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Abstract: The cytotoxic action of anticancer drugs can be potentiated by inhibiting DNA repair
mechanisms. RAD51 is a crucial protein for genomic stability due to its critical role in the homologous
recombination (HR) pathway. BRCA2 assists RAD51 fibrillation and defibrillation in the cytoplasm
and nucleus and assists its nuclear transport. BRC4 is a peptide derived from the fourth BRC repeat
of BRCA2, and it lacks the nuclear localization sequence. Here, we used BRC4 to (i) reverse RAD51
fibrillation; (ii) avoid the nuclear transport of RAD51; and (iii) inhibit HR and enhance the efficacy of
chemotherapeutic treatments. Specifically, using static and dynamic light scattering, transmission
electron microscopy, and microscale thermophoresis, we show that BRC4 eroded RAD51 fibrils from
their termini through a “domino” mechanism and yielded monomeric RAD51 with a cumulative
nanomolar affinity. Using cellular assays (BxPC-3, pancreatic cancer), we show that a myristoylated
BRC4 (designed for a more efficient cell entry) abolished the formation of nuclear RAD51 foci.
The present study provides a molecular description of RAD51 defibrillation, an essential step in
BRCA2-mediated homologous recombination and DNA repair.

Keywords: homologous recombination; DNA repair; chemo/radiosensitizer; synthetic lethality;
anticancer drug discovery; PARP; BRCA2

1. Introduction

This study aimed to provide a detailed molecular description of RAD51 defibrillation,
a crucial mechanistic step in homologous recombination. This understanding may help
researchers to develop molecules to hamper the DNA repair capacity of cancer cells.

Genomic stability is key for cell replication and survival. The biological mechanisms
to detect DNA lesions, signal their presence, and promote their repair [1,2] are collectively
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known as the DNA damage response (DDR) pathway. Misregulation in any DDR compo-
nent can result in genomic instability, which is conducive to cancer onset and maintenance.
For example, rapidly proliferating cancer cells are genetically more unstable than healthy
cells, and their survival strongly relies on the DDR, in particular on the upregulation
of the error-free homologous recombination (HR) mechanism that repairs highly toxic
DNA double-strand breaks (dsDNA) [3]. HR inhibition can be therapeutically beneficial.
Increasing DNA instability may directly limit cancer progression [4]. In parallel, it may
amplify the effects of chemotherapeutic agents [5], impacting on their efficacy and reducing
resistance [6].

RAD51 and BRCA2 are two key HR players and are strongly associated with cancer
onset and anticancer therapies. The overexpression of RAD51 has been reported in several
cancers and correlates with higher and more efficient HR [7,8]. Moreover, germline mu-
tations of the BRCA2 gene increase susceptibility to breast, ovarian, pancreatic, and other
cancer types [9], which are more sensitive to radio/chemotherapy. Indeed, mutated BRCA2
protein can hamper the proper formation of the BRCA2-RAD51 complex and can lead to
radio/chemosensitization [10].

RAD51 is a recombinase of 339 amino acids that is mainly present in an equilibrium
between monomers and homo-oligomers in the cytosol in normal cycling cells [11]. Upon
DNA damage, RAD51 is recruited from the cytosol and transported into the nucleus,
oligomerizing on single-strand DNA (ssDNA) and searching for homologous DNA to
repair damaged sequences [12]. RAD51 recruitment and accumulation in the nuclear
repairing foci (whose number is often used as a marker of HR functionality [13]) are assisted
by BRCA2 [14]. BRCA2 is a large protein (3418 amino acids) that interacts with RAD51
through eight well-conserved 35–40 amino acid sequences known as BRC repeats. It tightly
regulates the level of RAD51 subcellular distribution and therefore cells’ HR activity by
(i) inducing RAD51 defibrillation both in the cytoplasm to support its nuclear translocation
and in the nucleus after DNA repair is completed [15]; (ii) assisting its fibrillation along
the damaged DNA, supporting the 3′-5′ directional growth of the fibril [16]; (iii) stabilizing
these oligomeric structures needed for recombinase activity, binding them with its C-
terminal domain upon its dephosphorylation [11]; and (iv) hiding the RAD51 nuclear
export signal (NES), thus allowing its nuclear retention when necessary [15].

Currently, the only estimates of BRCA2-RAD51 binding have been obtained from
pull-down assays reporting a nanomolar affinity [17]. Of greater interest are relative
comparisons, which report that, of the eight BRC repeats, BRC4 shows the highest affinity
for RAD51 [18]. Indeed, BRC4 appears to be critical in controlling RAD51 fibrillation, most
likely because it mimics a motif used by RAD51 in its oligomerization. This information
comes from the only 3D structure of the RAD51-BRC4 interaction (PBD 1NOW) [19]. The
BRC4 repeat seems able to promote RAD51 filament formation via interactions involving
an LFDE (Leu-Phe-Asp-Glu) sequence, with a binding that is not expected to perturb
the RAD51 interprotomer interface. Conversely, a second binding site in an FXXA (Phe-
X-X-Ala) region is positioned at the RAD51 protomer–protomer interface and possesses
filament-inhibitory potential [20]. BRC4 is therefore often used as a model to reproduce
the BRCA2-RAD51 interaction. However, quantitative data are still infrequent. To our
knowledge, just one report provides an apparent Kd of 1–2 µM from an indirect GST
pull-down assay [21]. If BRCA2-RAD51 interactions are disrupted in the cytosol, hindering
the recruitment of RAD51 monomers by BRCA2, HR is most likely inhibited due to the
failure of RAD51 nuclear transport.

