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Abstract: Various treatments based on drug administration and radiotherapy have been devoted
to preventing, palliating, and defeating cancer, showing high efficiency against the progression
of this disease. Recently, in this process, malignant cells have been found which are capable of
triggering specific molecular mechanisms against current treatments, with negative consequences in
the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms,
including the genes—and their signaling pathway regulators—involved in the process, in order
to fight tumor cells. Long non-coding RNAs, H19 in particular, have been revealed as powerful
protective factors in various types of cancer. However, they have also evidenced their oncogenic role
in multiple carcinomas, enhancing tumor cell proliferation, migration, and invasion. In this review,
we analyze the role of IncRNA H19 impairing chemo and radiotherapy in tumorigenesis, including
breast cancer, lung adenocarcinoma, glioma, and colorectal carcinoma.
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1. Introduction

For decades, scientists have considered non-coding RNAs (ncRNAs) as a non-functional
part of the genome, focusing their attention primarily on coding RNA biology. The se-
quencing of the human genome and later the ENCODE project have shown that more than
80% of the genome is transcribed in some type of RNA. Interestingly, only 3% of this tran-
scribed genome corresponds to coding RNAs, suggesting that ncRNAs are as significant or
more significant than coding RNAs [1,2]. It has been demonstrated that non-coding RNAs
are essential for the regulation of cellular pathways and biological processes such as cell
development, differentiation, growth, and homeostasis, as well as diseases [3-6].

According to their length, ncRNAs can be classified into: (i) small non-coding RNAs,
with less than 200 nucleotides, including microRNAs, snoRNAs, piRNAs, and tRNAs [7];
and (ii) long non-coding RNAs (IncRNAs) with more than 200 nucleotides, including
intronic IncRNAs, enhancer IncRNAs, circular IncRNAs, and intergenic IncRNAs [8].

With respect to microRNAs, these present 2022 ribonucleotides in length on average
and display the capacity to bind to the 3’ untranslated region (3'UTR) of coding RNAs by
complementary base pairing, promoting their degradation and/or translational blockage.
The role of microRNAs as post-transcriptional modulators has been widely described
in multiple biological and cellular processes, including cell development, differentiation,
growth, and homeostasis, as well as diseases [9-12].
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In the case of IncRNAs, these are structurally similar to mRNAs since they are tran-
scribed by RNA polymerase II, and have the same typical post-transcriptional modifications,
in 5 terminal cap and 3’ terminal poly (A) in particular. Notably, they lack the capacity to
code proteins. Mechanistically, IncRNAs can act both as transcriptional regulators (by mod-
ulation of nuclear gene expression in different ways, including epigenetic landscape control,
transcriptional complex scaffolding, and decoy molecules) and as post-transcriptional regu-
lators (modulating microRNA degradation, mRNA stability, and/or protein translation). A
deeper study of these IncRNAs roles will help us to better understand the regulation of
multiple biological processes [13-16].

A particular IncRNA, H19 (produced by H19 gene), is abundantly expressed during
embryonic development, mainly in derived tissues from the endoderm and mesoderm,
and downregulated after birth, except for muscle tissues, such as skeletal and cardiac
muscles [17-19]. H19 gene is highly conserved between primates and rodents, maintaining
both structure and expression pattern in different species. However, it shows substantial
differences in terms of the putative ORFs (open reading frames) arrangement present in
this gene, which exhibits 5 exons separated by 4 introns, structurally [20]. While in humans
a maximum of 13 different isoforms are observed, only 7 are identified in mice. H19 gene
generates a 2.3 kb transcript with a cap in 5’ end and a polyA tail in 3’ end [21]. Subcellular
expression of H19 depends on cellular type and biological context, showing its expression
both in the cytoplasm and nucleus [22,23]. In the genome, H19 gene is located within a
locus highly regulated by epigenomic machinery. This locus, named H19-Igf2, showing
several differentially methylated regions (DMRs) and imprinting control regions (ICRs),
leads to intensive modulation of genes contained in it, depending on the process and/or
biological context [24,25]. Interestingly, H19 encodes the primary microRNA precursor for
miR-675. The expression of this microRNA is not dependent on RNA H19 transcription,
although both expressions are correlated in several biological processes [26,27]. The H19
gene has been studied for some time now, although its function is still not well defined.
In particular, it acts as a trans-regulator of a group of co-expressed genes as part of an
imprinted network, which is likely to control cellular homeostasis [24-27]

