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Abstract: The existence of antibiotics in the environment can trigger a number of issues by fostering
the widespread development of antimicrobial resistance. Currently, the most popular techniques for
removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical
oxidation, however, these processes usually leave a significant quantity of chemical reagents and
polymer electrolytes in the water, which can lead to difficulty post-treating unmanageable deposits.
Furthermore, though cost-effectiveness, efficiency, reaction conditions, and nontoxicity during the
degradation of antibiotics are hurdles to overcome, a variety of photocatalysts can be used to degrade
pollutant residuals, allowing for a number of potential solutions to these issues. Thus, the urgent
need for effective and rapid processes for photocatalytic degradation leads to an increased interest
in finding more sustainable catalysts for antibiotic degradation. In this review, we provide an
overview of the removal of pharmaceutical antibiotics through photocatalysis, and detail recent
progress using different nanostructure-based photocatalysts. We also review the possible sources of
antibiotic pollutants released through the ecological chain and the consequences and damages caused
by antibiotics in wastewater on the environment and human health. The fundamental dynamic
processes of nanomaterials and the degradation mechanisms of antibiotics are then discussed, and
recent studies regarding different photocatalytic materials for the degradation of some typical and
commonly used antibiotics are comprehensively summarized. Finally, major challenges and future
opportunities for the photocatalytic degradation of commonly used antibiotics are highlighted.

Keywords: antibiotics; photocatalytic degradation; degradation mechanism; photocatalysts

1. Introduction

Antibiotics are chemotherapeutic agents that cure bacterial infections [1]. Currently,
antibiotics in the environment are attracting increased attention, prompting a widespread
search for possible methods of containment [1,2]. This issue results in the generation
of antibiotic-resistant genes and antibiotic-resistant bacteria, which expedite the spread
of antibiotic resistance, creating a threat to human health and ecological systems [2–4].
Thus, in the 21st century, the threat to the integrity of our water resources from antibiotic
pollutants is deemed to be one of the most serious environmental problems worldwide, not
only because of environmental damage, but due to the potential harm to human health [5].

During the past decade, many strategies have been adopted to address the problem of
wastewater antibiotics [6]. Wastewater treatment is usually considered the main method
for managing these antibiotics, since wastewater collects discharge from hospitals, indus-
try, and agriculture [7]. However, many more studies have confirmed that conventional
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treatments are not highly capable of removing these pollutant compounds, which are pre-
dominantly water-soluble, and are neither volatile nor biodegradable [8]. Biotic elimination
and non-biotic processes, including sorption, hydrolysis, biodegradation by bacteria, and
oxidation, as well as reduction, have attracted a great deal of attention [9]. Yang et al. stud-
ied the adsorption, desorption, and biodegradation performance of sulfonamide antibiotics
in the existence of activated sludge with and without NaN3 biocide [10]. The experimen-
tal results showed that the antibiotics were eliminated by sorption and biodegradation
via the activated sludge. Liu et al. investigated four antibiotics including norfloxacin,
ofloxacin, roxithromycin, and azithromycin as target antibiotics, and adopted UV254 pho-
tolysis, ozonation, and UV/O3 approaches to conduct disposal treatments of nanofiltration,
realizing the highest efficiency (>87%) in eliminating antibiotics [11]. Nevertheless, the
application of these methods was highly restricted due to the high cost, low stability, and
poor recycling ability. Therefore, scientists have been seeking novel methods for degrading
antibiotics in wastewater, making the exploration of high-efficiency degradation techniques
a popular pursuit for environmental and chemistry researchers [4].

As one of the most promising strategies for degrading antibiotic pollutants, photo-
catalysis has received much attention due to its low cost, efficiency, and environmental
friendliness while degrading antibiotics under sunlight and ambient conditions [12,13].
Most antibiotics are resistant to decomposition owing to their robust molecular structures,
thus, the development, design, and fabrication of appropriate photocatalysts with high
photocatalytic activities are urgently needed [14]. Though a few catalytic processes have
been discussed in the literature so far, there have not been enough examples focusing on
the use of appropriate photocatalysts that possess longer wavelength absorption for the
photocatalytic degradation of antibiotics, which would help to inform readers about this
research field.

