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Abstract: Although osteosarcoma is the most common primary malignant bone tumor, chemother-
apeutic drugs and treatment have failed to increase the five-year survival rate over the last three
decades. We previously demonstrated that type 5 metabotropic glutamate receptor, mGluR5, is
required to proliferate metastatic osteosarcoma cells. In this work, we delivered mGluR5 siRNAs
in vitro using superparamagnetic iron oxide nanocages (IO-nanocages) as delivery vehicles and
applied alternating magnetic fields (AMFs) to improve mGluR5 siRNAs release. We observed func-
tional outcomes when mGluR5 expression is silenced in human and mouse osteosarcoma cell lines.
The results elucidated that the mGluR5 siRNAs were successfully delivered by IO-nanocages and
their release was enhanced by AMFs, leading to mGluR5 silencing. Moreover, we observed that the
proliferation of both human and mouse osteosarcoma cells decreased significantly when mGluR5
expression was silenced in the cells. This novel magnetic siRNA delivery methodology was capable
of silencing mGluR5 expression significantly in osteosarcoma cell lines under the AMFs, and our data
suggested that this method can be further used in future clinical applications in cancer therapy.

Keywords: mGluR5 siRNA; iron oxide nanocages; LM7; OS482; alternative magnetic field

1. Introduction

Osteosarcoma is the most common primary bone malignancy that initially peaks in
children and late adolescents [1,2]. Despite advances in modern medicine and treatment of
osteosarcoma, the five-year survival rate has remained constant for over three decades [2,3]
The major clinical issues in curing osteosarcoma are cancer recurrence and tumor progres-
sion due to the development of drug resistance in the tumor microenvironment [3–7]. A
broad spectrum of chemotherapeutic drugs, including doxorubicin, cisplatin, methotrexate,
and etoposide, are used to treat osteosarcoma; however, frequent development of mul-
tidrug resistance results in treatment failure [5,8]. Effective pharmaceutical treatments of
osteosarcoma would be achieved if drug resistance is resolved and drugs can specifically
target the tumor sites.

Recent studies have revealed that small interfering RNAs (siRNAs) play a critical
role in the dysregulation of tumor progressions [9,10]. siRNAs are non-coding RNAs
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consisting of 20–25 nucleotides involved in the post-transcriptional regulation of gene
expression by destabilizing mRNA transcription and suppressing its translation [11–13].
The stability of siRNAs, regulation of post-transcriptional gene expression, and ability to
distinguish between normal and tumor tissues are potential advantages of using siRNAs
as therapeutic agents [13,14]. Osteosarcoma is known to secrete glutamate and express
glutamate metabolic receptors that involve autocrine/paracrine glutamate signaling to
promote tumor growth [15–17]. Our previous studies have shown that type 5 metabotropic
glutamate receptor (mGluR5) is expressed in LM7 cells. Knockdown of mGluR5 expression
using Lentivirus ShRNA in the LM7 cells prohibited the formation of colonies, suggesting
that mGluR5 plays an important role in glutamate-dependent proliferation of osteosarcoma
cells [15,17,18]. Regulating mGluR5 expression in the cells that affect the tumor growth by
delivering siRNA would be beneficial, since we can improve target-specific treatment and
avoid cancer recurrence and tumor progression that is caused by drug resistance occurring
in the tumor microenvironment. Therefore, in this work, we addressed the idea of silencing
mGluR5 expression to inhibit cell proliferation by performing siRNA transfection.

In this report, to deliver mGluR5 siRNAs, we applied a magnetically driven delivery
method using superparamagnetic iron oxide nanocages (IO-nanocages) as a carrier, which
was previously investigated by Matsui’s group [19]. Magnetic nanoparticles have been used
to develop biomedicine in cancer therapy, such as magnetic separation and therapeutic
drug delivery [20]. Magnetic separators aggregate magnetically tagged biomaterials to
separate them from unwanted supernatant by applying a high magnetic field gradient
to capture them as they flow in the medium [21]. Cytotoxic drugs are often loaded on
biocompatible magnetic nanoparticles to lower the cytotoxicity, and the high-gradient
magnetic field is used when the complex is injected to concentrate the complex at the
targeted sites [22,23]. Recently, Matsui’s group demonstrated that siRNA delivery effi-
ciency was significantly enhanced when superparamagnetic IO-nanocages in a diameter of
20 nm were used to deliver siRNAs. As siRNAs-loaded IO-nanocages underwent Brow-
nian relaxation in alternating magnetic fields (AMFs), this Brownian motion increased
the endosomal escape and released more siRNAs in the cytoplasm, which enhanced the
transfection efficiency [19]. A narrow hysteresis loop of DC magnetic saturation measure-
ment with a superconducting quantum interference device (SQUID) confirmed that iron
oxide nanoparticles are superparamagnetic, and these particles have negligible values of
coercivity (remnant magnetization available after field is removed) [24–27]. The saturation
magnetization of IO-nanocages with the magnetic relaxation time led to the recognition that
AMFs in the certain frequency range could produce the Brownian motion of IO-nanocages
that causes movement of nanoparticles to release loaded siRNAs. This magnetic Brownian
motion was also observed to increase the endosomal escape and release siRNAs better in
the cytoplasm, which further enhanced the transfection efficiency [19]. Therefore, we used
the 20 nm IO-nanocages to deliver mGluR5 siRNAs, since these IO-nanocages could most
effectively deliver siRNAs under AMFs.

