteolytic mechanism involved in the degradation of most damaged
proteins, which are tagged (ubiquitination) and subsequently degraded in the 26 S protea-
some. The process involves three steps regulated by interlinked ATP-dependent enzymatic
reactions that finally results in ubiquitin being attached to the protein to be degraded.

The E1 ubiquitin-activating enzyme acts as an “alarm clock”, activating ubiquitin. The
ubiquitin-conjugating E2 enzyme then binds this activated ubiquitin. The final step is the
action of an E3 ligase—in muscle, these are MuRF1 (muscle-specific RING finger protein1)
and MAFbx (atrogin-1). E3 covalently attaches ubiquitin to lysine residues of the target
substrate. The target protein is tagged with one or many (either several single or interlinked
chains) ubiquitin molecules. The ubiquitinated protein is subsequently recognized and
degraded by the 26 S proteasome into individual peptides. The 26 S proteasome is a
large 2.5 MDa macromolecule equipped with several proteases for protein degradation. It
consists of several subunits, the 20 S core protease (CP) with peptidase activities, capped
at one or both ends by the 19 S regulatory particle (RP). The CP can cleave a broad
range of polypeptides. The UPS system is designed to degrade short-lived regulatory
polypeptides or damaged polypeptides. Although UPS plays a major role in degrading
skeletal proteins and in muscle atrophy, it cannot release actin and myosin from the
cytoskeleton. That requires the activity of two other prominent proteolytic systems, calpain
and caspase3 [13,15,16].

Sepsis activates the proteasome system, with inflammation increasing ubiquitination
and the degradation of inhibitors of NFκB (IkB). TNF and NFκB activate both muscle-
specific E3 ligases (MuRF1 and atrogin-1), and consequent muscle proteolysis in both
respiratory and limb muscle (increases of 30% and 50%, respectively, compared to con-
trols [17]). Respiratory muscles are often affected—especially the diaphragm due to sepsis
and inactivity—and this makes withdrawal from the ventilator difficult due to ventilator-
induced diaphragmatic dysfunction (VIDD [17]).

2.2.2. Calpains and Caspases

Calpains are calcium-dependent cysteine proteases, and the family is made up of
14 members; calpain µ and calpain m are pervasively expressed in muscle atrophy. There
is a muscle-specific calpain 3, known as p94, that is also involved in some muscular
dystrophies. Calpain activity is increased in sepsis, and they are involved in myosin
cleavage [13].

Caspases also have the same function; they are also associated with cell death and
apoptosis (caspase3) in addition to muscle atrophy [3,13].

2.2.3. Autophagy–Lysosomal System

Autophagy is a basic pathway of skeletal muscle catabolism, being capable of degrad-
ing larger cellular structures. It is a necessary pathway for removing affected proteins and
non-functional organelles (mitochondria—mitophagy, and proteasome—proteophagy). On
the one hand, autophagy is necessary to ensure “healthy” muscle, but under a variety of
catabolic conditions, and under the effect of pro-inflammatory cytokines, oxidative stress,
or fasting its “purging” effect, is overactivated. Autophagy is regulated by FoXO (fork-
head box-O class), mTORC1, LC3, and Atg7 (more on this below in Section 4.3). In such
conditions, the autophagy–lysosomal system becomes dysregulated, leading to excessive
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degradation of muscle proteins. Along with an activated UPS, this aggravates muscle
atrophy and the consequent imbalance in proteostasis leads to ICUAW in the critically
ill [3,18].

2.3. Molecular Mechanisms Activating Muscle Protein Degradation

Upregulation of proteolysis is typical for ICUAW. Of the four systems mentioned,
UPS is primarily involved in muscle catabolism. It leads to rapid degradation of actin and
myosin and is an important source of amino acids for gluconeogenesis.

The TNF/NFκB/UPS axis is activated, leading to protein breakdown. The same axis is
induced also by myostatin and glucocorticoids and the stimulation of proteosynthesis via
the inhibition of the IGF-1/Akt/mTOR (mechanistic target of rapamycin) axis is inhibited.
On the one hand, Akt activates proteosynthesis by activating mTOR, and on the other hand
it leads to FoXO phosphorylation (thereby inactivating it) and the inhibition of proteolysis.
Inactivating the IGF-1/insulin/Akt axis also inhibits downstream phosphorylation of
FoXO. FoXO is thus retained in its active form and contributes to the stimulation of protein
breakdown via the UPS (Figure 2) [3,19].
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Figure 2. Signaling pathways that activate caspase3 and the UPS in skeletal muscle. Schematic of the
main molecular pathways balancing muscle protein synthesis and proteolysis. Sepsis, inflammation,
and immobility shift this balance towards protein breakdown. X means insulin resistance, block of
insulin receptor.