The photodegradation of antibiotic pollutants has been reviewed recently [5,15].
However, knowledge of the critical degradation mechanisms and underlying reaction
pathways of some typical photodegradation reaction catalysts for antibiotics requires
deeper discussion. Furthermore, a comprehensive overview on the possible sources and
dangers of the antibiotic pollutants released through the ecological chain, particularly
regarding the consequences and damages caused by antibiotic residuals on the environ-
ment and human health, is still missing. Additionally, the overall introduction of some
commonly-used photocatalytic nanomaterials and their application in the degradation of
some typical antibiotics is essential to confirm their practical superiority and effectiveness
as photodegradation catalysts.

This review firstly summarizes the effects of antibiotics on living organisms and
the environment as well as the basic mechanism of the photocatalytic degradation of
antibiotics. Then, commonly used photocatalytic materials for antibiotic degradation are
reviewed. Finally, the recent advances in the use of various photocatalytic materials for the
degradation of antibiotics are discussed.

2. Consequences of Antibiotics in Wastewater on the Environment and Human Health

Pharmaceuticals can largely improve humans’ health and quality of life when used to
treat contagious diseases, however, the misuse of drugs, especially antibiotics, has severe
damage on the environment and human health [6,16]. Some results reported remarkable
changes in sex ratio and fecundity of daphnia manga when exposed to antibiotics such
as sulfamethoxazole and trimethoprim [17]. Meanwhile, a decrease in desire and sexual
motivation was observed in experiments on male rats given cimetidine [18].

In some countries, antibiotics are not only employed for animal treatment but also
to accelerate animal growth and increase production. Thus, antibiotics might be released
from animal waste due to incomplete digestion, and that waste may then be used as
fertilizer in agriculture or dumped into wastewater, generating a possible pathway to
human harm from food or drink exposure, as shown in Figure 1 [19]. A recent study
reported that chlortetracycline antibiotic was, to some extent, uptaken by onions, cabbage,
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and corn [20]. However, those vegetables did not uptake tyrosine antibiotic, probably
due to its large molecular size. Thus, continuous release of these antibiotic pollutants into
water environments and organisms has a severely negative impact on the environment
by causing genetic exchange and activating drug-resistant bacteria. In particular, most
antibiotic pollutants, even under low concentrations, may result in a severe risk to the
ecosystem and human health [21,22].
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On one hand, in terms of micro-organisms, the release of antibiotics into the environ-
ment could lead to chromosomal mutations of native bacteria, triggering the development
of antibiotic-resistant bacterial strains, which may cause environmental threats such as
toxicological effects on non-intended pathogens, alteration of structures, and dissemination
of algal communities [23–25]. On the other hand, consumption of water or agricultural
and sideline products containing antibiotic pollutants may induce symptoms in humans
including, but not limited to, vomiting, tremors, nausea, headache, diarrhea, and ner-
vousness [26]. Furthermore, problems such as restraining spinach growth, physiological
teratogenesis, and human gene toxicity have also been reported due to the presence of
antibiotic pollutants in water or food [3,27].

3. Principle and Fundamental Mechanism of Photocatalytic Degradation of Antibiotics

The steps involved in the photocatalytic degradation of antibiotics are demonstrated
in Figure 2. The predominant mechanisms for antibiotic photocatalytic degradation can be
summarized as three main steps: photon absorption, excitation, and reaction [5,7]. In detail,
once a photocatalyst absorbs photons with an energy higher than its band gap, the electrons
in the valance band (VB) can be excited and jump up into the conduction band (CB), where
a hole (h+

VB) is produced (Equation (1)) [6,26,28,29]. Subsequently, the photogenerated
electrons and holes are efficiently separated and migrate to the surface of the photocatalyst,
triggering secondary reactions with the adsorbed materials. Typically, photogenerated holes
can also attack those antibiotics directly (Equation (2)), theoretically leading to significant
degradation of those toxic antibiotics. In addition, two types of systematic theories about
degradation pathways were proposed and recognized by researchers in this field [26]. One
is a reductive pathway that happens if the CB potential of the semiconductor is negative
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compared to that of the O2/•O2
− redox potential (−0.13 eV vs. reference hydrogen

electrode (RHE)), wherein the photoexcited electrons can react with electron acceptors such
as O2 deposits on the catalyst surface or dissolved in water, thereby reducing it to form
superoxide radical anion •O2

− (Equation (3)) [6,26]. In contrast, another pathway referring
to the oxidative pathway was initiated when the holes migrated to the photocatalyst surface,
accompanied by hydroxyl radical (•OH) generation upon the oxidation of H2O/OH−

depending on the alkalinity or acidity of the media (Equation (4)) [6,26]. After being excited,
hydrogen ions could recombine with the electrons and generate heat energy (Equation (5)),
which would decrease the efficiency of the photodegradation. It is noted that the standard
redox potential of photocatalysts should be higher than that of •OH/OH− (+1.99 eV vs.
RHE) in this case [6,26]. Then, both of these reactive radicals (•OH and •O2