Our goal was to deliver mGluR5 siRNAs using IO-nanocages in AMFs and induce
the inhibition of the proliferation of osteosarcoma cells. We first studied the internal-
ization pathways of IO-nanocages in LM7, metastatic human osteosarcoma, and OS482,
metastatic mouse osteosarcoma cells. Then, we delivered firefly luciferase siRNA-loaded
IO-nanocages in AMFs to luciferase-expressing LM7 and OS482 cells as a proof-of-concept.
Then, we conducted the experiments to observe the change in mGluR5 expression in both
cell lines by delivering mGluR5 siRNAs with IO-nanocages in the absence and presence
of AMFs. Lastly, we analyzed the functional outcomes of silencing mGluR5 expression in
LM7 and OS482 cell lines by performing MTT and clonogenic assays.

2. Results
2.1. Internalization of IO-Nanocages in LM7 and OS482 Cells

Clathrin and caveolae-receptor-mediated endocytosis are the most common pathways
for nanoparticles to internalize into cells [28–31]. It has been shown that nanoparticles less
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than 50 nm in diameter have better clearance, biodistribution, and avoid phagocytosis bet-
ter than larger nanoparticles [32–34]. Depending on the characteristics of the nanoparticles,
such as size, shape, and surface charge, the endocytic pathways of the nanoparticles might
be influenced [35–37]. Moreover, cell type, levels of receptor expression, and cell membrane
elasticity would affect the endocytosis of the nanoparticles [35,38]. Therefore, we first
studied which endocytic pathway is involved in LM7 and OS482 cells for the uptake of
cage-shaped IO-nanocages with a size of 20 nm. Based on the assay, we confirmed that
the clathrin and caveolin receptors were expressed in both LM7 and OS482 cells (Figure 1).
Clathrin heavy chain and Caveolin-1, markers for clathrin and caveolae-mediated endocy-
tosis, respectively, were observed in LM7 (Figure 1A) and OS482 cells (Figure 1B), and we
confirmed the internalization of IO-nanocages in both cell lines.

To further characterize which pathway is predominant in each cell line, we applied
Pitstop2 and nystatin to block the endocytic pathway when IO-nanocages are internalized.
Pitstop2 is a cell membrane permeable clathrin inhibitor that disrupts the interaction of
amphiphysin with the amino-terminal domain of clathrin, whereas nystatin is a cholesterol
sequester that dissembles caveolae and cholesterol in the membrane [39–41]. Both LM7 and
OS482 cells were cultured in DMEM with 10% FBS for 24 h and incubated in serum-free
media for 1 h. As a following step, cells were pretreated with 25 µM Pitstop2 for 15 min and
50 µg/mL nystatin for 30 min individually at 37 ◦C before incubating with IO-nanocages.

Endocytosis of IO-nanocages was blocked in LM7 cells when cells were pretreated
with Pitstop2, while nystatin did not completely block the internalization of IO-nanocages
but reduced their internalization (Figure 1C). This result elucidated that IO-nanocages
may enter LM7 cells via clathrin and caveolae-mediated endocytosis; however, they pre-
dominantly undergo the clathrin-mediated endocytosis. Endocytosis of IO-nanocages in
OS482 cells showed a different pattern than in LM7 cells. We observed that the uptake of
IO-nanocages was inhibited when nystatin was used for OS482 cells, while endocytosis was
reduced when cells were pretreated with Pitstop2 (Figure 1D). IO-nanocages internalization
was mainly mediated by caveolae involving endocytosis. Our findings suggested that the
clathrin-mediated pathway plays a central role in the uptake of IO-nanocages in LM7 cells,
whereas IO-nanocages were mainly endocytosed via the caveolae-mediated endocytosis
pathway in OS482 cells.
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represents Cy5 labelled IO-nanocages, and green indicates caveolin-1/Clathrin heavy chain anti-