Taking into account that non-coding RNA genome has proved to play a pivotal role,
both as tumor suppressor and oncogenic molecules in cancer therapy [28-32], it is critical to
understand the underlying molecular mechanisms in favor of new therapeutic approaches
for cancer treatment efficiency. Since the resistance to chemo and radiotherapy constitutes
a crucial factor involved in disease relapse and metastasis [33,34], it is of great importance
to establish the intrinsic factors involved in this process. Known molecular mechanisms of
chemo and radioresistance include transporter pumps, oncogenes, tumor suppressor gene,
mitochondrial alteration, DNA repair, autophagy, epithelial-mesenchymal transition (EMT),
cancer stemness, and exosome and extensive epigenetic regulation, among others [35-38].
Noticeably, abnormal expression of IncRNA H19 has been found in different types of tumor
cells, affecting cancer progression through different mechanisms, either as a suppressor or
oncogenic gene, depending on cellular context [39—-45]. For this reason, clinically, IncRNA
H19 could be useful as a biomarker of diagnosis, therapy, and prognosis in cancer [46,47]. In
this sense, those clear-cut mechanisms underlying the H19 regulatory roles in the biological
progression of cancer requires further investigation.

Consequently, in this review, we analyze the impact of IncRNA H19 as a responsi-
ble factor in chemo and radioresistance of malignant cells, including their underpinning
molecular mechanisms, specifically breast cancer, lung adenocarcinoma, glioma, and col-
orectal carcinoma.

2. LncRNA H19 Impairs Chemo and Radiotherapy in Breast Cancer

Breast cancer is the most frequently diagnosed malignancy and the second leading
cause of cancer mortality in females worldwide [48]. Broadly, breast cancer patients can be
classified into estrogen receptor positive (ER+)—corresponding to 70% of total cases—or
estrogen receptor negative (ER—) [49,50]. Drug treatment against both types of breast
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cancer differs from each other, since several drugs are antagonists of estrogen receptors
and exerting their functions blocking binding between ER and estrogens. This binding
leads to disrupting the activation of downstream signaling pathway dependent of RE-
estrogens interaction [51]. Currently, administration of three drugs, tamoxifen (TMX),
doxorubicin (DOX), and paclitaxel (PTX), are considered as first-line of chemotherapy [52].
The application of any of these drugs separately or in combination with different types
of drugs that enhance their cytotoxicity against malignant cells, considerably improves
the clinical outcome of breast cancer, even though their continuous use results in acquired
resistance of breast cancer cells against drug treatment [53-55]. To reverse such resistance
and re-sensitize cells to different drugs, it is vitally important to understand the underlying
molecular mechanisms that modulate their resistance acquisition. Several studies have
pointed out the role of H19 as a powerful oncogenic agent in this process, pinpointing it as
a critical modulator of chemoresistance (Figure 1).
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Figure 1. Schematic representation of molecular mechanism dependent of H19 function in breast
cancer. (A) Modes of action of paclitaxel (PTX), doxorubicin (DOX), and tamoxifen (TMX) drugs
involved in breast cancer treatment. (B) Role of H19 as a sponge to binding miR-340 enhancing
expression of YWHAZ protein and increasing proliferation and migration while blocking apoptosis.
(C) H19 increase expression of CUL4A and repress expression of PARP1 lead to DOX resistance in
breast cancer. (D) H19 modulates methylation of BECN1 promotor and blocking NAT1 expression
enhancing autophagy and metabolism procedures.