−) are highly
active oxidizing agents in the photocatalytic process [30]. They can effectively mineralize
any antibiotics and their intermediates to form water and carbon dioxide under prolonged
exposure to high-energy UV irradiation, and eventually decompose into CO2 and H2O
(Equation (6)) [28,29,31,32]. Many studies demonstrated that both pathways (reductive and
oxidative) should synergistically occur to largely prevent the accumulation of electrons
in the CB and significantly decrease the possibility of the recombination of electrons and
positive holes compared to the pathway of direct interaction between photogenerated holes
and antibiotics [33].

Photocatalyst + hυ→ photocatalyst + h+ + e− (1)

h+ + antibiotics→ H2O + CO2 + degradation products (2)

O2 + e− → •O2
− (3)

H2O/OH− + h+ → •OH + H+ (4)

H+ + e− → energy (5)

Antibiotics + •OH or •O2
− → CO2 + H2O + degradation products (6)
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Considering the prediction of application and efficiency of a type of photocatalytic
material, optical bandgap (Eg) is a very important factor for evaluating photoabsorption
ability and photocatalytic efficiency. Mehrorang et al. put forward a method and criterion
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for bandgap measurement, and divided the concept of the bandgap into the two categories
of photonic and electrochemical bandgap facing polyfluorene co-polymers as photocata-
lysts [34,35]. In addition, They concluded that, the prevention of charge recombination
would accordingly lead to a higher lifetime of the active holes, thereby upgrading their an-
tibiotic degradation activity. This proved to be a great strategy for enhancing the activity of
photocatalysts under visible light, relating to the interfacial charge transfer from a separate
energy surface to a molecular continuous surface from solids [34,35].

All in all, the mechanism of photocatalysis for the degradation of antibiotics can be
divided into five main steps: (1) transfer of antibiotics in the fluid phase to the surface;
(2) adsorption of the antibiotics; (3) reaction in the adsorbed phase; (4) desorption of the
products; and (5) removal of products from the interface region [36,37]. However, photocat-
alytic degradation suffers the problem of electron-hole recombination in the photocatalyst
when the electrons that had been excited to CB rapidly recombine with the separated holes
in the VB before creating free radicals [37]. Although this depends on many flexible options
such as tuned experimental conditions, the adoption of specific photocatalysts with a low
CB–VB bandgap energy and photocatalyst modifications are considered as solutions for
these challenges [38,39].

4. Common Photocatalytic Materials for Antibiotic Degradation
4.1. Semiconducting Metal Oxides-Based Photocatalysts

Metal oxide semiconductors have been utilized as pristine photocatalysts or as hybrids,
or have been coupled/doped with other materials to facilitate the degradation of organic
pollutants such as pesticides, dyes, and polycyclic aromatic hydrocarbons [40]. More im-
portantly, the application of metal oxide-based photocatalysts for antibiotic degradation
has recently drawn more interest and attention from researchers due to their good light ab-
sorption under UV, visible light, or both, combined with their biocompatibility, safety, and
stability when exposed to different conditions [3,41,42]. Generally, metal oxides encounter
some challenges regarding ineffectiveness or non-absorbance of photocatalytic activity
because of their wide band gap (Figure 3) and faster electron–hole pair recombination [43].
For example, TiO2 is the most popular metal oxide for photocatalysis because of its good
optical and electronic properties, chemical stability and reusability, non-toxicity, and low
cost [44]. Additionally, ZnO is another semiconducting material that has a better quantum
efficiency and higher photocatalytic efficiency compared to TiO2, particularly if used for
photocatalytic antibiotic degradation at a neutral pH, however, the high recombination
rate of the photogenerated electron–hole pairs limits the utilization of ZnO without any
functionalization [45]. Several studies demonstrated that doping with metals like Ag and
Fe, or non-metals like N and C, into ZnO enhanced the activity of photocatalytic antibiotic
degradation [46,47]. WO3 is another promising metal oxide that has received remarkable
attention due to its abundance, cost-effectiveness, and non-toxicity [48,49]. Furthermore,
W18O49 was also considered a superior photocatalyst with a higher photocatalytic degra-
dation efficiency compared to WO3 [3,50]. Nevertheless, it is prone to oxidization to WO3
in spite of its superior photocatalytic performance. Thus, the construction of a hybrid of
W18O49 and other metal oxides can overcome this oxidization barrier [3,51]. There are
many other metal oxides that play important roles in photocatalytic materials for antibiotic
degradation, and we may introduce more in the next section.
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4.2. Bismuth-Based Photocatalysts