Ubiquitin, a member of the heat-shock protein family, is found in all cells and
is activated during all ATP-requiring reactions. However, it is unable to cleave large
myofibril molecules. This initial proteolytic step is done by caspase3 that cleaves acto-
myosin/myofibrils to produce substrates for the 26 S proteasome (UPS). The activation
of caspases and subsequent proteolysis is precisely coordinated with the activity of the
proteosynthetic mTOR system. The activation of one inhibits the activity of the opposing
system. The inhibition of proteosynthesis is an adaptation to starvation and nutrient de-
privation. mTOR inhibition activates overall protein degradation by the UPS as well as by
autophagy. In nutrient-rich environments, mTOR decreases protein degradation by the
UPS and stabilizes long-lived proteins, but it does not affect the breakdown of short-lived
(misfolded or damaged) proteins [20].
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2.3.1. The PI3K/Akt Signaling Pathway

Which cellular signals activate muscle protein degradation? Identifying the initial step
in UPS activation may help in therapeutically managing the rapid progression of muscle
atrophy in some catabolic diseases, including ICUAW or age-related sarcopenia.

The inhibition of phosphatidylinositol 3 kinase (PI3K) activity and Akt kinase
(which inhibits mTOR and proteosynthesis) is the signal for UPS activation and initi-
ation of proteolysis in all cells in a catabolic state (sepsis, inflammation, immobility).
Downregulation of Akt activity unblocks FoXO, and this transcription factor upregu-
lates the expression of a critical E3 ubiquitin conjugation enzyme: atrogin-1/MAFbx.
Low PI3-kinase activity induces the proapoptotic factor BAX, which then releases cy-
tochrome c from mitochondria into the cytoplasm, which in turn increases caspase3
activity (Figure 2) [13,20].

MAFbx/atrogin-1 and MuRF-1 are two muscle-specific E3 ubiquitin ligases. MuRF-1
targets thick myosin filaments, thus triggering the predominant loss of red muscle fibers
during ICUAW [11]. Unlike mTOR inhibition, which enhances proteolysis within 30 min,
FoXO-mediated protein degradation requires hours for the transcription and translation of
ubiquitin ligases to take effect [16,21].

2.3.2. The Glucocorticoid Pathway

Glucocorticoids (GC) are known to potentiate muscle wasting in sepsis. The GC
pathway is the second signaling cascade in proteolysis, activating both major proteolytic
cascades—caspase3 and UPS. Nuclear factor kappa B (NFκB) and its inhibitor (IkB) oppose
each other in UPS activation, and pro-inflammatory cytokines lead to the degradation
of IkB in sepsis. NFκB then increases MuRF-1 expression, suggesting a role in muscle-
specific atrophy. This increase can be inhibited by glucocorticoid receptor antagonists. The
glucocorticoid receptor also enhances signaling of another atrophic factor myostatin, a
member of the transforming growth factor (TGF-ß) family [22,23].

2.4. Downregulation of Muscle Protein Synthesis and Its Role in ICUAW and Especially
in Sarcopenia

The reduction of protein synthesis, which starts almost immediately under the in-
fluence of pro-inflammatory cytokines, contributes to ICUAW, while immobilization and
denervation contribute more gradually, and the rate of protein breakdown exceeds that of
protein synthesis. The situation is different in sarcopenia, where anabolic resistance and
reduction of protein synthesis are the main factors in the development of muscle atrophy.
One of the causes of muscle anabolic resistance—where muscles do not respond adequately
to stimulation, mainly by amino acids (leucine, hydroxymethybutyrate)—is impaired nu-
tritive blood flow, with not enough anabolic products reaching their destination due to
impaired microcirculation [13,14].

2.4.1. Insulin/IGF1 Signaling

The main anabolic signaling cascade is the pathway from insulin/IGF-1 (insulin-
like growth factor) to Akt (a serine/threonine kinase), which is activated upon energy
availability. IGF1 is a tyrosine kinase receptor, and recruits PI3K, subsequently increasing
the level of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3), which activates Akt.

Akt has multiple effects, the main one being activation of the mTOR system, which
leads to increased proteosynthesis. On the other hand, Akt also phosphorylates the FoXO
transcription factor and inactivates it by preventing its nuclear translocation. It subse-
quently inhibits the expression of E3 ubiquitin ligases (MuRF-1 and atrogin-1), thus inhibit-
ing proteolysis. In addition, Akt phosphorylates a variety of downstream effectors which
modulate the glucose transporter type 4 (GLUT4) and, thus, glucose uptake and glycogen
synthesis by glycogen synthase kinase 3 (GSK3) [13,14].

Apart from the Akt signaling pathway, IGF-1 also activates the mitogen-activated
protein kinase (MAPK) cascade, increasing myoblast proliferation. Sepsis and disuse of
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muscle reduce IGF-1 activity, via reduced mTOR activity, which results in decreased muscle
protein synthesis [13,24].

2.4.2. mTOR Signaling

mTOR is the main anabolic regulator ensuring cell growth and proliferation under
anabolic conditions, following stimulation by growth factors, insulin, and nutrients
(especially sufficient amino acids). One of its important functions is to maintain the
available amino acid pool by regulating protein translation through effector molecules
such as ribosomal protein S6 kinase (S6K1), which regulates protein translation initiation
and E4-binding protein 1 (E4-BP1). The latter acts as an inhibitor of protein translation
initiation by binding to and limiting the activity of eukaryotic initiation factor 4E (eIF4E).
mTOR phosphorylates E4-BP1, thereby releasing eIF4E and allowing ribosomal cap-
dependent translation to begin. mTOR is also involved in the regulation/activation of
lipid synthesis [25,26].