body with Alaxa488 secondary antibody. The scale bar = 20 μm. 
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Figure 1. Confocal microscopy images of (A) LM7 human metastatic osteosarcoma cells and
(B) OS482 mouse metastatic osteosarcoma cells after incubation with Cy5 labelled IO-nanocages
for 6 h. (C) LM7 cells and (D) OS482 cells were pretreated with endocytosis inhibitors, nystatin
(50 µg/mL) and Pitstop2 (25 µM) before incubation with Cy5 labelled IO-nanocages to evaluate the
endocytic pathway of IO-nanocages in each cell line. Cell nuclei were stained with DAPI (blue), red
represents Cy5 labelled IO-nanocages, and green indicates caveolin-1/Clathrin heavy chain antibody
with Alaxa488 secondary antibody. The scale bar = 20 µm.

2.2. Effect of the IO-Nanocages Delivery System in LM7 and OS482 Cells in the Absence and
Presence of AMFs

To examine the magnetically driven delivery system to transfect siRNAs, we deliv-
ered firefly luciferase siRNAs to luciferase-expressing LM7 and OS482 cells. Previously,
Matsui’s group have shown that the internalization of IO-nanocages in the B16-F10 cells
reaches saturation after 18 h of incubation, and the siRNA transfection efficiency improves
significantly upon the application of AMFs [19]. Therefore, we examined the luciferase
assay in the same experimental conditions as Matsui’s group examined previously. In this
work, we treated the cells with siRNA-loaded IO-nanocages and applied AMFs after 18 h of
incubation (Figure 2A). In the absence of AMFs, we treated the cells for 24 h and conducted
further experiments.

The results showed that when firefly luciferase siRNAs were delivered with IO-
nanocages under AMFs, the luciferase expression in both LM7 (Figure 2B) and OS482
(Figure 2C) cells was reduced. Luciferase expression of LM7 cells in this group was reduced
to 60.7 ± 5.3%, while the luciferase expression in OS482 cells was decreased to 61.6 ± 4.8%
when firefly siRNAs were delivered with IO-nanocages in AMFs. Based on the ANOVA
single factor t-test, the p-value of the experimental group compared to the control (neat
cells) was 4.45 × 10−6 for the LM7 cells and 2.54 × 10−4 for the OS482 cells, indicating a
significant reduction in luciferase expression in the experimental groups compared to that
of the control when the AMFs were applied. These results elaborated that luciferase expres-
sion decreased significantly when firefly luciferase siRNAs were delivered by IO-nanocages
in the presence of AMFs and supported our hypothesis of enhanced transfection efficiency
of mGluR5 siRNAs using this magnetic nanoparticle delivery system in osteosarcoma cells.
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Figure 2. (A) Schematic image of siRNA delivery system experimental design using IO-nanocages
in the absence and presence of AMFs. In vitro luciferase assay of firefly luciferase siRNA deliv-
ered by IO-nanocages in (B) luciferase-expressing LM7 human metastatic osteosarcoma cells, and
(C) luciferase-expressing OS482 mouse metastatic osteosarcoma cells with and without application of
AMFs (445 kHz). In both cell lines, firefly luciferase siRNA-loaded IO-nanocages under the AMFs
showed the reduction of luciferase expression. *** p < 0.001, N = 4.

2.3. The Reduction of mGluR5 Expression by Delivering mGluR5 siRNA-Loaded IO-Nanocages
under AMFs in Osteosarcoma Cells

To further confirm if the reduction of expression in cells is due to the delivery of
siRNAs released from IO-nanocages under AMFs, we delivered mGluR5 siRNAs in both
LM7 and OS482 cells and observed a change in mGluR5 expression. In Figure 3, the mGluR5
expression was quantified by quantitative RT-PCR before and after siRNA transfection,
with respect to the concentration of mGluR5 siRNA 25 nM and 100 nM, to evaluate the
transfection efficiency.