Bismuth, possessing an atomic electron configuration of 6s26p3, is a metallic element
from the fifth group of the sixth period in the periodic table, and is usually present in
the form of Bi3+ [26,52]. A class of novel processes along with bismuth-based catalysts
have been developed for antibiotic degradation, as shown in Figure 4 [26]. Bi oxides
display a narrower bandgap due to the overlap of O 2p and Bi 6s orbitals in the valence
band and lone-pair distortion of the Bi 6s orbital, resulting in the mobility of photoexcited
charges, enhancing the visible light response performance [53]. Interestingly, the Bi5+

valence state from the oxidation of Bi3+ has good absorption of visible light once the 6s
orbital is empty [54]. Basically, Bi-based photocatalysts mostly have a bandgap of less than
3 eV. There are some typical Bi-based photocatalysts attracting more attention recently,
such as Bi2O3 and BiVO4 [55]. Bi2O3 is one of the most common photocatalysts, showing
excellent photocatalytic performance on water-splitting and water treatment from organic
wastes [56]. Bi2O3 has a bandgap ranging from 2.1 to 2.8 eV, making its utilization for
visible light absorption more efficient. Bi2O3 has five different configurations: α, β, γ, δ,
andω-Bi2O3 [26]. Additionally, BiVO4, with superior physicochemical properties like ferro-
elasticity and ionic conductivity, has a theoretical bandgap of 2.047 eV, which maximizes its
visible light utilization [57]. BiVO4 was widely used in photocatalytic reactions for organic
waste treatment and water splitting in past years [58]. Although it has been confirmed that
bismuth-based photocatalysts have good photocatalytic performance and use visible light
efficiently, it should be noted that some parameters, such as stability and solubility, need to
be emphasized [59].

4.3. Silver-Based Photocatalysts

The application of photocatalytic degradation of silver-based photocatalysts such
as AgX (X = Cl, Br, I), Ag2O, Ag3PO4, and Ag2CO3 have been reported by various re-
searchers [60–62]. In the case of pristine Ag2CO3, the challenge is that pristine Ag2CO3 is
unstable and photocorrosive due to its possible transformation from Ag+ to metallic Ag
on account of accepted photoelectrons during the photocatalytic processes [63]. Moreover,
pristine Ag2O also exhibits poor stability and rapid electron-hole recombination [64]. Their
superior photocatalytic performance on antibiotic degradation depends not only on the
reduced electron-hole recombination but may also be from broad and strong absorption
ranges in the visible region due to the localized surface plasmon resonance effects induced
by Ag nanoparticles [3,7,65].
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4.4. Metal-Organic Frameworks (MOFs)-Based Photocatalysts

Metal-organic frameworks (MOFs) are a new class of coordination polymers with
periodic network structures formed by the self-assembly between metal ions/metal clusters
and organic ligands [66]. By modifying linkers employing functional groups, highly
porous structures with remarkable surface areas could be obtained with tuned surface
structures [67]. MOFs were first discovered in the mid-1990′s by Omar Yaghi, and the
invention of novel MOFs promised long-lived influence in the areas of chemistry, physics,
biology, and the material sciences, particularly used extensively in photocatalysis due
to their high surface area, adjustable porosity and pore volume [67–69]. Thus, MOFs
promise to be highly-effective materials for the photocatalytic degradation of antibiotics in
a solution [66,70]. Although various MOF-based materials have been utilized to remove
antibiotics, the development of more efficient degradation agents remains a key problem
facing more active MOF-based photocatalytic degradation materials with more active sites
and large surface areas with group functionalization [66,67]. According to the previous
report, the organic linker serves as the VB, while the metallic cluster acts as CB. Under
exposure to light, MOFs behave like semiconductors, and can thus be deemed as a potential
photocatalyst for highly effective degradation of antibiotics due to their superior high
thermal and mechanical stability and their excellent structural characteristics [66].