Most of the literature, comprising biophysical and structural characterizations, focuses
on the interaction of BRCA2 with RAD51 fibrils formed on the DNA to unveil the details of
the mechanism of DNA repair. Nonetheless, the BRCA2-RAD51 interaction, as a cancer-
related target, can be disrupted directly in the cytosol at the RAD51 recruitment stage. If
RAD51 self-assembled fibrils are not recruited as monomers by BRCA2, the HR activity
is most likely inhibited due to the failure of RAD51 nuclear internalization. The intrinsic
ability of RAD51 to form fibrillar structures (homo-oligomers) in vitro, as well as in the
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absence of DNA, has already been reported [22,23]. Nonetheless, these RAD51 fibrils,
recruited and monomerized by BRCA2 to be internalized in the nucleus as a response to
DNA damage, have been poorly characterized and understood.

Here, for the first time, we provide a comprehensive biophysical characterization of
the native, self-assembled RAD51 fibrils and their disassembly mechanism in the presence
of the BRC4 peptide. The mechanism of action underlying BRC4’s ability to disassemble
RAD51 native fibrils is investigated in a concentration-dependent manner utilizing comple-
mentary biophysical approaches. A detailed understanding of this molecular mechanism is
critical to designing a specific inhibition of RAD51 recruitment at the site of DNA damage.
This inhibition should lead to HR failure in cancer cells, which rely on this pathway for
survival to a greater extent than normal cells, hence promoting selectivity against cancer.
Based on cellular experiments, we propose BRC4 itself as a potential inhibitor of the HR
pathway for cancer treatment. Indeed, the peptide can block HR in pancreatic cancer cells
while enhancing the effect of chemotherapeutic agents. These data show a proof of concept
of BRC4’s ability to act as a chemosensitizer.

2. Results

In this work, we initially used the BRC4 peptide (residues 1517–1551 of BRCA2),
focusing on how it can disassemble the fibrils that RAD51 spontaneously forms (also in
the absence of nucleic acids). We expressed the full-length recombinant human RAD51 (N-
terminal 6xHis-tagged, see Materials and Methods Section 4.1), a protein of about 40 kDa in
its monomeric form, with no DNA contamination (Figure S1). In nondenaturing conditions,
however, RAD51, even in the absence of DNA, readily oligomerized and formed aggregates
with an elongated, worm-like morphology and a helical organization (Figure 1A, top;
Figure S2), as suggested by electron microscopy (EM) data analysis and by the value of
the Rg/Rh (aspect) ratio calculated from static light scattering (SLS) and dynamic light
scattering (DLS) (Table S1). Due to their shape, we will refer to them as RAD51 fibrils.

Depending on their concentration, RAD51 fibrils were differently sized. Zimm plots
(Figure S4A) confirm a strong tendency towards aggregation through the negative value
of the second virial coefficient A2. Zimm plots also estimate 40 protomers (we refer to
RAD51 monomers under nondenaturing conditions as protomers) per aggregate at infinite
dilution, which compares to about 70 protomers at a RAD51 concentration of 0.25 mg/mL
(6.25 µM; see Table S1 and Figure S4B for the dependency of the radius of gyration Rg on
RAD51 concentration, and Figure S4C for the hydrodynamic radius Rh).

Upon exposure to BRC4, RAD51 fibrils decreased in size. They eventually became
invisible in TEM experiments, with large stoichiometric excesses of BRC4 (compare TEM
pictures in Figure 1A, top and middle, and see the overall results in Figure 1A, bottom).
This was confirmed by size exclusion chromatography (SEC), which indicated that the
initial high-molecular-weight fibrils were mostly converted to small-size aggregates and
monomers (Figure S5). It was also confirmed more quantitatively using SLS and DLS, which
showed a clear decrease in fibril dimensions (Rg (SLS) and Rh (DLS)) above a BRC4:RAD51
molar ratio of 0.5 (Figure 1B). Interestingly, the aspect ratio (Rg/Rh, red squares in Figure 1B)
was only marginally affected by the process, indicating that the aggregates maintained an
elongated shape, as also seen in the TEM of the residual aggregates. Nevertheless, upon
exposure of RAD51 fibrils to a large stoichiometric excess of a double-mutated version of
BRC4 (scBRC4), where two amino acids critical for RAD51 binding (F1524, T1526) [24,25]
were replaced by alanine residues, the fibrils were still visible, which confirms a direct
correlation between RAD51-BRC4 binding and fibril disassembly (Figure S6).
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Figure 1. (A) Negative staining TEM of 0.1 mg/mL RAD51 fibrils, alone (top) or in the presence of 
BRC4 (middle, RAD51/BRC4 1:0.6 molar ratio), clearly indicates the latter as an antagonist of RAD51 
fibrillation. The fibril length is reported in a box plot as a function of BRC4 concentration (bottom) 
after fitting TEM data with Gaussian models (see Supporting Information, Figure S3). In the absence 
of BRC4, most of the fibrils appeared to be 80–200 nm-long, but they may have been fragmented 
during sample preparation; indeed, static light scattering predicted a higher fibril length (Table S1). 
(B) Evolution of Rg, Rh, and the Rg/Rh ratio (i.e., the aspect ratio) of RAD51 fibrils (6.25 µM = 0.25 
mg/mL) upon addition of BRC4 or scBRC4. (C) Apparent weight average mass (𝐴𝑀௪  from SLS 
measurements: it is the average mass of all colloids in the sample) for RAD51/BRC4 suspensions 
((RAD51) = 6.25 µM = 0.25 mg/mL) as a function of the peptide/protein ratio. The dashed line was 
calculated assuming that a compound of the same mass of BRC4 was added and had no interaction 
with RAD51. The empty squares refer to SLS measurements performed with a double-mutated form 
of BRC4. (D) MST measurements provide an indication of the size (diffusion coefficient) of RAD51 
fibrils, which was reduced with increasing RAD51/BRC4 ratios ((RAD51) = 100 nM = 4 µg/mL). (E) 
SLS (Rg and apparent mass data), DLS (Rh data), and MST measurements (𝐴𝑀௪data) all suggest a 
stoichiometric (1:1) mode of action for the BRC4-induced RAD51 defibrillation. 
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Figure 1. (A) Negative staining TEM of 0.1 mg/mL RAD51 fibrils, alone (top) or in the presence
of BRC4 (middle, RAD51/BRC4 1:0.6 molar ratio), clearly indicates the latter as an antagonist of
RAD51 fibrillation. The fibril length is reported in a box plot as a function of BRC4 concentration
(bottom) after fitting TEM data with Gaussian models (see Supporting Information, Figure S3). In
the absence of BRC4, most of the fibrils appeared to be 80–200 nm-long, but they may have been
fragmented during sample preparation; indeed, static light scattering predicted a higher fibril length
(Table S1). (B) Evolution of Rg, Rh, and the Rg/Rh ratio (i.e., the aspect ratio) of RAD51 fibrils
(6.25 µM = 0.25 mg/mL) upon addition of BRC4 or scBRC4. (C) Apparent weight average mass
(AMw from SLS measurements: it is the average mass of all colloids in the sample) for RAD51/BRC4
suspensions ((RAD51) = 6.25 µM = 0.25 mg/mL) as a function of the peptide/protein ratio. The
dashed line was calculated assuming that a compound of the same mass of BRC4 was added
and had no interaction with RAD51. The empty squares refer to SLS measurements performed
with a double-mutated form of BRC4. (D) MST measurements provide an indication of the size
(diffusion coefficient) of RAD51 fibrils, which was reduced with increasing RAD51/BRC4 ratios
((RAD51) = 100 nM = 4 µg/mL). (E) SLS (Rg and apparent mass data), DLS (Rh data), and MST
measurements (AMw data) all suggest a stoichiometric (1:1) mode of action for the BRC4-induced
RAD51 defibrillation.

