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Abstract: Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancers 
worldwide. More than half of patients with HNSCC eventually experience disease recurrence 
and/or metastasis, which can threaten their long-term survival. HNSCCs located in the oral cavity 
and larynx are usually associated with tobacco and/or alcohol use, whereas human papillomavirus 
(HPV) infection, particularly HPV16 infection, is increasingly recognized as a cause of oropharyn-
geal HNSCC. Despite clinical, histologic, and molecular differences between HPV-positive and 
HPV-negative HNSCCs, current treatment approaches are the same. For recurrent disease, these 
strategies include chemotherapy, immunotherapy with PD-1-inhibitors, or a monoclonal antibody, 
cetuximab, that targets epidermal growth factor; these therapies can be administered either as single 
agents or in combination. However, these treatment strategies carry a high risk of toxic side effects; 
therefore, more effective and less toxic treatments are needed. The landscape of HNSCC therapy is 
changing significantly; numerous clinical trials are underway to test novel therapeutic options like 
adaptive cellular therapy, antibody-drug conjugates, new targeted therapy agents, novel immuno-
therapy combinations, and therapeutic vaccines. This review helps in understanding the various 
developments in HNSCC therapy and sheds light on the path ahead in terms of further research in 
this field. 
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1. Introduction 
Head and neck squamous cell carcinomas (HNSCCs) originate in the oral cavity, 

pharynx, larynx, and sinonasal track. Squamous cell carcinoma is the most common type 
of cancer in the head and neck region and the sixth leading cancer by incidence worldwide 
[1]. HNSCC accounts for about 5% of all cancers in the United States [2]. Many risk factors 
for HNSCC have been identified including exposure to carcinogens (such as tobacco, al-
cohol, betel nut, and air pollution [3]), infection with the oncoviruses Epstein–Barr virus 
or high-risk human papillomavirus (HPV) strains [4,5], and genetic factors. Several of 
these risk factors display geographical variations; for instance, betel nut chewing is most 
common in India, while exposure to carcinogenic air pollutants is more common in de-
veloping regions, such as India and China [6,7]. The incidence of HPV-driven HNSCC is 
increasing in Western countries, whereas Epstein–Barr virus-driven HNSCC is more com-
mon in developing countries in East Asia. One of the main genetic disorders that raises 
the risk of developing HNSCC is Fanconi anemia. This rare inherited disease is caused by 
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mutations in one or more of the FANC family of DNA-repair genes. Individuals with Fan-
coni anemia have a 500- to 700-fold higher risk of developing HNSCC than the general 
population [8]. Other distinct factors that separate individuals with FA from the general 
population in terms of HNSCC include diagnosis at a young age (20–40 yrs old) and tumor 
localization in the oral cavity and tongue. 

HPV-driven HNSCC occurs predominantly in the oropharynx; the primary onco-
genic HPV strains are HPV16 (83–86% of HPV-positive HNSCCs), HPV33 (3.3–7.3%), 
HPV35 (2.2–4%), and HPV18 (<2%) [9–12]. In contrast, carcinogen exposure typically 
drives HPV-negative disease. HPV-positive HNSCC occurs in a younger patient popula-
tion and has a more favorable prognosis than HPV-negative HNSCC. For patients with 
advanced-stage HPV-positive HNSCC, the 5-year survival rates are 75% to 80%, whereas 
fewer than 50% of patients with HPV-negative disease survive for 5 years [13]. Although 
HPV-positive and HPV-negative HNSCC distinctly differ genetically, they are treated in 
much the same way, an approach that produces significant morbidity [14]. 

In terms of the screening strategy for early-stage HNSCC, visual screening has been 
considered as a feasible, safe, and cost-effective option in the last few years amongst the 
high-risk group of tobacco, betel, and/or alcohol consumers [15].  

In general, early-stage HNSCC is treated with surgery or radiation and has 5-year 
survival rates of approximately 70% to 90% [16]. Locally advanced disease requires mul-
timodal treatment that combines surgery, radiation, and systemic treatment with plati-
num-based chemotherapy or anti-epidermal growth factor receptor (EGFR) targeted ther-
apy with cetuximab [17–19].  