4.5. Graphitic Carbon Nitrides-Based Photocatalysts

Graphitic carbon nitride (g-C3N4), a new class of polymeric semiconducting material,
is another kind of promising material for photo-driven catalytic applications [26,71]. On
one hand, the past report implied that the g-C3N4 has a bandgap of around 2.7 eV, and the
CB–VB can also meet the requirement of overall water splitting, as demonstrated in Figure 5,
which made it more popular for photocatalytic water splitting in the past decades [72].
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from [72], copyright 2009, Springer Nature).

On the other hand, g-C3N4 can also be used for the photocatalytic degradation of an-
tibiotic pollutants under visible light. However, pure g-C3N4 exhibited a low degradation
rate due to negative position, resulting in a weak oxidation ability [26,73,74]. Therefore,
surface modification is necessary to overcome these limitations [26]. Researchers found
that doping with noble metal ions optimized the photocatalytic performance according to
several reports in the literature as a result of the higher separation of the photoproduced
electrons and holes due to the excellent capacity of electron capture by the noble metallic
ions [26,75]. A great deal of research is ongoing regarding g-C3N4 modification for fabri-
cating and designing nanomaterials with different properties in order to obtain the best
possible photocatalytic performance for the removal of antibiotics [76].

5. Recent Advances in Photocatalytic Degradation of Antibiotics
5.1. Photocatalytic Degradation of Ciprofloxacin

Ciprofloxacin is a second-generation fluoroquinolone antibiotic used to kill bacteria
to prevent severe infection [77]. The chemical structure of ciprofloxacin is exhibited in
Figure 6a [1]. Notably, ciprofloxacin dominates 73% of the total consumption, with a
daily dose between 0.39 and 1.8 per 1000 patients, and has a broad antimicrobial spectrum
that has impact on the DNA gyrase and topoisomerase IV of various Gram-positive and
Gram-negative bacteria, thus preventing cell replication [78,79]. It has been considered a
good therapy for treating digestive infections, complicated urinary tract infections, sexually
transmitted diseases, pulmonary diseases, and skin infections. However, the presence of
ciprofloxacin limits photosynthetic pathways and even leads to morphological deformities
in higher plants. It also leads to severe damage to human health [78]. In the past, vari-
ous studies reported the use of modified photocatalysts to meet the demand for higher
photocatalytic efficiency in the degradation of ciprofloxacin [80].
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Yu et al. [80] prepared Zn-doped Cu2O particles by a solvothermal method to achieve
photocatalytic degradation of ciprofloxacin. The photocatalytic results demonstrated that
Zn-doped Cu2O has better photocatalytic performance and reusability compared to the
undoped Cu2O. 94.6% of ciprofloxacin was degraded in presence of Zn-doped Cu2O, even
after 5 cycles, the degradation percentage still remains 91% due to the significantly en-
hanced absorption intensity in the visible light range, and the increased band gap than
that of the undoped Cu2O (Figure 7a,b). In addition, a novel Z-scheme CeO2–Ag/AgBr
photocatalyst was fabricated by Malakootian et al. [77] using in situ interspersals of AgBr
on CeO2 for subsequent photoreduction process. The results also exhibited largely en-
hanced photocatalytic activity for the photodegradation of ciprofloxacin under visible light
irradiation due to the faster interfacial charge transfer process and the largely enhanced
separation of the photogenerated electron-hole pairs. Furthermore, Pattnaik et al. [81]
adopted exfoliated graphitic carbon nitride into photocatalytic degradation of ciprofloxacin
under solar irradiation and catalytic data have shown that photocatalytic activities of
g-C3N4 have enhanced after its exfoliation because of its efficient charge separation, low
recombination of photogenerated charge carriers and high surface area. They found that
1 g/L exfoliated nano g-C3N4 can degrade up to 78% of a 20 ppm solution exposed to solar
light for lasted 1 h (Figure 7c,d).
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5.2. Photocatalytic Degradation of Tetracycline