Paclitaxel (PTX) is the most commonly used antitumor treatment drug on several
types of carcinomas [55]. Mechanistically, PTX action includes several signaling pathways
in which PTX modulates cellular processes that results in programmed cell death trigger-
ing. PTX is considered as the first-line treatment drug in breast cancer (BC), especially in
triple negative breast cancer (TNBC) [56], since this subtype of carcinoma is not sensitive
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to estrogen receptor positive breast cancer cell. Unfortunately, the resistance of BC to
PTX treatment is a great obstacle in clinical applications and one of the major causes of
death associated with treatment failure. In breast cancer, PTX (Figure 1A) induces cellular
apoptosis by interacting with $-tubulin and altering microtubules stability. PTX-resistance
is acquired by mutations in « or 3-tubulin, enhancing p53 and AKT activation signaling
pathways or by dysregulation of apoptotic proteins [57,58]. Functional assays in both
ER(+)-MCF-7 and ER(-)-Triple negative breast cancer (TNBC) carcinomas have shown that
acquisition of resistance to PTX requires the upregulation of H19 (Figure 1B), which in
turn blocks activation of several apoptotic pathways. Curiously, in ERx + breast cancer,
H19 modulates resistance of PTX at both transcriptional and post-transcriptional levels.
Si et al. (2016) [59] demonstrated that upregulation of H19 in MCF-7 cell line inhibited
transcription of BCL-2 interacting killer protein (BIK)—a proapoptotic BH3-only member
of the BCL-2 family which is prognostic for relapse and decreased overall survival of breast
cancer [60]—Dby recruiting EZH2 subunit to the promoter of this gene, modulating H3
methylation at lysine 27. As result of BIK promoter methylation, PTX-resistance MCF-7
cells display increased proliferation rate and decreased cellular apoptosis [59]. Further-
more, H19 blocks miR-340-3p function—a known tumor suppressor miRNA involved in
repression of EMT—acting as competitive sponge and avoiding degradation of tyrosine 3-
monooxygenase/ tryptophan 5-monoixygenase activation protein (YWHAZ), which in turn
enhances activation of Wnt/ 3-catenin signaling pathway. As results of increased activity of
YWHAZ-Wnt/ 3-catenin axis, PTX-resistance cells exhibit increased metastasis, invasion,
and EMT. Additionally, the phenotype associated with H19 upregulation is recapitulated
in both xenograft models and biopsies from patients with PTX resistance [61]. Unlike
ER(+), increased H19 levels in TNBC promote activation of AKT by phosphorylation. As
a consequence of enhancing AKT activity, BAX and cleaved caspase 3 are repressed, and
cellular apoptosis is inhibited. Furthermore, downregulation of H19 in TNBC is translated
into lower tumor growth rate in vivo and reduced cell proliferation accompanied by higher
rates of apoptosis [62].

Doxorubicin (DOX) is a member of the anthracycline family and currently is one of the
main treatments of choice for the treatment of both ER+ and ER- breast cancer [54]. DOX
negatively affects the survival of malignant cells through different mechanisms of action
(Figure 1A): (1) DOX is capable of mediating intercalation into DNA and disruption of
topoisomesare-II function, avoiding DNA repair, and increasing cellular apoptosis; (2) DOX
promotes generation of free radicals and their damage to cellular membranes, proteins, and
DNA; (3) DOX deregulates several pivotal pathways involved in tumorogenesis such as
PI3K/mTOR/AKT or ERK signaling [63]. Several studies have pointed out H19 as a major
mediator of DOX chemoresistance (Figure 1C) by modulating MDR1/MDR4 and PARP1
expression [64,65]. Increased expression of H19 is required for the acquisition of DOX-
resistance in several breast cancer cell lines. Curiously, downregulation of H19 reduces cell
viability, lowers colony forming, and increases apoptosis under DOX treatment. Mechanis-
tically, H19 promotes expression of Cullin 4A (CUL4A), a ubiquitin ligase component [66],
which in turn enhances expression of ABCB1/4 genes that encoded MDR1/4 proteins, two
members of the ATP-binding cassette family highly upregulated in several carcinomas,
including breast cancer [67,68]. Both proteins exert pivotal functions in oncogenesis acting
as inductors of multidrug resistance [69]. However, the molecular mechanisms dependent
on MRD1/MDR4 are still unclear and require additional and intensive investigations.
Wang et al. (2020) [65] showed that H19-induced DOX-chemoresistance is mediated by
repression of PARP1. In MCF-7, high levels of H19 were correlated with downregulated
PARP1 expression. Even though PARP1 is upregulated in several types of carcinomas and
PARP1 inhibitors have been described as pivotal drugs against tumorigenesis, PARP1 has
been shown to increase the antitumor activity of other drugs such as temozolomide and
topotecan in preclinical studies, including models of pediatric cancers [70-72]. Curiously, it
is capable of being packaged into exosomes from resistance cells and this diffusion towards
sensitive cells leads to the acquisition of resistance against DOX treatment [73].
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Tamoxifen (TMX), an anti-estrogen (Figure 1A), competitively inhibits estrogen bind-
ing to the ER and blocks the ER-mediated stimulation signal [53]. Five years of tamoxifen
adjuvant therapy has been shown to safely reduce 15-year risk of breast cancer recurrence
and death; however, a substantial group of patients was shown to eventually develop
resistance (de novo or acquired) to tamoxifen. Although many molecular mechanisms of
tamoxifen resistance have been described, including mutations in the ESR1 gene and the
activation of alternative growth pathways, such as ERBB2/HER?2, EGFR, IGF1R, and cyclin
D1/CDK4/6 pathways, it remains necessary to gain an improved understanding of the
potential mechanisms of tamoxifen resistance [74-77]. Several studies have pointed out
the importance of upregulation of H19 in TMX resistance acquisition. Increased level of
H19 in TMX-resistance cells (Figure 1D) is translated into enhanced autophagy activity
and higher metabolism ratio by upregulation of Beclinl (BECN1) and downregulation of
N-acetyltransferase-1 (NAT1) transcription, respectively [78,79]. H19 downregulates the
methylation state of Beclinl promoter by binding and inhibiting S-adenosyl homocysteine
hydrolase (SAHH). As consequence, DNMT3B function is reduced, resulting in lower ratio
of methylation of Beclinl promoter and thus higher Beclinl expression [78]. Additionally,
H19 modulate methylation of NAT1 promoter reducing transcription of it. NAT1 exert
a pivotal role in metabolism of carcinogens and it is negatively correlated with a poor
prognosis and aggressiveness of ER(+) breast cancer [79].