Local recurrence or the development of distant metastasis is common in HNSCC, 
affecting about 20% of patients treated for early-stage disease and 50% of those with lo-
cally advanced HNSCC [16]. The prognosis is poor for recurrent or metastatic (R/M) 
HNSCC, with a median duration of around 1 year of overall survival (OS) [17]. R/M 
HNSCC that is not treatable with surgical resection or definitive radiotherapy is treated 
with palliative systemic therapy that includes platinum-based chemotherapy, cetuximab, 
and/or immune checkpoint inhibitors (ICIs) with anti-programmed death 1 (PD-1) anti-
bodies (Figure 1). Conventional therapy for locally advanced HNSCC often results in per-
manent impairments in chewing, swallowing, and tasting, along with a dry mouth, feed-
ing tube dependence, and aspiration pneumonia [20,21]. These adverse events for survi-
vors, coupled with the poor outcomes for R/M HNSCC, demonstrate the need for novel 
therapies with less toxicity and more efficacy. Several novel therapies—including molec-
ular targeted therapies, antibody-drug conjugates, and immunotherapies—may be more 
selective, cause fewer adverse effects, and be more effective in the treatment of HNSCC. 
In our review, we describe recent developments in the understanding of the genomics and 
pathophysiology of HNSCC, assess progress in the management of HNSCC, and provide 
perspectives on future research and treatment directions. 
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Figure 1. Standard-of-care treatment algorithm for metastatic HNSCC. 1L = first line, 2L = second 
line, CPS = combined positive score, 5-FU = 5-fluorouracil, ICI = immune-checkpoint inhibitor. 

2. Genomics of HNSCC 
Genomic studies in HNSCC have revealed frequent chromosomal changes, DNA 

copy number alterations, somatic mutations, and promoter methylation. Only a few of the 
mutations and chromosomal abnormalities driving HNSCC were known before the intro-
duction of next-generation sequencing (NGS) [22,23]: TP53 and CDK2NA [24] mutations 
and amplification of 11q13, CCND1, and EGFR [25]. The first results of NGS studies in 
HNSCC [26,27] and The Cancer Genome Atlas (TCGA) [12] have offered a comprehensive 
understanding of the somatic genomic alterations driving HNSCC. In addition to previ-
ously known HNSCC-associated mutations in TP53, CDKN2A, and PIK3CA, these studies 
identified NOTCH1 as one of the most commonly mutated genes in HNSCC [28]. The top-
most frequently mutated genes in HNSCC are TP53 (72%), CDKN2A (22%), FAT1 (23%), 
PIK3CA (21%), NOTCH1 (19%), KMT2D (MLL2) (18%), NSD1 (10%), CASP8 (9%), AJUBA 
(6%), and NFE2L2 (6%). HNSCCs infrequently carry RAS gene mutations; mutations in 
HRAS, at about 8%, are the most common in this group. Strikingly, NGS revealed that 
unlike many other solid tumors driven by mutations in oncogenes, HNSCCs are most 
often characterized by the loss of tumor-suppressor genes.  

HPV-positive HNSCCs, however, typically lack mutations or alterations in TP53 and 
CDKN2A genes. Instead, these tumors more commonly have a PIK3CA genomic alteration 
with mutation (14%) and gene amplification (16%) [12], loss of TRAF3, and amplification 
of E2F1 [27]. NGS of 149 HPV-positive and 335 HPV-negative HNSCC/normal paired 
samples by Gillison et al. [29] confirmed PIK3CA mutations and identified mutations in 
ZNF750 and EP300 as candidate driver events in HPV-positive HNSCC. The outcome of 
the study was in line with earlier findings that showed TP53, CDKN2A, FAT1, CASP8, 
NOTCH1, and HRAS as the main mutations that drove cancer progression in HPV-nega-
tive HNSCC. Furthermore, a recent study also showed that high-risk HPV infections went 
together with mutations in PIK3CA, EP300, NF1, and RB1 in samples from benign tonsils, 
suggesting these mutations to be potential biomarkers to identify the cancer progression 
risk [30]. 

Substantial research has also confirmed the role of aberrant signaling pathway acti-
vation in HNSCC. For instance, EGFR is frequently expressed in 80% to 90% of HNSCC 
tumors, and its overexpression is associated with poor survival [31]. Other receptor tyro-
sine kinases, such as HER2 and MET, are also overexpressed in many HNSCCs and may 
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contribute to resistance to EGFR-targeting drugs [14,32]. In addition, the PI3K-AKT-
mTOR signaling pathway, which drives the development of many tumor types, is often 
altered in HNSCC [12].  