2.1. The Defibrillation Is Specific to BRC4

We then used SLS to estimate the overall apparent weight average mass AMw of the
colloids in a sample, i.e., the linear combination of the masses of all dispersed objects,
each weighted by their weight fraction (Appendix A, Equation (A1)). In the absence of
the peptide, RAD51 fibrils had a weight fraction of 1; thus, AMw was the actual mass
of the fibrils. With a compound unable to interact with the fibrils, AMw would slowly
decrease (see dashed line in Figure 1C) because the weight fraction of the fibrils (not their
size) decreased. When using the double-mutated scBRC4 peptide, AMw followed the
theoretical “no-interaction” prediction even with very significant stoichiometric excesses
(empty squares in Figure 1C).
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Defibrillation is a stoichiometric process independent of RAD51 concentration. Since
RAD51 fibrillation depends on concentration, we studied defibrillation using microscale
thermophoresis (MST). This allowed us to use RAD51 at a considerably lower concentration
than SLS: 100 nM (4 µg/mL) vs. 6.25 µM in SLS experiments. Here, too, however, the
process peaked around the BRC4/RAD51 stoichiometric equivalence (Figure 1D). Moreover,
MST data closely mapped those from SLS (Rg and AMw) and DLS (Rh), with all techniques
indicating that BRC4 defibrillation is a strictly stoichiometric process (Figure 1E). When
using the double-mutated scBRC4 peptide, MST also showed no binding of the peptide to
RAD51 (data not shown).

Defibrillation may proceed gradually from a fibril terminus, instead of being based on
BRC4 attacking fibrils at random locations. Upon incubating fibrils with biotinylated BRC4,
virtually all particles bound to fibrils were localized at only one of their termini (Figure 2A).
Notably, around 75% of the particles were bound to isolated RAD51 units, which must
therefore be considered to be RAD51/BRC4 complexes.
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Figure 2. (A) Localization of biotinylated BRC4 peptide by avidin–gold labelling. The histogram
below shows the different densities of gold nanoparticles when nonlabelled BRC4 or biotinylated
BRC4 was used. The asterisk indicates a statistically significant difference (two-tailed Student’s t-test
* p < 0.01). The labelled peptide was predominantly localized at only one of the fibril termini (23%,
n = 67). In the remaining cases, it appeared to be bound to isolated RAD51 monomers (73%, n = 67). In
the pictorial representation of RAD51 (below), its protomer was assumed to adopt a helical morphol-
ogy, as evidenced by TEM images, and the fibrils were assumed to comprise aligned helices. (B) AMw

recorded as a function of time on RAD51/BRC4 suspensions ([RAD51] = 6.25 µM = 0.25 mg/mL)
with various peptide/protein ratios. The data were fitted with an exponential function. The initial
decrease rate, recorded as a function of the BRC4/RAD51 molar ratio (inset), was obtained as the
derivative of the function at time zero. (C) Simulated weight distribution of RAD51 fibrils with
different lengths was produced upon addition of variable amounts of BRC4. The model used is
described in Appendix A and was fed with AMw data. Mechanistically, the whole process was based
on a succession of losses of a RAD51 unit. Each individual step appeared to be characterized by a
rather unfavourable constant. However, their coupling and above all the presence of a final “sink”
drove the process to completion. Indeed, the complexation of RAD51 with BRC4 appeared to be
thermodynamically favoured, with a dissociation constant kd1 calculated by our model estimated to
be mostly in the range 0.1–1 µM.
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Further, when monitoring defibrillation kinetics via SLS (Figure 2B, top left graph),
we noticed that the rate of the process was largely independent of the amount of BRC4
(Figure 2B, top-right graph, RAD51 concentration constant).