We used GAPDH and β-actin as the control to normalize mGluR5 expression in OS482
and LM7 cells, respectively. The results revealed that the higher reduction in mGluR5
expression occurred when the 100 nM of siRNA was incubated in both LM7 and OS482
cells (Figure 3). siRNA in 25 nM groups reduced the expression by 62.6 ± 12.5%, while
the expression was decreased by 74.5 ± 5.5% when 100 nM of siRNA was incubated. This
result showed a significant reduction in mGluR5 expression when 100 nM of siRNA was
delivered, with a p-value of 1.08 × 10−5 compared to the control (neat cells) by ANOVA
single factor t-test. mGluR5 expression in OS482 cells was also significantly decreased
by 70.7 ± 17.2% and 95.4 ± 3.9% when 25 nM and 100 nM of siRNA were delivered
under AMFs, respectively. The p-value of the experimental groups compared to the control
revealed 4.65 × 10−5 and 4.17 × 10−9 for 25 nM and 100 nM of siRNA were delivered,
respectively. These results indicated that both concentrations of siRNA delivered by IO-
nanocages under AMFs significantly silenced the mGluR5 expression in OS482 cells, while
the mGluR5 expression was significantly reduced in LM7 cells when 100 nM of siRNA was
delivered by IO-nanocages with AMFs.
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Figure 3. Quantitative RT-PCR was performed to detect the mGluR5 expression in (A) LM7 human
metastatic osteosarcoma cells and (B) OS482 mouse metastatic osteosarcoma cells. When 100 nM
mGluR5 siRNAs were loaded to IO-nanocages and delivered in both LM7 and OS482 cells, the
mGluR5 expression was reduced significantly. The AMFs application was performed at 445 kHz.
* p < 0.05, *** p < 0.001, **** p < 0.0001, N = 4.

2.4. Silencing of mGluR5 Expression Leads to Inhibition of Cell Growth

To assess the effect of the delivery of mGluR5 siRNA on cell growth, we performed
MTT and clonogenic assays. We conducted the experiment by delivering mGluR5 siR-
NAs in two different concentrations with IO-nanocages in the absence and presence of
AMFs. In the absence of AMFs, the proliferation of the LM7 cells in the control group
(neat cells) was similar to the experimental groups (delivery siRNA in different concentra-
tions with IO-nanocages). In contrast, the proliferation of cells decreased by 72.9 ± 7.2%
when 100 nM siRNA was delivered, compared to the control group, in the presence of
AMFs (Figure 4A). Moreover, the cell proliferation did not change in OS482 cells when
mGluR5 siRNAs were delivered with IO-nanocages in the absence of AMFs compared to
the control group. However, the proliferation of OS482 cells decreased by 36.8 ± 10.7%
and 65.0 ± 2.3% when 25 nM and 100 nM mGluR5 siRNA were delivered with AMFs,
respectively (Figure 4B). These results indicated that mGluR5 is a crucial receptor involved
in the glutamate-dependent proliferation of LM7 and OS482 cells.
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Figure 4. The proliferation (A) LM7 human metastatic osteosarcoma cells and (B) OS482 mouse
metastatic osteosarcoma cells with and without AMF application (445 kHz) was measured by MTT
assay. when 100 nM of mGluR5 siRNA was loaded to IO-nanocages and delivered under the
AMFs, the cell proliferation was significantly decreased in both cell lines. * p < 0.05, *** p < 0.001,
**** p < 0.0001, N = 3.

We further examined the ability of cell growth when mGluR5 expression was silenced
by performing the clonogenic assay. Both LM7 and OS482 cells were grown in for three
days, and cells were treated with mGluR5 siRNA-loaded IO-nanocages on the fourth day.
After 18 h of treatment, AMFs were applied, and cells were fixed and stained with 0.05%
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Cresyl violet after an additional 6 h of AMFs application. In the absence of AMFs, the cells
were fixed and stained after 24 h of treatment. We observed a decrease in colony formation
by 23.7 ± 3.8% and 67.5 ± 5.6% when 25 nM and 100 nM of mGluR5 siRNAs, respectively,
were delivered with IO-nanocages in the presence of AMFs (Figure 5A,B). This result
revealed a significant inhibition of colony formation when 25 nM and 100 nM of siRNA
was delivered, with a p-value of 0.0067 and 0.00048, respectively, compared to the control
(neat cells) by ANOVA single factor t-test. Moreover, colony formation in OS482 cells
was also significantly decreased by 28.0 ± 7.9% and 66.9 ± 2.4% when 25 nM and 100 nM
of siRNA, respectively, were delivered with IO-nanocages under AMFs (Figure 5C,D).
The p-value of the experimental groups to control revealed 0.037 when 25 nM of mGluR5
siRNAs was delivered and 1.77 × 10−5 when 100 nM of mGluR5 siRNA were delivered
with IO-nanocages in the presence of AMFs. These results supported that mGluR5 plays a
pivotal role in glutamate-dependent proliferation in both LM7 and OS482 cells by showing
inhibition of cell growth and colony formation when mGluR5 siRNAs were delivered by
IO-nanocages with AMFs.
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Figure 5. The colony formation of (A) LM7 human metastatic osteosarcoma cells and (C) OS482
mouse metastatic osteosarcoma cells with and without AMF application (445 kHz) was stained by
0.05% Cresyl violet. The number of colonies were quantified in (B) LM7 human metastatic osteosar-
coma cells and (D) OS482 mouse metastatic osteosarcoma cells. When 100 nM of mGluR5 siRNA
was incorporated to IO-nanocages with AMFs, the colony formation was significantly prohibited.
* p < 0.05, *** p < 0.001, **** p < 0.0001, N = 3.