3. Pathophysiology of HNSCC 
3.1. HPV-Negative HNSCC 

HPV-negative HNSCC is typically observed in patients with regular consumption of 
tobacco and alcohol [33,34]. The carcinogenic effects of tobacco and alcohol are attributa-
ble to the formation of DNA adducts, which dysregulate critical cellular processes [35]. 
DNA adducts can cause chromosomal mutation and instability, affecting cell homeostasis 
and other cellular mechanisms, which leads to cancer progression [35]. The carcinogenic 
effects of tobacco can also be enhanced by alcohol, which can facilitate the introduction of 
tobacco-related carcinogens in the mucosa [36,37]. In this way, the collaborative effect of 
both alcohol and tobacco contributes to the HNSCC carcinogenesis [38].  

3.2. HPV-Positive HNSCC 
HPV is a nonenveloped, circular, double-stranded DNA virus that causes approxi-

mately 70% of oropharyngeal squamous cell carcinoma in the United States [39]. HPV 
strains can be classified by their associated cancer risk into low- and high-risk groups. The 
high-risk strains include HPV16, HPV18, HPV26, HPV33, HPV35, and HPV59, along with 
seven others. HPV16 is the primary strain causing HNSCC in the oropharynx (83%) [11]. 
The E6 and E7 HPV oncoproteins degrade the tumor suppressor TP53 and retinoblas-
toma-associated protein (RB) on infection [40]. In turn, the inactivation of Rb function by 
E7 leads to an increase in p16INK4A (p16) levels. P16 expression is commonly used as a 
surrogate marker for HPV-related oropharyngeal tumors [24]. Tumors can only be sus-
tained with persistent expression of the viral E6 and E7 oncoproteins. 

4. Current Targeted Therapy for Head and Neck Cancer 
4.1. EGFR Inhibitors 

EGFR is overexpressed in ~80% of HNSCCs, leading to a poor prognosis [41,42]. 
Monoclonal antibodies (mAb), as well as TKI-based small molecules, can be used to target 
EGFR. Cetuximab, a chimeric mAb, is an FDA-approved targeted therapy for HNSCC 
that blocks EGFR signaling [14,43]. 

An early phase-III randomized trial in locally advanced HNSCC that compared ra-
diation plus cetuximab to radiation alone showed a significantly better median duration 
of response (24.4 vs. 14.9 months, p = 0.005), progression-free survival (PFS) (17.1 vs. 12.4 
months, p = 0.006), and OS (49 vs. 29.3 months, p = 0.006) in patients receiving cetuximab 
compared to those receiving radiation alone [44]. Yet, the addition of cetuximab led to 
increased rates of rash and infusion reactions compared to radiotherapy alone. Further-
more, two phase-III clinical trials found that, in patients with HPV-positive HNSCC, ce-
tuximab was inferior to the combination of cisplatin with radiotherapy [45,46]. 

Single-agent cetuximab had low efficacy in R/M HNSCC, with overall response rates 
(ORRs) ranging from 10% to 13% [47]. The reason for the poor efficacy of cetuximab may 
be attributed to the ErbB protein and ligand aberrations and/or activation of other down-
stream signaling components [48]. Vermorken et al. [49] evaluated the effect of cetuximab 
alone on 103 HNSCC platinum-refractory patients. None of the patients showed a com-
plete response (CR). The disease control rate (DCR) was 46% and only 13% of patients 
showed a partial response (PR). 

In the EXTREME trial [49], R/M HNSCC patients were randomized to doublet chem-
otherapy (cisplatin or carboplatin plus 5-fluorouracil) vs. the same chemotherapy plus ce-
tuximab for their first-line therapy. The median OS was 7.4 vs. 10.1 months, respectively 
(hazard ratio [HR] 0.80; p=0.04). The median PFS was 3.3 vs. 5.6 months, respectively (HR 
0.54; p <0.001). The addition of cetuximab increased the response rate from 20% to 36% (p 
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<0.001). As expected, toxicity was worse in the chemotherapy plus cetuximab group, with 
more sepsis, anorexia, and skin and infusion-related reactions. 