Notably, EC50 values were markedly different at different concentrations (compare
Figure 1B,D). This indicates that the concentration of the limiting component (i.e., (RAD51))
was greater than or equal to the apparent dissociation constant Kd of the process and
that the experiments were run under the titration regime (as opposed to the binding
regime, which allows one to approximate Kd with EC50 [26]). It is, therefore, reasonable to
assume that Kd was less than the lowest EC50 value recorded, i.e., ≤60 nM. Defibrillation,
however, is not a single equilibrium but rather a succession of coupled steps, which
can each be considered with their dissociation constant kd. We used a mathematical
model (see Appendix A) for their semiquantitative estimation from AMw data, assuming
(i) independence of kd on fibril length; i.e., we assumed all steps had the same dissociation
constant and (ii) monodispersity of original fibrils; i.e., at the beginning of the process, we
ignored the fibril size distribution. Our simulation clearly showed a decrease in fibril length
(number of protomers per fibril) with an increasing BRC4/RAD51 molar ratio (Figure 2C,
top). The products of intermediate defibrillation steps had a large dispersity in size, which
is a common feature of all step-based processes, such as step-growth polymerization.

The kd calculated for all BRC4/RAD51 molar ratios was essentially constant, with
a dimensionless value of 33.7 ± 0.5. This suggests that the intermediate steps may not
be thermodynamically favoured, whereas the last event (the complexation of free pro-
tomer) may act as the thermodynamic “sink” driving the “domino” chain of coupled steps
(Figure 2C, bottom).

2.2. BRC4 Can Inhibit HR Activity

We then used BxPC-3, a pancreatic adenocarcinoma cell line expressing a functional
BRCA2 [27]. In its native form, BRC4 was unable to impair HR (Materials and Meth-
ods, Section 4.3) due to inefficient cytoplasmic penetration. However, its myristoylated
version (BRC4myr: a reducible disulfide links a C-terminal BRC4 Cys with a myristoy-
lated Cys-Lys(Myr)-Lys-Lys-Lys, allowing both membrane permeation and intracellu-
lar release) showed a dose-dependent HR inhibition of up to 85.1% at 30 µM with an
estimated IC50 ≈ 10 µM (Figure 3A). The localization of RAD51 in BxPC-3 nuclei provided
additional evidence for a compromised HR. The large number of nuclear RAD51 foci
induced by exposure to 50 µM cisplatin (CPL) or 200 nM doxorubicin (DOXO) virtually
disappeared in the presence of 5 µM BRC4myr (Figure 3B). Similar inhibitory HR activity
of exogenous BRC4 expression has already been reported in MCF-7 cancer breast cell
lines [28].

2.3. HR Impairment Can Potentiate the Cytotoxic Effects of Anticancer Drugs

Treatment of BxPC-3 cells with the myristoylated double-mutated scBRC4 peptide
(scBRC4myr) showed no HR inhibition at 5 µM peptide concentration only. At higher
concentrations, HR inhibition was observed, although this was weaker than for BRC4
(Figure 3A). It may be due to a weak RAD51-scBRC4 interaction supported by the presence
of cofactors and interactors lacking in in vitro experiments or off-target bindings. The
localization of RAD51 in BxPC-3 nuclei upon exposure to 50 µM cisplatin (CPL) or 200 nM
doxorubicin (DOXO) was also weakly affected (no statistically significant difference) by the
presence of 5 µM scBRC4myr compared to the effect induced by BRC4, proving the exis-
tence of a direct correlation between RAD51-BRC4 binding and HR inhibition (Figure 3B).
When BxPC-3 cultures were pre-incubated with 5 µM BRC4myr and maintained in its
presence during CPL or DOXO treatment, the toxicity of the chemotherapeutic agents was
significantly increased (Figure 3C).
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DOXO alone. (C) Cell viability assessed in BxPC-3 cultures exposed to CPL (50 or 100 µM, 1.5 h) or 
doxorubicin (DOXO, 200 nM or 1 µM, 1.5 h) and treated for 48 h with 5 µM BRC4myr. During the 
experiment, cultures were maintained in a medium without serum supplementation to avoid inter-
ference of serum with peptide effects (degradation by proteases). Data were analyzed by two-way 
ANOVA with multiple comparisons. BRC4myr significantly increased the effects of both CPL and 
DOXO with p < 0.01 (**). 

2.3. HR Impairment Can Potentiate the Cytotoxic Effects of Anticancer Drugs 
Treatment of BxPC-3 cells with the myristoylated double-mutated scBRC4 peptide 

(scBRC4myr) showed no HR inhibition at 5 µM peptide concentration only. At higher 
concentrations, HR inhibition was observed, although this was weaker than for BRC4 
(Figure 3A). It may be due to a weak RAD51-scBRC4 interaction supported by the pres-
ence of cofactors and interactors lacking in in vitro experiments or off-target bindings. The 
localization of RAD51 in BxPC-3 nuclei upon exposure to 50 µM cisplatin (CPL) or 
200 nM doxorubicin (DOXO) was also weakly affected (no statistically significant 

Figure 3. (A) homologous recombination (HR) assay: evaluation of the percentage of HR inhibi-
tion at 5, 10, and 30 µM BRC4myr peptide (red) or scrambled myristoylated peptide scBRC4myr
(black). (B) Immunofluorescence detection of RAD51 foci in cell nuclei. BxPC-3 cells were exposed to
50 µM cisplatin (CPL) or 200 nM doxorubicin (DOXO) alone or in combination with 5 µM BRC4myr
or scBRC4myr peptides. Representative pictures showing DAPI-stained cell nuclei and the corre-
sponding immune labelling of RAD51 localization. RAD51 labelling appeared mainly in CPL- and
DOXO-exposed cells. A higher magnification detail of the 200 nM DOXO-treated sample is included.
The bar graph shows the percentage of RAD51-lableled nuclei estimated by analyzing approximately
300 cells for each treatment. Data were statistically evaluated by applying the two-way ANOVA with
multiple comparisons. A statistically significant difference was found between cells treated with
BRC4myr in combination with CPL or DOXO compared to cells treated with CPL or DOXO alone.
(C) Cell viability assessed in BxPC-3 cultures exposed to CPL (50 or 100 µM, 1.5 h) or doxorubicin
(DOXO, 200 nM or 1 µM, 1.5 h) and treated for 48 h with 5 µM BRC4myr. During the experiment,
cultures were maintained in a medium without serum supplementation to avoid interference of
serum with peptide effects (degradation by proteases). Data were analyzed by two-way ANOVA
with multiple comparisons. BRC4myr significantly increased the effects of both CPL and DOXO with
p < 0.01 (**).