3. Discussion

Previously, it has been reported that osteosarcoma secretes glutamate and the metabotropic
glutamate receptor (mGluR) is highly expressed in osteosarcoma [15,17,18,42]. mGluR5 is
especially involved in glutamate signaling for cell growth; therefore, knockdown of mGluR5
expression in osteosarcoma cells can disrupt the proliferation of the cells [15,17,18,43]. In this
study, we demonstrated the reduction of mGluR5 expression in osteosarcoma by delivering
mGluR5 siRNAs via IO-nanocages vehicles, and we observed the inhibition of cell growth
when mGluR5 expression was silenced as AMFs were applied.

The delivery scheme is summarized in Figure 6. As we applied AMFs after siRNA-
loaded IO-nanocages were endocytosed in LM7 and OS482 cells, the siRNAs released
from the IO-nanocages interacted with RNA-induced silencing complex (RISC) in the
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cytoplasm. These siRNAs bind to its complementary mRNA to degrade mRNA and
prevent mGluR5 protein expression [44–46]. Therefore, when a sufficient concentration of
siRNAs is delivered to the cytoplasm, a significant enhancement of transfection efficiency
can be accomplished. We confirmed that siRNAs were delivered more effectively with
IO-nanocages when AMF was applied. Moreover, we found that cell proliferation and
colony formation were significantly inhibited when mGluR5 expression was silenced in
the cells. We believe this delivery system under AMFs has remarkable potential to deliver
different genes or drugs for target-specific treatment as a cancer therapy other than in
siRNA delivery.
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Figure 6. Schematic image of mGluR5 siRNA delivery system by using IO-nanocages in the presence
of AMFs application. When mGluR5 siRNA releases in the cytoplasm after AMFs treatment, it will
integrate with RNA-induced silencing complex (RISC) to undergo strand separation. Single strand
within the complex will find its complementary mRNA, which result in mRNA degradation and
prevent protein translation.

In this work, we observed the endocytosis of IO-nanocages in the osteosarcoma
cell lines. The results revealed that IO-nanocages are predominantly endocytosed via
a clathrin-mediated pathway in LM7 cells, while caveolae-mediated endocytosis is the
most common mechanism in OS482 cells. It has been reported that the characteristics
of nanoparticles and cell type influence the endocytosis of nanoparticles [35–38]. For
example, carboxydextran-coated iron oxide nanoparticles of 20 nm were endocytosed in
the human macrophage cells via clathrin-mediated endocytosis and FBS-coated 20 nm gold
nanoparticles were mainly internalized in the human lung fibroblasts and human liver cells
by clathrin-mediated endocytosis [35,47]. Moreover, the clathrin-mediated endocytosis was
the main endocytic pathway for silver nanoparticles of 20 nm in human melanoma cells [48].
These results indicated that the size of the nanoparticles is one of the critical parameters for
the uptake mechanism. Portilla et al. confirmed that the surface charge of the nanoparticles
is another key parameter for the endocytosis mechanism [49]. Positively charged iron
oxide nanoparticles were internalized through receptor-medicated endocytic pathways,
and micropinocytosis in mouse macrophage cells. Neutral iron oxide nanoparticles were
mainly endocytosed by caveolae-mediated endocytosis, while negatively charged iron
oxide nanoparticles were internalized by clathrin and caveolae-mediated endocytosis in
mouse macrophage cells. Interestingly, the internalization mechanism was different for
these nanoparticles in mouse pancreatic tumor cells. Positively charged particles were
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mainly taken by micropinocytosis, whereas negatively charged particles were internalized
through all the endocytic pathways. The mouse macrophage cells appeared to take up the
neutral particles by clathrin and caveolae-mediated endocytosis.

Our finding suggested that although the same concentration of IO-nanocages and
siRNAs were used, the endocytic pathway of human and mouse metastatic osteosarcoma
cells was different. LM7 cells were derived from human SAOS-2 osteosarcoma cells, which
were experimentally selected from the lung tissue after metastasis was observed at the
seventh injection [50], whereas OS482 cells were engineered to mimic human osteosarcoma
by osteoblast-restricted deletion of p53 and pRb [51]. Although OS482 cells resemble
human osteosarcoma cells in transcriptional profiles, these cells may have different genetic
profiles, suggesting that internalization of siRNA delivery carriers may depend on cell
type. Thus, these results suggest that not only do the characteristics of nanoparticles play
an important role in the endocytosis mechanism, but also that the cell type can affect the
endocytic pathways.