Panitumumab is a fully human immunoglobulin G2 (IgG2) EGFR mAb that has 
lower immunogenicity than cetuximab. The phase-III SPECTRUM trial of panitumumab 
combined with cisplatin and 5-fluorouracil as a front-line treatment for R/M HNSCC 
showed that the median PFS was longer in the group that received panitumumab (5.8 vs. 
4.6 months, p = 0.0036). However, there was no significant difference in the median OS 
(11.1 vs. 9 months, p = 0.14). Several grade 3 or 4 adverse events were more common in 
the panitumumab group [50]. Zalutumumab is a high-affinity human IgG1 mAb to EGFR. 
A phase-III trial found no significant difference in the median OS between patients with 
R/M HNSCC who received zalutumumab plus the best supportive care and those who 
received just the best supportive care (6.7 vs. 5.2 months, p = 0.0648). Neither pani-
tumumab nor zalutumumab is approved for the treatment of R/M HNSCC. 

EGFR TKIs have also been studied in HNSCC. A phase-III study (LUX-Head & Neck 
1) compared gefitinib to methotrexate for R/M HNSCC and found similar median OS du-
rations (5.6 vs. 6.7 months) [51]. Given the lack of convincing evidence to support its use, 
gefitinib has not been further developed for HNSCC. In patients with platinum-resistant 
R/M HNSCC, afatinib (EGFR TKI) and cetuximab had similar response rates [52]. A phase-
III trial comparing afatinib to methotrexate in patients with R/M HNSCC who had disease 
progression after platinum-based chemotherapy found median OS durations of 6.8 
months with afatinib and 6 months with methotrexate (HR 0.96, p = 0.7) [53]. Although 
both LUX-Head & Neck 1 and 3 showed a modest PFS benefit with afatinib over metho-
trexate [54], this approach was abandoned owing to the lack of OS benefit and the devel-
opment of more promising immunotherapies, to be discussed below. 

4.2. Farnesyltransferase Inhibitors 
Of the three RAS genes (HRAS, KRAS, and NRAS), HRAS is the most commonly mutated 

in HNSCC [12]. Thus, the RAS-RAF pathway is a target of high therapeutic interest. Since 
proper trafficking and localization of RAS proteins require several posttranslational modifica-
tions, a potential strategy to inhibit oncogenic RAS activity is to disrupt these posttranslational 
modifications such as RAS prenylation through inhibition of farnesyltransferase. 

In February 2021, the FDA designated farnesyltransferase inhibitor (FTI) tipifarnib, 
still under investigation, as a breakthrough therapy for the treatment of HRAS-mutant 
R/M HNSC based on the outcomes of the RUN-HN trial, especially for patients whose 
disease had progressed while being treated with platinum-based chemotherapy [55]. Ti-
pifarnib is a first-in-class nonpeptidomimetic quinolinone that binds to and potently in-
hibits FT. The phase-II RUN-HN (NCT02383927) trial included 30 patients with R/M 
HRAS-mutant HNSCC treated with tipifarnib and demonstrated a 50% ORR in the 18 
evaluable patients. In addition, tipifarnib showed a median PFS of 5.9 months, as com-
pared to 2.8 months with the last prior line of therapy, and the median OS was 15.4 months 
with tipifarnib [56]. Currently, tipifarnib is being studied in a pivotal phase-II AIM-HN 
study (NCT03719690), which will further assess the ORR of patients with HRAS-mutant 
HNSCC treated with tipifarnib [56]. Another trial is currently evaluating the combination 
of tipifarnib and the PI3K inhibitor alpelisib in R/M HNSCC with HRAS and PIK3CA al-
terations (NCT04997902) (clinicaltrials.gov). 

4.3. PI3K/AKT/mTOR Inhibitors for PI3K-Mutant HNSCC 
The PI3K/AKT/mTOR signaling pathway is crucial for various cellular processes, in-

cluding cell growth and division, metabolism, and migration, all of which can be dysreg-
ulated in cancer. This pathway is one of the most frequently activated ones in HNSCC, 
with activation in more than 90% of HNSCCs [57,58], including both HPV-positive and 
HPV-negative subsets [12]. Oncogenic activation of the PI3K pathway can be caused by 
EGFR activation, PI3K overexpression, gain-of-function mutations and/or amplifications 
in PIK3CA, loss-of-function (LOF) mutations in PTEN, or oncogenic alterations in AKT, 
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TSC1/2, LKB1, or MTOR [57,59]. Therefore, use of PI3K/AKT/mTOR inhibitors is an ap-
pealing therapeutic strategy for HNSCCs regardless of their HPV status. Of the several 
PI3K pathway inhibitors in different stages of clinical development, only a few have been 
approved by the FDA for the treatment of hematological cancers (copanlisib, idelalisib, 
umbralisib, and duvelisib), renal cell carcinoma (temsirolimus and everolimus) [59], and 
metastatic breast cancer (alpelisib) [60,61]. 

