
Statistical analysis and data preparation

1. All proteins identified in less than 70% of samples of any group or with intensities outside the

lower or upper limit of quantitation were excluded.

2. The remaining NAN values in the result table were filled in according to the Gaussian

distribution using the scipy.stats.norm function with parameters a = µ - 0.4*SD, b = SD*0.2,

where µ is the median and SD is the standard deviation estimated from valid measured values

for each protein in each group.

3. To measure the correlation between each protein scipy.stats.pearsonr function was applied. For

model sensitive to feature correlation and data normalization the proteins whose Pearson's r

>0.8 were excluded and further scipy.stats.zscore was applied to scale the data.

4. The p-values of Mann–Whitney U-test were calculated by the scipy.stats.mannwhitneyu

function and FDR control was realized using statsmodels.stats.multitest.multipletests.

5. For one-hot-encoding of the APOE feature we used class
sklearn.preprocessing.OneHotEncoder

Machine learning and classifier building

0. All classifier metrics were calculated using functions from sklearn package.

1. To determine the best suitable class of models for the best performance several machine

learning models from scikit-learn package with default hyperparameters (for example

sklearn.ensemble.RandomForestClassifier) were used with iterative addition of

features in the order of increasing p-values (first, only the feature with the lowest p-value was

taken; next, the two lowest; then three, and so on). To measure the classifiers’ performance the

mean ROC-AUC metrics in 5 fold cross-validation were calculated using functions
sklearn.model_selection.KFold and sklearn.metrics.roc_auc_score.

Random Forest and others ensemble algorithms were found to be the most suitable for our

data.

2. The proteins were rearrange according to their feature importance values. The feature

importance values for each protein were calculated by applying feature_importances_

method of the classifier of the sklearn.ensemble.RandomForestClassifier

trained on the entire dataset. The classifier was trained 10000 times on a shuffled dataset to get

mean values for features’ importance.

3. Since Random forest showed the best performance at the previous steps several ensemble tree-

based algorithms were tested using sklearn.ensemble.RandomForestClassifier,
sklearn.ensemble.AdaBoostClassifier,

sklearn.ensemble.BaggingClassifier and xgboost.XGBClassifier. Also

a grid search was applied using the function

sklearn.model_selection.GridSearchCV on the rearranged features, as in first

step. Classifiers with the best performance were included in the article