3. LncRNA H19 Impairs Chemo and Radiotherapy in Non-Small Cell Lung
Cancer (NSCLCQ)

Epidermal growth factor receptor (EGFR) signaling is a receptor tyrosine kinase (RTK)
mediated signaling commonly upregulated in many different tumors such as non-small-cell
lung cancer, metastatic colorectal cancer, glioblastoma, pancreatic cancer, and breast can-
cer [80-82]. Upregulation of EGRF activity is caused by distinct mutations or truncations
on both extracellular and/or kinase domain such as EGFRVIII truncations or L858R mu-
tations, respectively. EGFR positively modulates PIK3/mTOR/AKT oncogenic signaling
pathway by increasing phosphorylation, which in turn promotes proliferation, survival,
and invasion of maligned cells [83]. Since the importance of it as a pivotal oncogenetic mod-
ulator, EGFR has been pinpointed as a powerful therapeutic target against different tumors
types including small non cell lung cancer (NSCLC) [84,85]. Several inhibitors—such as
Erlotinib and Gefinitib—(Figure 2) have been used to block EGFR function and activation
of signaling pathway downstream PIK3/mTOR/AKT [86,87]. Although both drugs have
been described as effective treatment against NSCLC, improving prognosis of disease and
progression-free survival (PFS), many reports have revealed that continued administra-
tion is translated into acquired resistance. Underlying molecular mechanism of acquired
resistance to chemotherapy is poor understanding. Chen et al. (2020) [88] demonstrated
that acquisition of resistance to Erlotinib treatment in lung adenocarcinoma requires H19
silencing. Interestingly, both Erlotinib-resistant tumor from different patients and Erlotinib-
resistant cell lines display low H19 expression levels. Functional assays demonstrated that
gain-of-function of H19 in Erlotinib resistance cell lines result in restored drug sensibility.
H19 reduces pyruvate kinase M1/2 (PKM2) protein level, promoting ubiquitin dependent
degradation, which is essential for AKT phosphorylation and thus leads to disruption of
PIK3/mTOR/AKT signaling. Furthermore, inhibition of PKM2 both in cells resistant to
Erlotinib and in H19 knockout cells is translated into increased sensitivity to this drug
indicating that Erlotinib-resistance is mediated by PKM2. Likewise, downregulation of H19
reduces sensibility to treatment with Erlotinib. Repression of H19 in Erlotinib-resistance
increases PKM2 protein levels which in turn enhances AKT phosphorylation (Figure 2B).
Curiously, AKT activity significantly reduces H19 expression, suggesting a negative feed-
back between H19-PKM2-AKT [88]. Conversely, Pan and Zhau (2020) [89] demonstrated
that H19 is upregulated in exosomes of serum samples from non-responding erlotinib
treatment patients suggesting that H19 could promote erlotinib resistance. Mechanically,
H19 acts as a sponge of miR-615-3p, which in turn represses ATG? translation, an onco-
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genic protein involved in autophagy response of different types of carcinomas [90,91]. As
a consequence of H19-miR-615-3p competing mechanism, ATG? translation is enhanced,
leading to increased proliferation and survival of maligned cells (Figure 2B). Furthermore,
H19 packaging into exosomes reduce Erlotinib sensibility to non-resistance Erlotinib cells
pinpointing an oncogenic role of H19 [89]. The discrepancies between both studies suggest
a complex role of H19 in the acquisition of resistance against Erlotinib that requires further
study to be fully understood.
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Figure 2. Schematic representation of molecular mechanism dependent of H19 function in lung
cancer. (A) Modes of action of Erlotinib (ELB) and Gefinitib (GEF) drugs involved in lung cancer
treatment. (B) Dual role of H19 in acquired resistance to Erlotinib modulating PKM2 and ATG7
proteins. (C) Role of H19 as a sponge to binding miR-148 and miR-130a enhancing expression of
DDHAT1, NFIB and WNKS3 proteins increasing proliferation, metastasis, and angiogenesis procedures.