Similar to Akt, mTOR is a serine/threonine kinase consisting of 2549 amino acids
and several conserved domains. The FKBP12–rapamycin-binding (FRB) domain is the
site of inhibitory action of the FKBP12–rapamycin complex. Other domains in mTOR are
the kinase domain (KD), repressor domain (RD), and functionally the most relevant, the
FAT carboxy-terminal domain (FATC) regulating mTOR kinase activity. mTOR binds other
proteins to form intricate multiprotein complexes [25].

The first such protein is mTORC1, which ensures protein synthesis by initiating trans-
lation following the conjugation of eukaryotic initiation factor 4E (eIF4E) to the ribosome
cap. It has a central role in the regulation of energy homeostasis. mTORC2, apart from
influencing energy metabolism, is involved in the organization of the actin cytoskeleton
and is an important activator of muscle growth. The main activating signaling pathway is
the IGF/PI3K/Akt/mTOR pathway (Figure 3).

The structures of mTORC1 and mTORC2 complexes are highly similar, with both
consisting of Deptor (death domain containing mTOR-interacting protein) and mLST8 (G
protein βsubunit-like protein) complexes. They differ in the important inhibitory site for
rapamycin: while mTORC1 contains raptor (regulatory-associated protein mTOR) and
PRAS40 (proline-rich Akt/PKB substrate 40kDA), mTORC2 contains rictor (rapamycin-
insensitive companion mTOR) and stress-activated protein kinase (mSin1) [25,26].

Stress, nutrient deprivation, and rapamycin are able to block the activity of mTORC1—
i.e., proteosynthesis—and simultaneously activate proteolysis. mTOR inhibition activates
overall protein degradation by UPS as well as by autophagy [21,22]. The two systems have
opposing activities—mTOR activation inhibits autophagy, while lack of energy and amino
acids inhibits mTOR and stimulates phagophore formation, as mTOR interacts directly
with the ULK1 kinase complex and with death-associated protein1 (DAP1) [21,25]. New
findings on nutrient-sensing regulatory mechanisms of mTORC1 activity reveal a more
complex system, with amino-acid-dependent activation of mTORC1 (leucine, arginine, glu-
tamine) demonstrating particular potency, and glucose-dependent regulation of mTORC1
also playing an important role. Under glucose-rich conditions, mTORC1 activation is
induced by insulin. On the other hand, ATP deficiency and glucose deprivation activate the
adenosine monophosphate kinase (AMPK), which decreases mTORC1 activity and induces
autophagy. Taken together, the glycolytic flux regulates mTORC1 activity and mTORC1
activation enhances glycolysis to support cell growth under nutrient-rich conditions. An-
other possibility is oxygen-dependent regulation where hypoxia-inducible factor 1 (HIF-1)
inhibits mTORC1 and activates autophagy. Reactive oxygen species (ROS) play a similar
role [26].

Dysregulation of PI3K/Akt/mTOR leads to a decrease in proteosynthesis and con-
tributes to the development of muscle atrophy and sarcopenia. This disruption of a key
role in the regulation of cell growth and proliferation is also implicated in a variety of other
diseases, including carcinogenesis and neurodegenerative diseases [21,25].
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2.5. Disruption of Protein Turnover

Continuous protein turnover is affected in acute disease with the predominant acti-
vation of proteolysis and is especially prevalent in ICUAW. In contrast to this, anabolic
sensitivity and, therefore, the ratio of proteosynthesis to muscle recovery decreases with
age, resulting in the progressive development of sarcopenia.
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diet activates Rag GTPase and activates raptor mTORC1, but not rictor mTORC2.

3. Early Muscle Weakness in ICUAW

Muscle weakness manifests very early, especially in sepsis patients with the develop-
ment of ICUAW. This weakness is seen long before we are able to detect any loss of muscle
mass (cross-sectional area), or loss of muscle protein through inflammation-mediated pro-
teolysis. Mechanisms contributing to muscle weakness include impaired intracellular Ca2+

homeostasis resulting in reduced fiber contractility, mitochondrial dysfunction with bioen-
ergetic failure, channel dysfunction with membrane inexcitability, and hyperglycaemic
toxicity [1,4].

3.1. Caspases, Calpains, and the Disruption of Myofilament Structure

Functionally, there are two types of muscle fibers. Slow-twitch muscle fibers, known
as type I or red fibers (high blood supply) contain more mitochondria and myoglobin.
They are aerobic, fatigue-resistant, and are focused on postural control. Fast-twitch muscle
fibers—type II or white, anaerobic fibers provide a more powerful force, but over a shorter
duration and fatigue quickly. These type II fibers are more sensitive to the multifactorial
injury caused by critical illness.

The integrity of contractile myofilaments and the regular striated pattern of actin and
myosin are essential for sufficient muscle strength. Caspase and calpain initially disrupt
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the structure of actin and myosin myofibrils, which reduce contractility with the early loss
in force generation [13,27]. These proteases disrupt myofilament structure by cleaving actin
and myosin from sarcomeres, and supply proteins to the UPS, which is activated by pro-
inflammatory cytokines. Tumor necrosis factor (TNF) and NFκB accelerate ubiquitination:
the process of marking proteins for degradation.