3. Discussion

We have shown here that, in the absence of DNA, recombinant RAD51 had an intrinsic
tendency to form worm-like fibrils with a helical organization and dimensions that depend
on protein concentration. It seems reasonable to hypothesize that this dependence is caused
by an equilibrium of terminal association between RAD51 protomers and fibril termini.
We are inclined to exclude the idea that higher concentrations increase the nucleation of
new fibrils. This is because it would cause a fraction of smaller fibrils at higher RAD51
concentrations (as happens for fibrin [29]). Upon BRC4-RAD51 binding, the peptide reverts
the fibrillar self-association of RAD51.
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Mechanistically, our results suggest that during cytosolic RAD51 recruitment, BRCA2
(here mimicked by BRC4) may disassemble fibrils gradually from their termini rather than
through attacks at random positions along the fibril. All indicators of fibril size (mass,
dimension, diffusion coefficient) decreased very gradually, with the midpoint of the process
being observed to be close to the 1:1 BRC4/RAD51 stoichiometry. Further, TEM, SLS,
and DLS have shown that the fibrils preserved an elongated morphology (a high-aspect
ratio) during the process, and BRC4 localized at the fibril termini. Finally, if defibrillation
proceeded from fibril termini, the number of fibrils (and their terminal groups) was constant
throughout the process.

Kinetically, a two-stage mechanism appears likely: the rate of defibrillation did not
depend on BRC4 concentration, which may be explained by a rapid BRC4 terminal binding,
possibly followed by a rate-determining loss of a BRC4-bound protomer unit (Figure 2B,
bottom and Figure 2C, bottom). A similar mechanism was previously suggested for the
assembly of RAD51 fibrils on DNA assisted by BRCA2 [16,24]. From a thermodynamic
point of view, the relatively high value of kd calculated for the individual steps of RAD51
loss indicates that the driving force of the process may not be a high affinity of the peptide
for its fibrillar substrate but rather a “domino” combination based on (i) the coupling
between successive RAD51 losses, so that the removal of RAD51 from an n-mer shifts to the
right with all equilibria involving larger fibrils; and (ii) the thermodynamically favoured
complexation of BRC4 to a free protomer, which acts as a final “sink”. The data reported
here are, to our knowledge, the first detailed description of the mechanism of disassembly
of RAD51 self-assembled fibrils in the absence of DNA.

Our results show that RAD51 self-assembled fibrils were strikingly similar to those
previously reported in the presence of DNA [30]. Similarities in the mechanisms of fibrils
assembly and disassembly in the absence and presence of DNA were also observed. These
data strongly suggest that the intrinsic tendency of the protein to form fibrils, with an
intriguing helical shape also in the absence of DNA, is critical to determining the function
of the protein regardless of which subcellular compartment it is in. Moreover, the RAD51
mode of interaction with its BRCA2 partner also seems to be preserved in the absence
of DNA. The presence of the other cofactors (DNA, ATP, Mg2+, etc.) should be pivotal
in determining RAD51 conformational stability, availability to heterologous interactions,
and in triggering DNA repairing activity intrinsically dependent on the innate protein
tendency towards fibrils formation. The detailed mechanistic description of BRC4 binding
to RAD51 with dramatic (but close to stoichiometric) morphological consequences is also
key to interpreting the biological finding that the peptide inhibits the HR pathway once
internalized into the cell. Indeed, BRC4 can bind RAD51, but cannot further support RAD51
activity within the HR pathway as is physiologically performed by BRCA2 [23]. This is
because it lacks the BRCA2 NLS. Even upon DNA damage (CPL, Doxo), RAD51 cannot
localize at the site of damage in the presence of BRC4.

Small peptides, the stretch of the BRC4 repeat [31,32], and small organic molecules
mimicking BRC4 and inhibiting RAD51-BRCA2 interaction have already been reported in
the literature [10,33–35]. Nevertheless, the BRC4 peptide had a higher affinity compared to
nonpeptidic compounds. BRC4 turned out to be the most appropriate tool to shed further
light on a key step of the complex HR pathway, in which inhibition, through peptides or
small molecules, could be crucial for exploiting innovative anticancer mechanisms.

In our experimental conditions, the peptide (BRC4myr, see Materials and Methods
Section 4.1 for further details) prevented RAD51 nuclear localization upon DNA dam-
age, consequently affecting cell proliferation after treatment with DNA-damaging agents.
The absence of RAD51 in the nucleus makes cancer cells unable to repair damaged DNA,
potentially leading to synthetic lethality. We are now pursuing smart formulations, nanopar-
ticles, and intelligent deliveries to improve BRC4 drug-likeness for its possible exploitation
in oncology.
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4. Materials and Methods
4.1. Protocol for the Expression and Purification of His-RAD51