Tetracyclines are a series of broad-spectrum antibiotics that were first adopted in 1940,
and their structures are shown in Figure 6b [1,82]. All tetracyclines have anti-inflammatory
and immunosuppressive effects, and were previously used to treat rheumatism [83]. Due to
the additional effect of tetracyclines against lipases and collagenases, these antibiotics were
also initially used for the intrapleural treatment of malignant effusions [84,85]. Although
tetracycline plays a significant role in medicine, the existence of tetracycline in aquatic
media is of great concern because of its ecological impact, including carcinogenicity and
toxicity to the environment [84,85]. A number of studies related to the removal or degrada-
tion of tetracycline through the use of different photocatalytic materials have been reported
in past years [86]. For example, a novel TiO2/g-C3N4 core-shell quantum heterojunction
prepared by a feasible strategy of polymerizing the quantum trick graphitic carbon nitride
(g-C3N4) onto the surface of anatase titanium dioxide nanosheets was put forward by
Wang et al. to be employed as a tetracycline degradation photocatalyst, and this catalyst
exhibited the highest tetracycline degradation rate: 2.2 mg/min, which is 36% higher than
that of the TiO2/g-C3N4 mixture, 2 times higher than that of TiO2, and 2.3 times higher than
that of bulk g-C3N4 (Figure 8a,b) [87]. Moreover, Wang et al. synthesized a novel C–N–S
tri-doped TiO2 using a facile and cost-effective sol–gel method with titanium butoxide as
titanium precursor and thiourea as the dopant source, which can be used for photocatalytic
degradation of tetracycline under visible light [86]. The catalytic results exhibited the
highest photocatalytic degradation efficiency of tetracycline under visible light irradia-
tion which is associated with the synergistic effects of tetracycline adsorption due to its
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high surface area, narrow band gap causing C–N–S tri-doping, presence of carbonaceous
species functioning as a photosensitizer, and well-organized anatase phase. Additionally,
Chen et al. synthesized a novel heterostructured photocatalyst AgI/BiVO4 by an in situ
precipitation procedure, and the results exhibited excellent photoactivity for tetracycline
decomposition under visible light irradiation, the tetracycline molecules were apparently
eliminated (94.91%) within 60 min, and degradation efficiency was remarkably superior
to those of bare BiVO4 (62.68%) and AgI (75.43%) under same experimental conditions
(Figure 8c,d) [88].
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Figure 8. (a) Proposed heterojunction differences between TCN and TCN(mix) (b) Photocatalytic
degradation efficiencies of tetracycline by employing TiO2, TCN, TCN (mix), and g-C3N4 as the
photocatalysts under the xenon lamp irradiation. (Reproduced with permission from [87], copyright
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tetracycline under Visible Light Irradiation over AgI/BiVO4 Nanocomposite: (c) Traditional Model
and (d) Z-Scheme Heterojunction System. (Reproduced with permission from [88], copyright 2016,
American Chemical Society).

5.3. Photocatalytic Degradation of Norfloxacin

Norfloxacin is another antibiotic within the fluro-quinolones group, and is widely
used for curing urinary tract infections [89]. Figure 6c indicates the chemical structure of
norfloxacin [1]. Currently, the presence of norfloxacin in wastewater (especially in hospitals)
contains high concentrations and is deemed to be one of the potential pollutants in the
aquatic environment. In the past few years, fluoroquinolone antibiotics have triggered
tremendous concern due to their widespread use and environmental toxicity [89,90]. There
are several reports on the degradation of norfloxacin by photocatalysis using different
materials [91]. Sayed et al. [92] prepared a novel immobilized TiO2/Ti film with exposed
{001} facets via a facile one-pot hydrothermal route to use in the degradation of norfloxacin
from aqueous media, and the experimental results demonstrated excellent photocatalytic
performance toward the degradation of norfloxacin in various water matrices, with the
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observation that •OH is mainly involved in the photocatalytic degradation of norfloxacin
by {001} faceted TiO2/Ti film (Figure 9a). Additionally, Tang et al. [93] realized excellent
visible-light-driven photocatalytic performance for the degradation of norfloxacin by an
as-prepared novel Z-scheme Ag/FeTiO3/Ag/BiFeO3 using a sol–gel method followed
by a photo-reduction process. The results showed the photocatalytic degradation extent
reaches 96.5% within 150 min when using Ag/FeTiO3/Ag/BiFeO3 at 2.0 wt.% Ag (FeTiO3:
BiFeO3 = 1.0:0.5) which can be reused with excellent photocatalytic stability (Figure 9b–d).
Moreover, Lv et al. [94] synthesized copper-doped bismuth oxybromide (Cu-doped BiOBr)
using a solvothermal method, and assessed their ability to degrade norfloxacin under
visible light. The as-prepared Cu-doped BiOBr showed high activity with a photocatalytic
degradation constant of 0.64 ×10−2 min−1 in the photocatalytic degradation of norfloxacin
under visible-light irradiation due to its enhanced light-harvesting properties, enhanced
charge separation, and interfacial charge transfer, as well as a retention of 95% of its initial
activity, even after 5 constant catalytic cycles. Similarly, Bi2WO6, another bismuth-based
catalyst, was put forward by Tang et al. [95] and applied to the photodegradation of
norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi2WO6 dispersion under visible
light irradiation. The results found that the degradation of barely insoluble norfloxacin
could be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly
on the Bi2WO6 surface and promoted norfloxacin photodegradation at the critical micelle
concentration (CMC = 0.25 mM).
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from [92], copyright 2016, American Chemical Society) (b) Possible mechanism diagram on Z-scheme
Ag/FeTiO3/Ag/BiFeO3 system (c) Effect of mass ratio of FeTiO3 and BiFeO3 and (d) degradation
reaction kinetics on photocatalytic activity (2.0 wt.% Ag; 5.0 mg/L norfloxacin; 1.0 g/L catalyst).
(Reproduced with permission from [93], copyright 2018, Elsevier).
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5.4. Photocatalytic Degradation of Amoxicillin