Caspases are active not only in the initiation of protein breakdown by UPS, but also in
apoptosis (caspase3). Calpains are calcium-dependent cysteine proteases that are involved
in the function of the UPS (m and µ calpains), with calpain3 (also known as p94) being
specific to muscle. It plays an important role in activated protein degradation during sepsis.
It is possible that disruption of myofilament structure contributes to the early loss in force
generation [13].

Sarcopenia largely affects fast-twitch muscle fibers. Reduction in muscle mass and
strength leads to impaired mobility, along with an increased risk of falls, compromised
independence, and lowered quality of life [6].

3.2. Decrease in Calcium Release from the Sarcoplasmic Reticulum

The function of calpains is calcium-dependent, as is the activation of ubiquitination.
Thus, calcium regulates protein breakdown. Above all, it is essential for muscle contraction,
has a direct effect on myosin ATPase, and influences glycolysis and oxidative metabolism.
Calcium homeostasis is ensured in the sarcoplasmic reticulum. Outflow of Ca2+ through
ryanodine receptors is ATP-dependent. ATP deficiency reduces Ca2+ release from the sar-
coplasmic reticulum, affecting membrane excitability of skeletal muscle. Force generation
is, thus, rapidly reduced during sepsis [4,27–29].

3.3. Sodium Channels and Electrical Inexcitability

Excitation is necessary to generate an action potential, which leads to changes in the
permeability of the membrane to sodium, potassium, and possibly calcium ions. Following
excitation, the resting energy potential (−80 to −90 mV) increases to reach the threshold
potential at which sodium channels open. Na+ thus enters the intracellular space, and the
inner side of the membrane becomes increasingly positively charged compared to the outer
side of the membrane, resulting in depolarization (+20 to +30 mV). Potassium channels
then open and K+ leaks out of the cell to maintain electroneutrality, and membrane voltage
decreases, causing repolarization. In septic patients, alterations to membrane sodium
pumps can cause disturbances in electrical excitability. Inflammatory cytokines have a
neurotoxic effect, causing chronic membrane depolarization, functionally manifesting as
“denervation”. The resting membrane potential of muscle fibers is reduced and is unable
to reach the action potential, as voltage-gated ion channels follow an all-or-nothing rule.
Thus, the rapid development of muscle weakness is initially more of a functional issue,
affecting both nerves and muscles [13,30,31].

4. Mitochondrial Dysfunction
4.1. Muscle Mass, and Polyneuromyopathy in the Critically Ill

Sufficient energy is a prerequisite for muscle contraction; therefore, mitochondria, the
organelles that are the “power plant” of the organism, are central to muscle function.

Mitochondria are subcellular organelles that furnish the cell with adenosine triphos-
phate (ATP), which they generate by oxidative phosphorylation, and are absolutely essential
for the energetic processes of every cell. In addition to this extremely important function,
they are involved in calcium homeostasis and intracellular reactive oxygen species (ROS)
generation, mediate intracellular communication, and regulate apoptosis. Mitochondrial
damage is associated with a lack of released energy (ATP), ROS overproduction, and the
release of cytochrome c. Ultrastructural damage to the mitochondria and mitochondrial
dysfunction also contribute to organ failure [32,33].

Mitochondria are sensitive to oxidative damage. On the one hand, mitochondria are
the main source of free radicals, and on the other hand, are a key target for oxidative damage.
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Oxidative stress is typical during sepsis, a dysregulated response to severe infection, but
it is also quite common during aging. Senescence is accompanied with a progressively
increasing accumulation of ROS in line with the gradual decline in the capacity of the
antioxidant defense system. When the defense system is no longer able to cope with the
enhanced rate of oxidant production, cellular and subcellular environments become more
susceptible to damage. Mitochondrial dysfunction has been demonstrated to activate cell
apoptosis and can ultimately result in organ damage [34,35].

Mitochondrial dysfunction is, thus, a key player in the development of ICUAW in the
context of critical illness, most progressively in sepsis. Age-related mitochondrial dysfunction
plays an equally important role in the development of sarcopenia with the progressive decline
in mitochondrial bioenergetics. The typical manifestation is a reduction in maximal oxygen
uptake (VO2 max) and a consequent decrease in exercise tolerance [33,36].

Further, alteration of mitochondrial permeability transition pores (mPTP) is one of
the mechanisms of sarcopenia, and results in ROS overproduction, and triggers muscle
atrophy by activating the FoXO transcription factor family and ubiquitin ligases, thus
activating proteolysis. Open mPTP can lead to the release of pro-apoptotic factors and
released cytochrome c can increase proteasomal activity [37].

4.2. Mitochondria in Skeletal Muscle

Skeletal muscle enables movement and maintains posture, but it also has a role
in thermoregulation, ensuring nutritional balance, glucose uptake, and is a hormone
source [38,39]. Myokines are released from muscle during exercise; they are proteins with
endocrine and paracrine functions that control inflammatory processes, angiogenesis, and
myofibril hypertrophy, and also modulate fuel oxidation [38].