The full-length human RAD51 was expressed in E. coli Rosetta2(DE3) pLysS cells
carrying a pET15b plasmid. A 6× His tag was inserted at the N terminus of the protein. E.
coli cells were grown in a TB-5052 auto-induction medium at 20 ◦C for 72 h. The cell pellet
was resuspended in an appropriate volume (10 mL per g of wet pellet) of buffer A (20 mM
Tris-HCl (pH 8.00), 500 mM NaCl, 10 mM imidazole, 5 mM DTT, 10% (v/v) glycerol)
supplemented with protease inhibitor cocktail (SIGMAFAST Protease Inhibitor Cocktail
Tablets, EDTA. Free). The cell suspension was lysed on ice trough sonication (24 rounds of
30; amplitude 85%; Tip MS72; Bandelin Sonoplus HD2070 sonicator). The disrupted cell
suspension was centrifuged for 1 h at 20,000 rpm and 4 ◦C. All subsequent chromatographic
steps were performed at room temperature. The supernatant fraction was applied onto a
His-Trap HP (5 mL GE, Healthcare) column equilibrated in buffer A. Bound protein was
eluted using a linear gradient from 10% to 100% of buffer B (20 mM Tris-HCl (pH8.00),
500 mM NaCl, 500 mM imidazole, 10% (v/v) glycerol). Collected fractions corresponding to
the recombinant protein were dialyzed overnight at 4 ◦C against buffer C (50 mM Tris-HCl
(pH 8.00), 200 mM KCl, 0.25 mM EDTA, 2 mM DTT, 10% (v/v) glycerol). Dialyzed protein
was loaded onto an anion exchange column (ResQ, GE Healthcare) equilibrated in buffer C.
The elution was performed with a linear gradient of buffer D (50 mM Tris-HCl (pH 8.00),
1 M KCl, 0.25 mM EDTA, 2 mM DTT, 10% (v/v) glycerol). Fractions containing His-RAD51
were pooled and dialyzed against the storage buffer (20 mM Hepes (pH 8.00), 250 mM KCl,
0.1 mM EDTA, 2 mM DTT, 10% (v/v) glycerol). The protein yield was determined from the
optical absorption at 280 nm (extinction coefficient 14,900 M−1cm−1) of the final sample.
The BRC4 peptide and the derivatives used in this work were purchased from Thermo
Fisher Scientific. The BRC4 peptide corresponds to the fourth repeat of the BRCA2 sequence
(residues 1517–1551) with a molecular weight of 3957.6 Da. The scrambled BRC4 peptide
is the BRC4 (35 residues) peptide, carrying a double mutation [F1524A, T1526A] (MW
3851.47 Da). The myrBRC4 peptide was produced by inserting a myristoylated lysine at the
C terminal: KEPTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQ[C][C][K(myristoyl]KKK-
NH2, (MW 4902.47 Da).

4.2. Physico-Chemical Characterization

Size exclusion chromatography (SEC). The recombinant pure human RAD51 protein
was incubated at 37 ◦C for 1 h in the absence or presence of the BRC4 peptide in a 1:4 molar
ratio. After incubation, protein samples were loaded onto a size exclusion chromatographic
column (Superdex200 Increase 10/300 GL, GE Healthcare, Chicago, IL, USA) equilibrated
with the following buffer: 20 mM Hepes (pH 8.00), 250 mM KCl, EDTA 0.1 mM, glycerol
5%, DTT 2 mM.

Static light scattering (SLS) and composition-gradient multi-angle static light scattering
(CG-MALS). Measurements were carried out using a Calypso automated delivery system
as a mixing unit, connected to a Dawn Heleos II multi-angle light scattering (MALS) and a
T-rEX refractive index (RI) detector, both operating at 660 nm (all instruments produced by
Wyatt Technology, Santa Barbara, CA, USA). The Calypso software was used to collect and
analyze the refractive index and SLS data, assuming dn/dc = 0.185 L/g for both RAD51
and BRC4 and that the actual concentration of all components equated their nominal values.
Injection volume and flow rate were fixed at 0.8 mL and 1 mL/min, respectively. A delay
time of 180 s was set between each injection. RAD51, BRC4, and its scrambled version were
dissolved in a buffer based on 20 mM HEPES adjusted to pH 8 and supplemented with
0.1 mM EDTA, 250 mM KCl, 5% v/v glycerol, and 2 mM DTT.

Characterization of RAD51 fibrils. RAD51 solutions were obtained in situ within the
Calypso mixing unit by diluting a stock solution with its own buffer and producing RAD51
at five concentrations between 0.1 and 0.35 mg/mL (2.5–8.75 µM). The scattering data
were fitted using the Debye formalism (1st order in concentration and 2nd order in angle),
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yielding weight average mass (Mw), radius of gyration, and second virial coefficient of
RAD51 oligomers.

Characterization of BRC4-induced RAD51 defibrillation. RAD51 (constant concentra-
tion of 0.25 mg/mL (6.25 µM)) was exposed to either BRC4 or its scrambled version (at
final concentrations ranging from 0 to 0.19 mg/mL (48 µM). Light scattering data were
used to calculate the apparent weight average mass and radius of gyration.

Dynamic Light Scattering (DLS). A total of 100 µL of the RAD51–peptide mixtures
were manually collected at the end of the analysis above and analyzed at a temperature of
25 ◦C with a Möbiuζ instrument (Wyatt Technology, Santa Barbara, CA, USA), which was
equipped with a laser at 532 nm and operated at a scattering angle of 163.5◦. DLS acquisition
time and number of acquisitions were set at 3 s and 10 acquisitions, respectively, and three
measurements were performed on each sample. Correlation functions were analyzed using
the Dynals algorithm to yield hydrodynamic size and size polydispersity (PDI) for each
sample. Batch measurements were performed on 1.08 mg/mL (2.7 µM) RAD51 solutions in
the same buffer in a Zetasizer Nano Particle Analyzer (Malvern, Malvern, United Kingdom)
at a temperature of 25 ◦C.