Similar to recent research, we also observed the effect of size, shape, and surface
charge of IO-nanocages in delivering drugs. It has been previously reported that hollow
cube-shaped magnetic IO-nanocages were more effective than solid spherical particles of
the same diameter in delivering riluzole, a drug that inhibits the release of glutamate, in an
in vivo model [18,42]. Smaller nanoparticles have been observed to avoid accumulation
in the liver and spleen, allowing the dose of nanoparticles to reach other desired interven-
tion sites [52–54]. Slightly negatively charged nanoparticles are better at avoiding liver
uptake and preventing aggregation in blood to allow more efficient drug delivery [44,55].
IO-nanocages were demonstrated to be slightly more negatively charged compared to
conventional sphere iron oxide nanoparticles when the drug was loaded. They might
deliver drugs to the target sites better by bypassing hepatic clearance and preventing
accumulation in the blood [42]. With these previous findings, delivery of mGluR5 siRNA
using IO-nanocages as carriers in vivo has the potential to block glutamate receptor activity,
which may result in inhibiting tumor proliferation. We believe that when IO-nanocages
are used to deliver mGluR5 siRNAs to the targeted tumor site, AMFs application will
enhance the release of mGluR5 siRNAs into the tumor site, which would result in tumor
size shrinkage.

4. Materials and Methods
4.1. Iron Oxide Nanocage (IO-Nanocages) Synthesis

IO-nanocages were synthesized via Galvanic replacement reaction with a modification
of a previously published method [56]. First, 1 mmol of anhydrous manganese (II) acetate,
2.5 mmol of oleylamine, and 0.5 mmol of oleic acid were added to 15 mL of p-xylene
in a three-necked 50 mL flask with a reflux condenser and sonicated for 10 min. The
flask was heated to 90 ◦C in a silicon oil bath under magnetic stirring, then 1 mL of
deionized water was rapidly injected into the flask. The reaction mixture was heated
at 90 ◦C constantly for 1.5 h, then 1 mL of 2.4 M aqueous Iron (II) perchlorate solution
was added to the reaction flask. The mixture was refluxed at 90 ◦C for another 1.5 h
to produce IO-nanocages by galvanic replacement. After cooling down for 10 min, IO-
nanocages were collected by centrifugation at 3000× g, rinsed with ethanol, and dispersed
in tetrahydrofuran (THF) solution.

4.2. Dihydrocaffeic Acid (DHCA)-Coated IO-Nanocages

Hydrophobic IO-nanocages in THF solution were further coated with DHCA to make
them aqueous soluble, using a modified version of a previously published method [57].
Next, 30 mg of DHCA was dissolved per mL of THF in a one-neck 50 mL flask and heated
to 50 ◦C in a silicon oil bath under magnetic stirring for 3 h. This was then cooled down to
room temperature, followed by the addition of 1 mL of 0.5 M NaOH per 90 mg of DHCA to
precipitate the magnetic IO-Nanocages. The precipitate was collected by centrifugation at
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3000× g, redispersed in 2 mL of water, and the solution was placed in 10 k WMCO dialysis
membrane overnight.

4.3. Fluorophore Conjugation to DHCA Labeled IO-Nanocages

To label DHCA-coated IO-nanocages with Cy5, first, 40 mM EDC was prepared by
dissolving 3.8 mg EDC in 500 µL of H2O, and 50 mM NHS was prepared by dissolving
2.9 mg NHS in 500 µL of H2O. Then, 5 µL each of 40 mM EDC and 50 mL NHS per mg of
IO-nanocages was added to a working solution of IO-nanocages in PBS. The Cy5-amine was
dissolved in DMSO at 10 mg/mL, and 20 nmol of dye was added per mg of IO-nanocages
and the mixture was let to react overnight. The following day, the solution was dialyzed
overnight with a 3500 kD molecular weight membrane covered from light.

4.4. Cell Culture/Incubation

LM7 cells (human osteosarcoma cell line) [50] and OS482 cells (mouse osteosarcoma
cell line) [51] were cultured in DMEM medium supplemented with 10% FBS, 100 unites/mL
penicillin-100 µg/mL streptomycin, and 1% glutaMAX™ (35050061, Thermo Fisher Scien-
tific, Waltham, MA, USA). Cells were incubated with the condition of 37 ◦C and 5% CO2
until 80–90% confluency.