Skeletal muscle is a highly energetic tissue that typically contains mitochondria in
three locations: subsarcolemmal, perinuclear, and intermyofibrillar. While subsarcolemmal
mitochondria provide resistance to ROS, intermyofibrillar mitochondria are the source of
ATP during oxidative phosphorylation and Ca2+ modulation. With regard to metabolism,
the energy source in red myofibers (type I) is slow oxidative (SO) aerobic oxidation. Fast (or
white) muscle fibers use glycolysis as the energy source, with fast oxidative and glycolytic
reactions (FOG) in type IIa, and only fast glycolytic (FG) reactions in type IIb fibers [33].

4.2.1. The Warburg Effect

Hyperglycemia due to stress metabolism is typical of conditions such as sepsis, SIRS,
and traumatic brain injury with the presence of pro-inflammatory cytokines. The latter
with hyperlactatemia is a marker of unfavorable prognosis. New findings suggest that
hyperglycemia is affected by markedly upregulated gluconeogenesis and insulin resistance
(with blocked GLUT4 transporters preventing glucose entry into muscle), as well as by
persistent glycolysis even in the presence of the adequate oxygen substitution, the so-called
Warburg effect. In macrophages and dendritic cells, lipopolysaccharide (LPS) activates
inducible NO synthase (iNOS), which increases the production of nitric oxide (NO), which
in turn nitrosylates iron–sulfur proteins in the mitochondrial electron transport chain, lead-
ing to inhibition of oxidative phosphorylation. LPS also stimulates mTOR, and increases
production of hypoxia-inducible factor 1α (HIF-1α) that, in turn, can inhibit TCA (Krebs
cycle), thus potentiating oxidative glycolysis [40].

4.2.2. Lactate Shuttle

Lactate is not only an end-product of glycolysis, as was thought until recently, but
it is also an important metabolic substrate. Lactate has an important role as an energy
source, and also acts as a signaling molecule for metabolic regulation. Skeletal muscle plays
an indispensable role in lactate shuttling, i.e., exchanging this energy source between the
tissues or cells that produce it and those that utilize it. A typical example is during physical
exercise, when skeletal muscle produces lactate for the myocardium, brain, or liver (Cori
cycle, metabolization of lactate back to glucose). However, the lactate shuttle also has a role
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in cell–cell transport, between white muscle fibers that produce it, and red muscle fibers
that consume it. Thus, lactate appears to be the major fuel for red skeletal muscle, the heart,
and the brain under conditions of increased energy demand [41].

4.3. Mitochondrial Quality Control Mechanisms

Mitochondria have to adapt rapidly to changing energy requirements, energy supply
from aerobic or anaerobic pathways, and oxidative stress. This plasticity of mitochondria
in response to energy demand is regulated by multiple molecular signals. This regulation
happens in stages ranging from mitochondrial biogenesis, through mitochondrial dynamics
(fusion and fission), to mitochondrial autophagy (mitophagy). A reduced capacity for
mitochondrial quality control leads to mitochondrial dysfunction—a key marker of multiple
organ failure. Skeletal muscles are among those that are affected early and significantly [32].

4.3.1. Mitochondrial Biogenesis

Mitochondrial biogenesis is the process by which new mitochondria are produced.
The main regulator of mitochondrial biogenesis is proliferator-activated receptor γ coacti-
vator 1α (PGC-1α). This interacts with other transcription factors such as FoXO, hepatocyte
nuclear factor (HNF 4α), or nuclear respiratory factor (NRF1, NRF2), and activates tran-
scription from replication of MtDNA (Figure 4).
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4.3.2. Mitochondrial Dynamics

Mitochondria adapt their number, morphology, and size to the energy requirements
and can either fuse or divide by fission under the influence of GTPase. GTPases controlling
mitochondrial fission include the fission protein dynamin-related protein1 (Drp1) and its
receptor mitochondrial fission protein (Fis1), the mitochondrial fission factor (Mff), and
mitochondrial dynamics proteins (MiD49, MiD51). Fusion is controlled by mitofusin (Mfn)
and optic atrophy 1 (OPA 1) (Figure 5) [37,42–45].