Microscale Thermophoresis (MST). 6xHis-RAD51 was labelled with the Monolith His-
Tag Labeling Kit RED-tris-NTA 2nd Generation kit (NanoTemper Technologies, München,
Germany), which specifically recognizes the hexahistidine tail of the recombinant protein.
MST measurements were simultaneously performed on 16 capillaries containing a constant
concentration (25 nM) of labelled RED-tris-NTA 2nd Generation 6xHis-RAD51 protein
and 16 different concentrations of the peptide BRC4. This allowed us to determine a
concentration-dependent MST binding curve. The highest BRC4 concentration tested was
32 µM. Binding curves were fitted using the Affinity Analysis software of Nanotemper
Technologies to obtain binding affinity data. Binding tests were also performed for the
scBRC4 peptide; the highest concentration tested was 400 µM.

Transmission Electron Microscopy (TEM). (A) Negative staining. Recombinant pure
6xHis-RAD51 protein (0.1 mg/mL (2.5 µM)) alone or in the presence of different concentra-
tions of the BRC4 or scBRC4 peptides was incubated for 2 h at 4 ◦C. After incubation, each
sample was adsorbed into pure carbon film 300-mesh copper grids (Electron Microscopy
Sciences, Hatfield, PA, USA). After several washes in RAD51 storage buffer (20 mM Hepes
(pH 8.00), 250 mM KCl, 0.1 mM EDTA, 2 mM DTT, 10% (v/v) glycerol), each sample was
negatively stained using 1% uranyl acetate in MQ water. The samples were observed
with a JEM-1011 (JEOL) transmission electron microscope (TEM) with a thermionic source
(W filament) and maximum acceleration voltage of 100 kV equipped with a Gatan Orius
SC1000 series CCD camera (4008 × 2672 active pixels), fiberoptically coupled to high-
resolution phosphor scintillator. The fibril length and number of RAD51s (alone or in
complex with different amounts of BRC4 peptide) were measured using Fiji ImageJ [36]. In
total, more than 2500 fibrils from different negative staining experiments were measured
for quantification.

(B) Negative staining coupled with streptavidin–gold labelling. Drops of 5 µL of
recombinant pure 6xHis-RAD51 protein (0.1 mg/mL (2.5 µM)) alone or in the presence of
different concentrations of BRC4 were incubated for 30–90 s on plasma-cleaned carbon-
film-coated 300-mesh nickel grids (Electron Microscopy Sciences, Hatfield, PA, USA). After
two washing steps with drops of 50 µL of washing buffer (0.1% bovine serum albumin
(BSA) (Miltenyi Biotec, Bergish, Germany) in phosphate-buffered saline (PBS) (Sigma-
Aldrich, St. Louis, MO, USA), grids were incubated for 30 min (at room temperature)
or 2 h (at 4 ◦C) with streptavidin–gold (Sigma-Aldrich, St. Louis, MO, USA) diluted at
1:20–1:60 in washing buffer. The grids were then washed with several drops of RAD51
storage buffer, negatively stained, and imaged as described (see above). The streptavidin–
gold labelling quantification was performed manually or automatically using the Fiji
ImageJ software. We quantified a total area of about 220 µm2, corresponding to more than
90 micrographs (40 micrographs for RAD51-BRC4 complex (CTR) and 50 micrographs
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for RAD51-biotinilated BRC4 complex) from several experiments. Statistical analysis was
performed with OriginPro 9.1.0.

4.3. Biological Characterization

General cell culture. BxPC-3 cells (purchased from ATCC) were grown in RPMI
1640 containing 10% FBS, 100 U/mL penicillin–streptomycin, and 2 mM glutamine. All
media and supplements were from Sigma-Aldrich. Cultures were routinely tested for
mycoplasma contamination.

Homologous Recombination assay. Homologous recombination (HR) was assessed
using a commercially available assay (Norgen, Thorold, ON, Canada). This assay is based
on cell transfection with two plasmids that recombine upon cell entry. The efficiency
of HR was assessed by real-time PCR, using primer mixtures included in the assay kit.
Different primer mixtures allow differentiation between the original plasmid backbones
and their recombination product. Briefly, BxPC3 cells (2 × 105 per well) were seeded in
a 24-well plate and allowed to adhere overnight. Cotransfection with the two plasmids
was performed in Lipofectamine 2000 (Invitrogen, Waltham, MA, USA), according to the
manufacturer’s instructions. During 5 h of transfection, cells were exposed to different
doses of peptides, dissolved in PBS. After washing with PBS, cells were harvested, and
DNA was isolated using QIAamp DNA Mini kit (Qiagen, Hilden, Germany). Sample
concentration was measured using an ONDA Nano Genius photometer. The efficiency of
HR was assessed by real-time PCR, using 25 ng of template, primer mixtures included in the
assay kit, and protocol indicated by the manufacturer. Data analysis was based on the ∆∆Ct
method: (Recombination Product/Backbone Plasmids) treated versus (Recombination
Product/Backbone Plasmids) control.

Immunofluorescence. Immunofluorescence was used to study RAD51 nuclear translo-
cation. To visualize RAD51 in cell nuclei, BxPC-3 cells were seeded on glass coverslips
placed in a 6-well culture plate (2× 105 cells/well) and allowed to adhere for 24 h. Cultures
were pre-incubated in RPMI without serum with 5 µM BRC4myr or scBRC4myr for 1 h
and subsequently exposed to 50 µM cisplatin (MedChemExpress) or 200 nM doxorubicin
(Selleckchem) for 1.5 h. The medium was then removed to eliminate the chemotherapeutic
agents, and cells were maintained in the presence of 5 µM BRC4myr for an additional
4 h. After this time, cells were fixed with PBS containing PFA 4% for 15 min, perme-
abilized in 70% ethanol, and then washed twice in PBS. The samples were incubated in
10% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS for 30 min at 37 ◦C and subse-
quently in the primary rabbit polyclonal antibody anti-RAD51 (BioAcademia 1:1000 in
5% PBS/BSA) overnight at 4 ◦C. After washing, coverslips were incubated in secondary
anti-rabbit rhodamine-labelled antibody (Novus Biologicals, 1:1000 in 1% BSA/PBS) for
30 min at 37 ◦C, washed, air-dried, and mounted in a solution 2 µg/mL DAPI in DABCO.
Images were acquired using a Nikon fluorescent microscope equipped with filters for
TRITC and DAPI. The percentage of cells bearing nuclear foci was estimated by analyzing
approximately 300 cells for each treatment sample.