4.5. Internalization of IO-Nanocages in LM7 and OS482 Cells

LM7 and OS482 cells (20,000 cells) were seeded in an 8-well chamber slide with
500 µL of DMEM medium supplemented with 10% FBS, 100 unit/mL penicillin-100 µg/mL
streptomycin, and 1% glutaMAX™ (35050061, Thermo Fisher Scientific, Waltham, MA,
USA). The next day, the media was aspirated, then supplemented with 500 µL of DMEM
media followed by three washes with PBS. Then, Cy5 labeled IO-nanocages were added
to those cells and incubated for 6 h at 37 ◦C and 5% in a CO2 incubator. After removing
media and washing with PBS, cells were fixed in 150 µL of 4% paraformaldehyde. Cells
were then blocked in buffer (5% BSA with 0.3% Triton X-100) for 1 h and incubated in
primary antibody (caveolin-1; 3276, cell signaling, MA, USA. Clathrin heavy chain; 4796,
cell signaling, MA, USA) overnight at 4 ◦C. The next day, the aspirated buffer and the cells
were incubated in secondary antibody (Alexa Fluor® conjugate; 4412S, cell signaling, MA,
USA) for 1 h. The cells were rinsed with PBS then mounted in DAPI mounting media
(p36935, Thermo Fisher Scientific, Waltham, MA, USA). Images were taken under NIKON
A1 confocal microscopy and the resulting images were analyzed with the NIS element
software and ImageJ.

4.6. Inhibit the Internalization of IO-Nanocages in LM7 and OS482 Cells

LM7/OS482 cells (20,000 cells) were seeded in an 8-well chamber slide with 500 µL of
DMEM medium supplemented with 10% FBS, 100 unit/mL penicillin-100 µg/mL strepto-
mycin, and 1% glutaMAX™ (35050061, Thermo Fisher Scientific, Waltham, MA, USA). The
next day, the media was aspirated and 500 µL of serum free DMEM media was added and
incubated for 1 h. Following this, the media was aspirated and cells were pretreated with
pitstop2 (25 µM) [39] for 15 min and Nystatin (50 µg/mL) [40,41] for 30 min at 37 ◦C. Then,
the solution was removed, and the cells were washed three times with PBS. Further steps
were the same as described in the internalization experiment above.

4.7. Application of Alternating Magnetic Fields (AMFs) to Treat LM7 and OS482 Cells

After the siRNA-loaded IO-nanocages were taken up by LM7 and OS482 cells in
35 × 10 mm dishes for 18 h, they were placed in a magnetic field coil which generates
445 kHz and the AMFs were applied for 5 min, followed by an additional 6 h of incubation.
Magnetic fields are generated inside the coil when electric currents are applied to the
coil, and the magnitude of the magnetic field depends on the input electric potential.
The magnetic strength of the coil depends on the number of loops of coil in addition
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to the input voltage. After a total of 24 h of treatment, cells were ready for conducting
further experiments.

4.8. Luciferase Assay

Pierce® Firefly Luciferase Glow Assay Kit (16176, Thermo Fisher Scientific, Waltham,
MA, USA) was used to measure the bioluminescence of the luciferase expression in
LM7/OS482 cells. Then, 750 nM of firefly luciferase siRNAs (AM4629, Thermo Fisher
Scientific, Waltham, MA, USA) were incorporated into IO-nanocages (9 × 1011 particles)
overnight in Opti-MEM™ medium (11058021, Thermo Fisher Scientific, Waltham, MA,
USA). Following this, 0.2 × 106 cells were plated in 35 × 10 mm cell culture dishes simulta-
neously and incubated overnight at 37 ◦C and 5% CO2. The next day, the cells were treated
with a complex of siRNA-loaded IO-nanocages for a total of 24 h, then luciferase assay
was performed. After incubation for a total 24 h, the media were aspirated from the cells
and rinsed with PBS, then 400 µL of 1X Luciferase cell-lysis buffer was added to both the
absence and presence of AMFs application experimental groups. These plates were placed
on the moderate speed shaker for 15 min to lysate the cells, and 10–20 µL of the samples
were added to a white opaque 96-well plate. Then, 50 µL of working solution was added
to each well. These samples were left for another 10 min for signal stabilization at room
temperature, and the bioluminescence was measured.