Amoxicillin is a penicillin-type antibiotic medicine extensively used for the treatment
of various bacterial infections such as dental infections, chest infections, and other infections
(ear, throat, and sinus). Figure 6d exhibits the chemical structure of amoxicillin [1]. However,
amoxicillin in water or in the ecological environment is considered an emerging pollutant
because it can cause several health effects to aquatic life in the presence of solved molecules
in water [16]. There are some reports regarding the use of different photocatalytic materials
to degrade amoxicillin [96]. For instance, the photocatalytic degradation of amoxicillin
by as-prepared titanium dioxide nanoparticles loaded on graphene oxide (GO/TiO2) by
the chemical hydrothermal method was evaluated under UV light by Balarak et al., and
the experimental data exhibited that key indexes such as initial pH, GO/TiO2 dosage, UV
intensity, and initial amoxicillin concentration all had a significant impact on amoxicillin
degradation (Figure 10a) [97]. The efficiency of amoxicillin degradation collection was
measured to be more than 99% at specific conditions, including a pH of 6, a GO/TiO2 dosage
of 0.4 g/L, an amoxicillin concentration of 50 mg/L, and an intensity of 36 W. Additionally,
Mirzaei et al. [98] synthesized a new fluorinated graphite carbon nitride photocatalyst with
magnetic properties by a gentle hydrothermal method that can be used for the degradation
of amoxicillin in water. Compared to the bulk g-C3N4, magnetic fluorinated Fe3O4/g-C3N4
with a high specific surface area (243 m2g−1) resulted in improved photocatalytic activity
regarding amoxicillin degradation and the mineralization of the solution. Furthermore,
Huang et al. [99] also prepared novel carbon-rich g-C3N4 nanosheets with large surface
areas by a facile thermal polymerization method, which displayed superior photocatalytic
activity for amoxicillin degradation under solar light (Figure 10b–d). Meanwhile, the
catalyst showed high stability and amoxicillin degradation ability under various media
conditions, indicating its high applicability for amoxicillin treatment.
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Figure 10. (a) Possible mechanism of amoxicillin degradation at GO/TiO2 surface. (Reproduced with
permission from [97], copyright 2021, Springer Nature). Photocatalytic degradation kinetics of amoxi-
cillin by the synthesized materials under (b) visible light and (c) simulate solar light. (d) amoxicillin
degradation rate constants under solar and visible light. (Reproduced with permission from [99],
copyright 2021, Elsevier).
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Finally, we list a table to compare the different photocatalysts discussed above, and
note that the information in Table 1 shows most of the catalysts can easily and effectively
remove the antibiotic contaminations within 2 h with relatively high degradation effi-
ciency, which fully proves the superiority of rapid and effective antibiotic removal by
photodegradation.

Table 1. Comparison of the photocatalytic activity of different photocatalysts for antibiotic degradation.

Antibiotic Catalyst Results Degradation Mechanism Ref.