4.3.3. Mitochondrial Autophagy

The final step in quality control is mitochondrial autophagy or mitophagy. This process
eliminates damaged organelles by forming a double-membrane autophagosome, which
then fuses with the lysosome where the contents are degraded. This requires receptors that
recognize damaged mitochondria, where the main regulator of mitophagy is Pink1/Park2.
Pink1 (PTEN-induced putative protein kinase) and Park2 act as an E3 ubiquitin ligase.
In healthy mitochondria, Pink1 moves from its position in the outer membrane to the
inner mitochondrial membrane and when its N-terminal mitochondrial targeting sequence
(MTS) is exposed to the matrix, it is recognized by matrix processing peptidase (MPP)
that cleaves the p64 form of Pink1 to its p53 form, which is subsequently released into
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the cytosol and cleaved by the proteasome. Thus, Pink1 does not activate autophagy in
healthy mitochondria.
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This is not the case in damaged mitochondria, where sepsis results in the loss of
mitochondrial membrane potential. Pink1 does not move to the inner membrane but is
sequestered in the outer membrane of the mitochondria, and subsequently recognized
and labeled by the bound ubiquitin ligase Park2. Mfn (mitochondrial fusion protein) is
also labeled and subsequently cleaved by the proteasome, preventing mitochondrial fu-
sion. Park2 builds ubiquitin chains that can be sufficient to recruit autophagic receptors
such as protein 62 (p62), nuclear dot protein (NDP52), optineurin, and others to initiate
autophagosome formation, thus triggering mitophagy. This allows damaged mitochon-
dria to be removed. Inhibition of this “scavenging” action leads to the progression of
MODS, thereby increasing mortality. The accumulation of damaged mitochondria has
shown to trigger motor neuron and muscle fiber degeneration, and upon progression of
muscle dysfunction, can lead to ICUAW or sarcopenia [32,46–48] (Figure 6).
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5. Potential Targets for Intervention in ICUAW

There are no interventions that can consistently treat ICUAW or sarcopenia; therefore,
most interventions focus on reducing or eliminating risk factors. Nonetheless, several new
potential targets of signaling pathways are currently being evaluated in clinical trials.

5.1. Mitochondrial Monitoring and Therapy

Monitoring mitochondrial dysfunction is already possible using PCR on mitochondrial
DNA (MtDNA). A new highly sensitive, quantitative droplet method can monitor MtDNA
copies in stimulated peripheral blood mononuclear cells. Reduction in their levels is a sign
of oxidative stress both in critical illness and in aging, where they are a sign of frailty [33,49].

Oxidative stress (ROS) and nitric oxide (NO) inhibit electron transport chains and
leads to mitochondrial swelling. The current approach is to modulate action at the subcel-
lular level. Activation of mitochondrial biogenesis is used for mitochondrial therapy; in
sepsis, this effort to recover mitochondrial function can prevent organ failure. L-carnitine,
succinate, ATP-MgCl2, cytochrome c, and ubiquinol (CoQ) all have the same effect. In-
haled CO can rescue liver failure in sepsis (by inducing heme oxygenase-1-mediated
NF-E2-related factor 2) and CoQ can prevent LPS-induced mitochondrial dysfunction by
improving mitochondrial biogenesis [33,50,51]. Bezafibrate, a drug used for dyslipidemia,
is an agonist of peroxisome proliferator-activated receptor (PPAR) and can increase PGC-1α
expression [52]. Similarly, the oral antidiabetic drug metformin activates mitochondrial
biogenesis. Glutathione and melatonin can be targeted as mitochondrial antioxidants [33].

LPS disrupts mitochondrial physiology in skeletal muscle via its pleiotropic effects on
sphingolipid metabolism. Treatment with myocrin, a de novo sphingolipid biosynthesis
inhibitor, ameliorates skeletal muscle dysfunction by decreasing sepsis-induced Drp1
expression and subsequently reverting mitochondrial morphology, inhibiting excessive
mitochondrial fission and restoring the balance between fusion and fission [46]. However,
therapeutic intervention on mitochondrial dynamics aimed at suppressing muscle atrophy
and the development of sarcopenia—e.g., by suppressing Drp1 overexpression to attenuate
the aging-related accumulation of mitochondrial dysfunction and sarcopenia—can have
conflicting results. The network of signaling cascades is very dense with many feedback
loops. Mitochondrial fission must be maintained to ensure mitochondrial and muscle
health [53].

Impaired mitophagy also contributes to amplifying organ failure in sepsis. Targeting
this scavenging process is another option for mitochondrial therapy. Carbamazepine,
lithium, and sodium valproate are used as autophagic flux enhancers. Rapamycin and
activated protein C are pharmacological agents used to induce autophagy. However,
rapamycin affects many other metabolic pathways (e.g., proteosynthesis through the
mTOR system) [54]. Current nutritional recommendations for critically ill patients are
based on this principle. Hypocaloric nutrition with a gradual increase in energy and protein
is recommended at the beginning so that autophagy does not become “excessive” [49].
Adenosine monophosphate-activated protein kinase (AMPK) and the silent mating-type
information regulation 2 homolog sirtuin (SIRT1) are two of the best-known metabolic
sensors that can directly affect PGC-1α sensitivity and mitochondrial biogenesis [54].

Moderate long-term exercise stimulates metabolic adaptations in aged skeletal muscle
through the activation of PGC-1α, AMPK, and the SIRT1 pathway. Endurance exercise
not only stimulates mitochondrial biogenesis but also causes repeated oxygen free radical
loading. This results in an increase in antioxidant capacity. In addition to ROS production
during exercise, myofibrils are damaged and, thus, proteolysis is stimulated after exercise
with an increase in the amino acid pool and subsequent stimulation of proteosynthesis,
thus increasing muscle mass and strength. Regular exercise tends to maintain low levels
of oxidative damage and improve proteostasis, preventing sarcopenia [33,55,56]. Blood
flow-restricted exercise (BFR) using a pneumatic tourniquet system in working muscu-
lature results in inadequate oxygen supply. BRF mediates muscle hypertrophy through
protein signaling and satellite cell proliferation to a greater extent than resistance exercise
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alone [4,57]. The critically ill and often geriatric sarcopenic patients are unable to exert
sufficient training loads to increase muscle mass. Neuromuscular electrical stimulation
shows positive results for preventing skeletal muscle weakness and wasting in critically ill
patients [58].