4.9. Quantitative RT-PCR

Total RNA was extracted using RNeasy® mini kit (74104, Qiagen, Hilden, Germany)
from LM7 and OS482 cells (0.2 × 106 cells) after 24 h of treatment with human/mouse
mGluR5 siRNA-loaded IO-nanocages in the presence or absence of AMF, following the
manufacturer’s manual. Total RNA was eluted in 50 µL of RNase-free water and 1 µg of
total RNA was converted to cDNA using the QuantiTect® reverse transcription kit (205311,
Qiagen, Hilden, Germany) following the manufacturer’s instructions. To quantify the
mRNA expression level in LM7 and OS482 cells, the cDNA template was mixed with
SYBR® Green (Thermo Fisher Scientific, Waltham, MA, USA) and 0.4 µM of each forward
and reverse primer, which was subjected to a total volume of 25 µL. The cycle setting was
95 ◦C for 10 mins and 40 cycles (15 s denaturation at 95 ◦C, 1 min annealing at 60 ◦C, and
1minute extension at 72 ◦C). Primer sequences used for the LM7 human Osteosarcoma
cell line were as follows: Human mGluR5 (5′-TGGAGATACGATCCTATTCG-3′ and 5′-
CCAAGGCAGGCAAACACCAC-3′) and human β-actin (5′-CCTTCCTGGGCATGGAGT
-3′ and 5′-AGGAGCAATGATCTTGAT-3′). Primer sequences used for OS482 mouse os-
teosarcoma cell line were the following: mouse mGluR5 (5′-ATCTGCCTGGTTACTTGTG-3′

and 5′-GCAATACGGTTGGTCTTCG-3′) and mouse GAPDH (5′-TGCACCACCAACTGC-
TTAGC-3′ and 5′-GGCATGGACTGTGGTCATGAG-3′). The relative cycle threshold (Ct)
values were calculated for each sample by normalizing Ct of mGluR5 to Ct of β-actin in
LM7 cell samples and normalizing Ct of mGluR5 to Ct GAPDH in OS482 cell samples.

4.10. MTT Assay

LM7 (50,000 cells) and OS482 (40,000 cells) cells were seeded in 35 × 10 mm dishes
overnight and treated with human mGluR5/ mouse mGluR5 siRNA-loaded IO-nanocages
in the presence or absence of AMF for a total of 24 h. After the treatment, 10% of the
MTT (5 mg/mL) solution was added to the media in each dish. Cells were placed for
approximately 3 h in the incubator (5% CO2 at 37 ◦C), then the media were removed.
Furthermore, 100% DMSO was added to the cells and incubated for 5 min at room temper-
ature. Then, 250 µL of the solution was transferred to a 96-well plate (triplet) and read at
570 nm immediately.

4.11. Clonogenic Assay

The Clonogenic assay was performed using the method described previously with
modifications [58]. Briefly, 300 cells of LM7 and OS482 were seeded in 35 × 10 mm dishes
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and grown for 3 days. Then, cells were treated with human mGluR5/ mouse mGluR5
siRNA-loaded IO-nanocages. For the groups with AMFs application, AMFs was applied
for 5 min after 18 h of treatment and incubated for an additional 6 h, making it a total
of 24 h of treatment. For the groups without AMFs application, cells were incubated for
24 h and collected for further experiments. After 24 h of treatment, cells were fixed in 4%
paraformaldehyde and stained with 0.05% Cresyl violet. Three independent trials were
conducted and an average number of colonies were obtained.

4.12. Statistical Analysis

The significance of the experiment weas determined by one-way ANOVA using
SPSS software and each experiment was conducted at least three times. The schematic
representation in Figures 2A and 5 was made using Biorender.com.

5. Conclusions

In conclusion, we demonstrated that mGluR5 siRNA was delivered by IO-nanocages
and reduced mGluR5 expression in both human and mouse osteosarcoma when AMF was
applied. When 100 nM of mGluR5 siRNA was delivered with IO-nanocages (the number
of particles = 9 × 1011) in 5 min of AMFs, this method worked the best to enhance siRNA
delivery efficiency. Moreover, we confirmed that the silencing of mGluR5 expression in the
cells decreased the proliferation of cells and inhibited the formation of colonies, suggesting
that mGluR5 plays a pivotal role in glutamate-dependent osteosarcoma proliferation. Since
this delivery methodology worked efficiently for siRNA delivery, this model can potentially
be applied to deliver various siRNAs or drugs for cancer therapy. Our findings revealed
successful transfection efficiency using the IO-nanocages delivery methodology, resulting
in the inhibition of cell growth, which may lead to its clinical improvement as a treatment.

6. Patents

1. Matsui, H.; Paragodaarachchi, A.; Fang, J. “Method of Forming Inorganic Nanocages”.
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