Ciprofloxacin Zn-doped Cu2O 94.6% Ciprofloxacindegraded in 240 min Mechanism by the •OH radical and h+ [80]
Ciprofloxacin Exfoliated g-C3N4 78% Ciprofloxacindegraded in 60 min Mechanism by the •O2

− radical and h+ [81]
Tetracycline Heterostructured AgI/BiVO4 94.91% Tetracycline degraded in 60 min Mechanism by the •OH, •O2

-radical and h+ [88]

Tetracycline Heterostructured TiO2/g-C3N4
100 mg TiO2/g-C3N4can decompose

2 mg Tetracycline in 9 min (2.2 mg/min) Mechanism by the •O2
− radical and h+ [87]

Tetracycline C–N–S-TiO2 >99% Tetracycline degraded in 360 min Mechanism by the •O2
− radical and h+ [86]

Norfloxacin Cu-doped BiOBr 96.5% Norfloxacin degraded in 150 min Mechanism by the h+ [94]

Norfloxacin Z-scheme
Ag/FeTiO3/Ag/BiFeO3

Photocatalytic degradation rate of
Norfloxacin is 0.64 × 10−2 min−1 Mechanism by the •OH radical and h+ [93]

Amoxicillin Graphene Oxide/TiO2 91.25% Amoxicillin degraded in 60 min Mechanism by the h+ [97]

Amoxicillin Carbon-rich g-C3N4 nanosheets
Photocatalytic degradation rate of
Amoxicillin is 0.47 × 10−2 min−1 Mechanism by the •O2

− radical [99]

6. Conclusions and Future Perspective

In this review, the photocatalytic degradation of antibiotics was summarized. Firstly,
the mechanism of photocatalytic degradation of antibiotics depending on the formation of
free radicals and active oxygen species, and the consequences of antibiotics in wastewater
on the environment and human health were reviewed. Some widely used antibiotics were
then analyzed, and a number of commonly used photocatalysts were introduced. Het-
eroatom doping is generally used as a strategy to enhance the photocatalytic performance
of a photocatalyst, particularly metal atoms as dopants. However, it should be noted that
metal dopants could serve as recombination centers at higher concentrations, which can
reduce the efficiency of a photocatalyst. Consequently, future research should also focus
on other options, including doping with non-metals such as nitrogen, boron, sulfur, and
phosphorus. Meanwhile, the formation of a heterojunction with other semiconductors
can also play a significant role in the modification of photocatalysts on the degradation of
antibiotics due to other semiconductors possibly serving as photosensitizers while simulta-
neously inhibiting electron-hole recombination. Thus, these methods can achieve visible
light-driven photocatalysts with enhanced photocatalytic activity by narrowing the band
gap of the photocatalyst or by increasing the activity of charge separation.

Physicochemical properties such as morphology and surface areas are also very critical
factors in the performance of catalysts during photodegradation studies. As mentioned
above, further studying photocatalysts with different morphologies and surface areas can ef-
fectively enhance the performance of catalysts. Furthermore, the degradation pathway also
provides a clear introduction to the fate and transformation of antibiotics during the photo-
catalytic degradation process. Thus, exploring the photocatalytic degradation mechanism
at the atomic level is also necessary for accelerating the efficiency of antibiotic degradation.

The utilization of solar radiation and visible light sources to activate photocatalysts
during the photodegradation of antibiotics such as ciprofloxacin, tetracycline, norfloxacin,
and amoxicillin is still limited. Therefore, the exploration and development of photodegra-
dation induced by UV light sources are still in urgent demand.

Firstly, in the long term, although the removal rate of antibiotics is still being opti-
mized, the removal rate of the chemical oxygen demand is still relatively high during the
degradation of antibiotics by photocatalysts, and thus it confirms that the mineralization
degree of antibiotics needs to be optimal. There are many intermediates during the process
of photodegradation, therefore a deep study into intermediates is also critical for improving
the performance of catalysts. Secondly, most experiments involve regular and constant
stirring to prevent the agglomeration of materials in media during the degradation of
antibiotics by photocatalysts, which requires additional energy consumption. Thirdly, the
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problems of antibiotics are not only induced by water quality but also by the accumulation
of antibiotics in water, which lead to the generation of microbial resistance genes. There is
currently still a lack of research on photocatalysts’ limited resistance genes. Finally, The
recycling ability of a photocatalyst is a significant index for evaluating its cost-effectiveness
and feasibility for practical application in the degradation of antibiotics. To minimize any
possible waste, the design of photocatalysts with quasi-same photoactivity during each
cycle is preferred. Also, it is important to design photocatalysts that are easier to separate
and recycle in order not to avoid losing any worthy materials during the photocatalytic
reaction. Thus, the separation of photocatalysts from the aqueous phase is crucial from an
economic standpoint. It is noted that the operating cost of a photocatalytic reaction mainly
originates from its being a single-use photocatalyst, unable to be recycled. Regarding the
repetitive usage of photocatalysts, deep research on how to sustainably use recyclable
photocatalysts for antibiotic degradation is still urgently needed.
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