Cell viability. Cell viability was assessed with the CellTiter-Glo Luminescent Cell
Viability Assay from Promega. For this experiment, 2 × 104 cells were seeded using
complete medium in a 96-multiwell white body plate and allowed to adhere overnight.
The next day, the medium was replaced, and treatments were conducted entirely in the
absence of serum. After a brief wash, cells were pre-incubated with 5 µM BRC4myr for
1 h. Where indicated, cisplatin (50 and 100 µM) or doxorubicin (200 nM and 1 µM) was
subsequently added to wells for 1.5 h. The medium was then removed to eliminate the
chemotherapeutic agents, and cells were maintained in the presence of 5 µM BRC4myr
for an additional 48 h. After treatments, the multiwell plate was allowed to equilibrate at
room temperature for 30 min, and the CellTiter-Glo reactive was directly added to each
well. The plate was kept on a shaker for 10 min to induce cell lysis, and its luminescence
was measured following manufacturer’s instructions using a Fluoroskan Ascent FL reader
(Labsystems, Vantaa, Finland).
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Appendix A

Defibrillation model
Apparent weight average mass data (AMw) were obtained from SLS analysis. The

data indicate the mass averaged through the various species in the sample, i.e., fibrils (with
and without bound peptides), free peptides, and peptide–protein complexes.

AMw = WBRC4·MWBRC4 + WRAD51−BRC4·MWRAD51−BRC4 + ∑
i
(WFibril)i·(MFibril)i (A1)

where W, MW, and MFibril are the mass fraction of each species, the molecular weight of
each molecular species (the free peptide and the RAD51-BRC4 complex), and the mass of
a given fibril, respectively. In the sample, the mass fraction of a species i is a function of
its mass Mi (a molecular weight or a fibril mass), its molar concentration, and the total
concentration of the colloidal species in the sample (CTOT , expressed in g/L), which allows
Equation (A2) to be transformed into the following expression.

AMw =
1

CTOT
·([BRC4]eq·MW2

BRC4 +

[
RAD51− BRC4]eq·MW2

RAD51−BRC4 + ∑
i
[Fibi]eq·(MFibril)

2
i

)
(A2)

We then took a mathematical approach that is conceptually similar to those often used
in step-growth (equilibrium) polymerization. This approach is based on the estimation of
dissociation constants through kinetic equations, allowing the system to reach the steady
state at each defibrillation step. To do so in a computationally efficient (although very
approximated) way, we introduced the following assumptions:

(i) The defibrillation processes comprise consecutive steps where a single protomeric
unit is removed, and each step is characterized by the same dissociation constant kd
(implying that the loss of a unit is equally likely in a longer or in a shorter fibril);

(ii) In the absence of BRC4, all fibrils have an identical length equal to 71 protomers.
Thus, before the addition of the peptide, the sum in Equations (A2) and (A3) is reduced to a
single value with I = 71. Clearly, it is unrealistic to ignore the original width of the fibril size
distribution. However, this assumption allows for a much clearer model of defibrillation.

Importantly, I = 1 corresponds to the particular situation of a “monomeric” fibril,
i.e., the uncomplexed RAD51 unit. In this case, the equilibrium to be considered is analo-
gous to that of defibrillation steps, but the complexation of BRC4 with a fibril yields two
products (i.e., RAD51-BRC4 and a shorter fibril), while the complexation of BRC4 with
RAD51 yields only one product (i.e., RAD51-BRC4). This means that the corresponding

https://www.mdpi.com/article/10.3390/ijms23158338/s1
https://www.mdpi.com/article/10.3390/ijms23158338/s1
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dissociation constants are dimensionally different: the kd for the former is dimensionless;
the kd1 for the latter has the units of a concentration.

In the model, we have considered that in each step of the process, the rate of loss and
the rate of addition of protomers on a given fibril must be identical at equilibrium. The
time evolution of the process in each defibrillation step can be described by a system of
coupled ordinary differential equations corresponding to second-order reactions, such as
those shown in Equation (A3):

d[Fibi ]
dτ = −[Fibi+1] (τ)· [

BRC4](τ)
[RAD51]0

+ kd·[Fibi

]
(τ)· [BRC4]0−[BRC4](τ)

[RAD51]0
d

dτ [Fib1]= −[Fib1](τ)· [BRC4](τ)
[RAD51]0

+ kd1·
[BRC4]0−[BRC4](τ)

[RAD51]0

(A3)

In Equation (A3) we used τ as an arbitrary scaled, dimensionless time, which is
formally obtained by dividing time by the forward kinetic constant and by [RAD51]0.
Under the already described assumption of fibril monodispersity ([Fib]i(τ = 0) = 1

71 δi,71),
and using the AMw data obtained via SLS as inputs, we iteratively evaluated the time
evolution of the system in Equation (A3) independently for the different BRC4/RAD51.
After an initial choice of kd and kd1, the steady-state concentrations for all involved species
were calculated, and then both constants were iteratively optimized according to a nonlinear
optimization protocol. The cost function minimized by this protocol was the discrepancy
between the simulated and observed AMw values at these steady states.
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