Resistance to Gefinitib is the major obstacle to improving the disease pattern of patients
with advanced metastasis in NSCLC. Like Erlotinib, Gefinitib disrupts PI3K/mTOR/AKT
pathway reducing phosphorylation. Particularly, Gefitinib removes a phosphate group
from PIP3 active form, avoiding mTOR and AKT phosphorylation by increase of PIP2
intracellular pool (Figure 2A), which is indeed the inactive form [91]. Curiously, silencing
of H19 expression enhances toxicity effects of Gefitinib in NSCLC. Furthermore, Gefinitib-
resistant cell lines display high levels of H19, suggesting a pivotal role in acquisition of
resistance. Functional assays have demonstrated that upregulation of H19 is accompanied
by promotion of two oncogenic proteins, NFIB and DDHA]1, that are involved in metastasis
and angiogenesis, respectively. Zhou and Zhang (2020) [92] showed that co-treatment
with Gefitinib and H19-shRNA drastically reduced NFIB expression by upregulation of
PTEN and PDCD4. As result of downregulation of NFIB, which is considered as marker of
metastasis in patients, invasion and spread out of maligned cell is reduced and blocking
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of progression of NSCLC is observed [93]. Likewise, upregulation of H19 is translated
into increased levels of DDHA1 by competing with miR-148-3p (Figure 2C). H19-miR-
148 binding avoids DDHA1 mRNA degradation and promote its translation, which in
turn increases angiogenesis and is correlated with a poor patient diagnosis. Additionally,
upregulation of miR-148 enhances the effects associated to H19 silencing in NSCLS while
downregulation of this microRNA promotes the acquisition of Gefitinib resistance [92].
Curiously, H19 could be transfer via exosomes to non-resistance cells from maligned
cell that display resistance to Gefinitib drug. As consequence of H19 transference, non-
resistance cells do not respond to Gefitinib treatment worsening the prognosis of the disease
and PFS by increasing both angiogenesis and metastasis of NSCLC [94].

Similar to observed in Gefitinib treatment, silencing of H19 enhanced sensitivity to
radiotherapy by X-ray and carbons-ions in NSCLC cells. Zhao et al. (2021) [95] demon-
strated that H19 was upregulated in radioresistant NSCLC (A549-R11) cells compared with
control cells. Downregulation of H19 enhanced the sensitivity of NSCLC cell lines to X-ray
and carbon ion irradiation. Functional assays have proven that H19 serves as a sponge
of miR-130a-3p (Figure 2C), which downregulates WNKB3 expression that in turn protects
maligned cells from apoptosis [95].