5.2. The Critical Nature of the Proteolytic System

Muscle is metabolically very active and is constantly challenged by mechanical, oxida-
tive, and heat stresses. A properly functioning proteolytic system is essential to maintain
proper function and tissue recovery. Improper proteolysis leads to myopathies; given
this picture of the negative impact of proteolysis, its original objective of adaptation to
stress is lost. Activated skeletal muscle proteolysis and its effect on the development of
polyneuromyopathy in critically ill patients can be used in efforts to suppress proteolysis,
but proper timing of proteasome inhibition is therefore crucial [14].

Skeletal muscle cell (myoblast) differentiation depends on the early activation of
appropriate myogenic factors. UPS is involved in cell differentiation, initially removing
the paired-box transcription factors Pax3 and Pax7, thereby initiating the transformation of
satellite cells. Its role is critical for the early activation of the key myogenic factor MyoD by
removing its inhibitor Id, and other myogenic factors requiring proteolytic cleavage such
as E2A proteins, filaminB, Myf5, and myogenin. This initiates the transformation of the
satellite cells first to myoblasts and then to myotubes. All the ROS generated during the
entire process of myogenesis also need to be scavenged [59,60].

During muscle hypertrophy following resistance exercise, both proteosynthesis and
degradation of damaged proteins are increased, and UPS (through the proteasome axis
(MuRF1—muscle-specific RING finger protein1, MAFbx—atrogin1)) facilitates myofilament
restructuring and growth [61].

Caspases, besides initiating apoptosis, have an important role in skeletal myoblast
differentiation. They activate satellite cells following the cleavage of the promyogenic
kinases MST1, HIPK2, NEK5, and CAD and the cleavage of Pax7 (caspase3). Caspase3
enhances myoblast fusion, a critical step in muscle maturation [59,62]. As it is one of the
major protein degradation pathways, exacerbated autophagy can induce ICUAW. On the
other hand, “basal” autophagy is necessary to maintain muscle mass and prevent muscle
atrophy. It has an important role in preventing sarcopenia, where stem cell senescence
limits muscle regeneration in aging. Without autophagy, efficient clearance of damaged
organelles and proteins would not work during muscle stress adaptation following exercise
or starvation. Exercise can activate beclin1 (by phosphorylation and release from the
BCL2–beclin1 complex), allowing autophagosome formation. The extent of activation of
autophagic signaling is influenced by the duration and intensity of exercise. Autophagy is
activated during exercise in ultra-endurance runners; the highly increased skeletal muscle
expression of key autophagy genes such as Atg4b, Atg12, LC3, Bnip3, etc., is necessary
for the removal of dysfunctional proteins and to meet the elevated energetic demands.
FOXO3 phosphorylation decreases at the same time as proteasome activation. So, balanced
autophagy is necessary to maintain normal protein turnover [4,59] (Figure 7).

5.3. The Role of Starvation and Stress Metabolism

Nutritional supplementation plays an important role in the prevention of ICUAW and
the development of sarcopenia, especially protein sufficiency, in an attempt to influence the
link between proteosynthetic mTOR and proteolytic UPS. The main stimulators of mTOR
include branched-chain amino acids, especially leucine and its metabolite hydroxymethyl-
butyrate (HMB) [63]. Leucine uses both insulin-dependent (IGF-IR/Akt/mTORC1) and
insulin-independent (RagD/mTORC1) pathways to stimulate mTOR. This latter pathway
of activation via Ragulator is common to both leucine and its metabolite HMB. Other amino
acids use other activation pathways, e.g., arginine and glutamine use the lysosomal-sensing
protein SLC38A9/mTORC1 [26].
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Figure 7. Exercise-induced muscle growth through induced proteolysis and induced autophagy
according to [59]. Exercise-induced protein damage via increased ROS/mechanical and heat stress,
increased MuRF1, and atrogin-1 (MAFbx), and both muscle-specific ubiquitin ligases lead to the
activation of the 26 S proteasome to rid the cells of non-functional myofibrillar proteins. Exercise
also activates autophagy: beclin-1 is phosphorylated and released from the BCL2–beclin-1 complex.
Exercise-induced autophagy is necessary for the clearance of damaged organelles and proteins. This
is critical for skeletal muscle remodeling and growth.

