
Statistical analysis and data preparation 

1. All proteins identified in less than 70% of samples of any group or with intensities outside the 

lower or upper limit of quantitation were excluded. 

2. The remaining NAN values in the result table were filled in according to the Gaussian 

distribution using the scipy.stats.norm function with parameters a = µ - 0.4*SD, b = SD*0.2, 

where µ is the median and SD is the standard deviation estimated from valid measured values 

for each protein in each group. 

3. To measure the correlation between each protein scipy.stats.pearsonr function was applied. For 

model sensitive to feature correlation and data normalization the proteins whose Pearson's r 

>0.8 were excluded and further scipy.stats.zscore was applied to scale the data.  

4. The p-values of Mann–Whitney U-test were calculated by the scipy.stats.mannwhitneyu 

function and FDR control was realized using statsmodels.stats.multitest.multipletests. 

5. For one-hot-encoding of the APOE feature we used class 
sklearn.preprocessing.OneHotEncoder 

Machine learning and classifier building 

0.  All classifier metrics were calculated using functions from sklearn package.  

1. To determine the best suitable class of models for the best performance several machine 

learning models from scikit-learn package with default hyperparameters (for example 

sklearn.ensemble.RandomForestClassifier) were used with iterative addition of 

features in the order of increasing p-values (first, only the feature with the lowest p-value was 

taken; next, the two lowest; then three, and so on). To measure the classifiers’ performance the 

mean ROC-AUC metrics in 5 fold cross-validation were calculated using functions 
sklearn.model_selection.KFold and sklearn.metrics.roc_auc_score. 

Random Forest and others ensemble algorithms were found to be the most suitable for our 

data.  

2. The proteins were rearrange according to their feature importance values. The feature 

importance values for each protein were calculated by applying feature_importances_  

method of the classifier of the sklearn.ensemble.RandomForestClassifier  

trained on the entire dataset. The classifier was trained 10000 times on a shuffled dataset to get 

mean values for features’ importance.  

3. Since Random forest showed the best performance at the previous steps several ensemble tree-

based algorithms were tested using sklearn.ensemble.RandomForestClassifier, 
sklearn.ensemble.AdaBoostClassifier, 

sklearn.ensemble.BaggingClassifier  and xgboost.XGBClassifier. Also 

a grid search was applied using the function 

sklearn.model_selection.GridSearchCV on the rearranged features, as in first 

step. Classifiers with the best performance were included in the article 