Taking all the data described above into account and with the exception of the results
obtained by Chen et al., 2020 [88], H19 displays an oncogenic role in lung adenocarcinoma,
representing a powerful therapeutic target to avoid and counteract both radiotherapy and
chemotherapy resistance.

4. LncRNA H19 Impairs Chemo and Radiotherapy in Glioma

Temozolomide (TMZ), an oral alkylating drug which delivers a methyl group to purine
bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with
radiotherapy as part of the first-line treatment of high-grade gliomas [96]. TMZ treatment
(Figure 3) blocks the cell cycle at G2/M stage, leading to maligned cells towards cellular
apoptosis [97]. Although TMZ treatment is effective and provides a significant improve in
disease prognosis and patient survival, continuous use leads to acquired resistance. The
underlying molecular mechanisms remain unclear but two cellular events are strongly
connected to TMZ resistance: (1) extensive changes in epigenetic environment and (2) high
generated oxidative stress in maligned cells [98]. Curiously, Duan et al. (2018) [99] proved
that in response to rising oxidative stress, H19 is upregulated in glioma cells. Induced-H19
(Figure 3B) enhances activation of NF-«b signaling promoting expression of pivotal onco-
genic genes such as Blc-2 and XIAP—which are upregulated in several human gliomas and
to protect from apoptosis cellular [100,101]. As is the case for BCL-2 or XIAP, H19 increases
Cyclin D1 expression, which mediates cycle cellular transition leading to a higher prolifer-
ative ratio and preventing malignant cells from being retained in the G2/M phase [102].
As a consequence of enhancing expression of those oncogenic genes, TMZ fails to induce
cell cycle arrest and apoptosis resulting in acquisition of resistance against this drug [103].
Similar to observed with the genes dependent on NF-Kb pathway, upregulation of H19
positively mediates the expression of genes involved in multi-resistance against several
drugs such as MDR1 or MRP. Additionally, H19 active beta-catenin signaling, which in
turn enhances expression c-Myc and Survivin protecting glioma cells from programmed
cell death. Furthermore, downregulation of cellular apoptosis levels is accompanied by in-
creased spread out and invasion of maligned cells as result of enhanced EMT process [104].
H19 reduces expression of E-cadherin, a known protein involved in cell-cell junction,
while increasing expression of Vimentin and ZEB1, inductor gene of the EMT process.
Curiously, functional assays have demonstrated that TMZ treatment plus siRNA against
H19 drastically reduce expression of genes described above. As a consequence of this joint
administration, TMZ-glioma resistance is sensitive to effects of drug displaying a high ratio
of cellular apoptosis and reduced EMT and metastasis. Therefore, combined use of both
could contribute to improve clinical outcome of patients and better prognosis of disease.
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Figure 3. Schematic representation of molecular mechanism dependent of H19 function in glioma.
(A) Mode of action of temozolomide. (B) Upregulation of H19 increase expression of proteins involved
in multidrug resistance, apoptosis, and EMT procedures enhancing proliferation, programmed cell
death, and EMT.

Similar to resistance from TMZ treatment, H19 is upregulated by CREB1 protein
under radiotherapy treatment against glioma. Functional assays have proven that H19 was
involved in the cell cycle arrest, apoptosis, and DNA synthesis to modulate the radiation
response of glioma cells and influenced their radioresistance [105].

5. LncRNA H19 Impairs Chemo and Radiotherapy in Colorectal Cancer

First evidence of involvement of H19 in chemoresistance of colorectal cancer cells
was provided by Wu et al. (2017) [106]. Methotrexate (MTX) is a competitive inhibitor
of dihydrofolate reductase (DHRF), a pivotal enzyme involved in intracellular folate
metabolism [107]. DHEFR is required to correct DNA synthesis and cellular growth. Alter-
ation of DHRF function by MTX (Figure 4) results in increased programmed cell death and
reduced cell proliferation and growth of maligned cells [108]. However, several carcino-
mas such as breast, bladder, head and neck cancers, osteogenic sarcoma, leukemia, and
colorectal cancer display resistance against MTX. In colorectal cell lines, upregulation of
H19 is translated into acquired resistance to MTX by upregulation of (3-catenin signaling
pathway (Figure 4B), which in turn activated expression of downstream transcriptional
targets such as c-Myc, CCND1, CD44, and Oct3/4. Increased expression of genes depen-
dent of 3-catenin signaling pathway results in enhanced cellular proliferation and growth
ratio [106].
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cancer. (A) Mode action of methotrexate (MTX), oxaliplatin (OX), and 5-fluorouracil (5-FU) drugs
involved in colon cancer treatment. (B) H19 modulate B-catenin signaling pathway genes such