An important role is also played by sufficient vitamin D, considered to be a steroid
hormone. Vitamin D receptors (VDR) are found in various tissues, and are also presented
on skeletal muscle, predominantly in fast-twitch muscles. Vitamin D is associated with
oxidative stress, muscle energy metabolism, mitochondrial functions, and acts in Ca2+

homeostasis, which is necessary for muscle contraction. By reducing Ca2+ reuptake into
the sarcoplasmic reticulum, it prolongs the relaxation phase of muscle contraction. Vitamin
D deficiency decreases protein synthesis (through a signaling cascade: decreased IGF-
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1/Akt/mTOR), and on the other hand, decreased IGF-1/Akt activates FoXO and triggers
muscle atrophy by elevation of MuRF1 and atrogin-1. UPS is also stimulated via attenuation
of steroid receptor coactivator complex (Src) and decreased PGC-1α. The availability of
vitamin D decreases with age, so it has a role in sarcopenia. Supplementation of vitamin D,
to a minimum level of 75–100 nmol/L (30–40 ng/mL), reduces the symptoms of myopathy.
Of course, these problems cannot be fully solved with vitamin D alone; what is important
is bioavailability and the right level [64,65]. Nonetheless, robust evidence for this is
still lacking.

5.4. The Role of Glucocorticoids

Systemic inflammation and elevation of cytokines (TNF, IL1, IL6) drive muscle atrophy.
They activate the mitogen-activated protein kinase (MAPK) and upregulate atrogin-1
(MAFbx) and MuRF1.

Glucocorticoids are commonly used in patients to suppress cytokine storms in critically
ill patients, including COVID-19 patients [66]. However, they have a markedly negative
impact on muscle dysfunction, activating UPS with the concomitant increase in atrogin-1
and MuRF1. Therapeutically, glucocorticoid receptor blockade can be used to manage
glucocorticoid-induced skeletal muscle atrophy. This may attenuate UPS activated by
acidosis, insulin resistance, or sepsis. There are numerous inhibitors to block MAFbx
and/or MuRF1, including eIF3-f, MyoD, and myogenin. However, this therapy has had
indifferent success, possibly because of the different causes of atrophy, multiple signaling
pathways, and no one specific inhibitor for all stages of atrophy [22,23]. Nevertheless, IL1
blockade with anakinra has shown admirable results in survival of sepsis patients [67–69].

5.5. Specifics of Therapy for Sarcopenia

Therapies for sarcopenia, or efforts to slow muscle loss due to aging, rely on sufficient
intake of quality protein (leucine, phenylalanine, and arginine—with new recommen-
dations to increase protein intake up to 1.5 g/kg/day), limitation of saturated fats, and
sufficient omega3 fatty acids and vitamin D, along with exercise. Active lifestyle and exer-
cise can improve repair myogenesis and increase the expression of neuronal form of NOS
in the muscle, thus leading to the activation of satellite cells (SC). SC are located between
the basal lamina and sarcolemma of muscle fibers; they are the principal contributors to
muscle repair and growth and decrease significantly during aging. Moreover, myostatin,
an extracellular messenger of the transforming growth factor superfamily, inhibits factors
that regulate myogenesis. Exercise has been observed to decrease this muscle growth-
inhibiting messenger. During exercise, increased levels of vascular endothelial growth
factor (VEGF) and epidermal growth factor (EGF) modulate oxidative stress, improve
brain-derived neurotrophic factor (BDNF), and thus improve stimulation of skeletal muscle
contraction [70–74].

Several clinical studies have explored possible pharmacological interventions in signal-
ing pathways to manage sarcopenia. Among them are myostatin inhibitors (Bimagrumab
and the more recent trevogrumab and domagrozumab). Ghrelin, important for food intake
with anabolic properties, is being tested for appetite reduction and malnutrition. ACE
inhibitors, such as perindopril or the selective AT inhibitor losartan, are also known to be
beneficial by increasing IGF-1 levels [75].

6. Conclusions

During muscle catabolism, the rate of protein breakdown exceeds the rate of pro-
tein synthesis.

Activated proteolysis is of primary importance in ICUAW. Two major pathways act to
facilitate muscle degradation—UPS and dysregulated autophagy. Nutrition and rehabilita-
tion are the major factors in treatment or prevention: early mobilization, exercise (in-bed
cycle ergometry, blood flow-restricted exercise) and electromyostimulation (EMS), along
with intake of branched-chain amino acids, bolus enteral nutrition, insulin, and glucose
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target therapy. New therapeutic options are being considered to influence mitochondrial
dysfunction, systemic inflammation, and the signaling cascades involved.

Sarcopenia is the loss of muscle strength and muscle mass during senescence or
secondary due to inactivity or malnutrition. The fundamental reason for this is the gradual
decrease in proteosynthesis and, thus, a deficit in muscle regeneration. Chronic low-grade
pro-inflammatory conditions, accompanied by compromised immune response during
aging, known as “immune-senescence” or “inflammaging”, oxidative stress, ROS, and
motor neuron loss all contribute to the condition. Again, nutrition rich in quality protein,
an active lifestyle with exercise, antioxidants, inhibitors of myostatin, and other signaling
cascades are crucial for prevention and therapy.

The etiology of both these muscle catabolic states is multifactorial, and hence, mul-
tifactorial approaches are needed to address them. Mitochondrial dysfunction is the link
between ICUAW and sarcopenia, and thus figuratively between critical illness and senes-
cence (aging). It appears that critical illness accelerates the aging process. Mitochondrial
dysfunction appears to be the link also at the subcellular level in the pathophysiology of
critical illness and senescence; that is, between the two scenarios of muscle impairment,
sarcopenia, and polyneuromyopathy in the critically ill.
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