» Autophagy

as CycD1 or cMYc increasing proliferation and growth ratio. (C) H19 acts as a sponge binding to
miR-141 increasing expression B-catenin signaling pathway. (D) H19 blocking expression of RB and
p23Kip1 leading to expression of SIRT1 which in turn, increases autophagy process.

Similar to observed in resistance against MTX, H19 also modulates resistance against
oxaliplatin in colorectal cancer cells by activation of the (-catenin signaling pathway.
Oxaliplatin (Figure 4A) disrupts DNA replication and transcription by forming intra-strand
DNA adducts, but the downstream molecular events underlying the cytotoxic effects of this
chemotherapeutic agent have not been well characterized [109]. Activation of 3-catenin
signaling pathway by H19 is mediated partially binding to miR-141-3p. H19 exerts as
competitive sponge preventing miR-141-3p from targeting 3-catenin mRNA and thus its
degradation (Figure 4C). Curiously, resistance to oxaliplatin treatment is transferred by H19
contained in exosomes to sensitive cells by OXA-resistant cells both in vivo and in vitro
colorectal carcinoma [110].

5-fluorouracil (5-FU) is a chemotherapeutical drug used to treat several carcinomas
including colorectal cancer. 5-fluorouracil (Figure 4A) acts as an antimetabolite to reducing
cell proliferation, by primarily blocking the enzyme thymidylate synthase and disrupting
the thymidine formation necessary for DNA synthesis [111,112]. Resistance against 5-
FU is dependent on upregulation of H19 (Figure 4D), which in turn reduces expression
of retinoblastoma (RB) and p27Kipl-p23Kipl. As a consequence, SIRT1 expression is
upregulated and autophagy procedure is activated [113].

6. Discussion and Future Perspectives

The role of IncRNAs in different aspects of carcinogenesis has demonstrated their key
involvement in a dual role as promoters of tumorigenesis and tumor suppressor genes. In
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the last decade, the role of H19 has been widely described in many carcinomas, demon-
strating a bivalent role in the appearance and diagnosis of the disease. The involvement of
this IncRNA in the acquisition of resistance to both chemotherapy and radiotherapy has
recently been demonstrated, suggesting its possible use as a therapeutic target. In fact, most
treatment-resistant carcinomas displayed high H19 levels and H19 overexpression resulted
in acquisition of resistance against the different treatments. Furthermore, silencing of this
IncRNA makes resistant cells susceptible towards various drugs and ion radiation. Indeed,
knockout of H19 in combination with different drug treatment enhanced anti-oncogenic
response of malignant cell suggesting that H19 inhibitors could be of application together
with current treatments to improve disease progression. Mechanistically, upregulation of
H19 protects malignant cells from apoptosis by inducing expression of several antiapoptotic
genes such as BCL-2 and multi-resistance drug cancer such as MDR1/2. Additionally, H19
increased autophagy response, which is positively correlated with several drug treatments.
Unfortunately, malignant cells resistant to different treatments have the ability to convert
surrounding cells into non-sensitive cells by emitting H19 containing exosomes. Taking
these data into account, H19 could serve a powerful therapeutic target against several
carcinomas to significantly improve prognosis and clinical outcome of patients.

The role of H19 in the acquisition of resistance to both chemotherapy and radiotherapy
raises the question of the possibility that other IncRNAs or other elements of the non-coding
genome could be exerting similar functions to those identified for H19 in functional gain-
of-function assays. It would even be possible that the inhibition and/or overexpression of a
certain set of IncRNAs could be considered a more effective treatment than those currently
used. Therefore, a more in-depth knowledge on the role of the non-coding genome is
critical to find new therapies that allow improving both the prognosis and the clinical
outcome of several carcinomas.
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