Numerous preclinical studies in HNSCC xenografts with PIK3CA mutations demon-
strated the susceptibility of these tumors to PI3K/AKT/mTOR inhibitors [62–69], support-
ing their clinical development. However, clinical trials with pan-PI3K and dual 
PI3K/mTOR inhibitors have demonstrated only modest response rates that were not con-
sistently better in PIK3CA mutant vs. wild-type (wt) tumors. One patient with endome-
trial cancer with PIK3CA and PTEN mutations had a complete response (CR) to the pan-
PI3K inhibitor copanlisib in a phase-I study [70]. This outcome led to the initiation of the 
biomarker-based phase-II MATCH trial (NCT02465060), which examined copanlisib 
treatment in patients with advanced refractory solid tumors and with mutations in 
PIK3CA and PTEN and loss of PTEN. Buparlisib (BKM120), another pan-PI3K inhibitor, 
showed limited antitumor activity in patients with platinum-refractory R/M HNSCC, 
with a disease control rate of 49% and an ORR of only 3% (NCT01527877). There was no 
significant difference between cohorts with PIK3CA-mutant and non-mutant tumors in 
PFS (1.7 months vs. 1.8 months) or OS (3.4 months vs. 5.8 months (NCT01737450)) [71,72]. 

Additionally, use of the dual PI3K/mTOR inhibitor apitolisib [73] in patients with 
advanced solid tumors demonstrated modest clinical activity. Of the 14 evaluable patients 
with PIK3CA mutations, three patients showed partial responses (PRs), eight had stable 
disease, and three had progressive disease. Of the 120 enrolled participants in the study, 
15 HNSCC patients were included independent of their PIK3CA status, of which only 
three had a PR. Similar response rates were observed with the dual PI3K/mTOR inhibitors 
gedatolisib [74] and bimiralisib (PQR309) [75] in patients with various advanced-stage 
cancers. Gedatolisib was administered to 77 patients with solid tumors, including four 
patients with PIK3CA alterations, who had stable disease for more than 6 months [74]. 
Likewise, a phase-I trial with bimiralisib evaluated 28 patients with advanced solid tu-
mors, two of whom had PIK3CA mutations. One of them had stable disease and the other 
experienced a 26% reduction in tumor volume on treatment with bimiralisib [75].  

Despite promising preclinical evidence, limited clinical activity and drug-related tox-
icities have hindered the use of pan-PI3K and dual PI3K/mTOR inhibitors for most solid 
tumors, leading to the development of isoform-selective PI3K inhibitors. Several ongoing 
clinical trials are investigating whether PIK3CA-mutant tumors are sensitive to drugs that 
inhibit the class-I PI3K catalytic subunit α isoform. Dose-escalation studies with the PI3Kα 
inhibitors taselisib, TAK-117, and alpelisib in patients with advanced-stage solid tumors 
have shown promising clinical activity in those harboring PIK3CA alterations as com-
pared to patients with wt PIK3CA [76–78]. Taselisib treatment showed an ORR of 36% in 
patients with PIK3CA mutations but 0% in patients without PIK3CA mutations [76]. How-
ever, TAK-117 displayed a PR rate of 7.5% of patients with PIK3CA-altered tumors [77]. 
The phase-I trial with alpelisib specifically enrolled patients with PIK3CA mutations and 
showed an ORR of 6% and stable disease rate of 52%. Moreover, a dose-expansion arm of 
this study included four patients with PIK3CA-wt tumors, but they had no clinical benefit 
with alpelisib treatment [78]. Overall, PI3K isoform-specific inhibitors have demonstrated 
high rates of stable disease in PIK3CA-altered cancers and are better tolerated than pan-
PI3K and dual PI3K/mTOR inhibitors. In addition, PI3Kβ-, PI3Kγ-, and PI3Kδ-specific in-
hibitors are in clinical development at various stages for use either as single agents or in 
combinations with chemotherapy, targeted therapy, or radiation therapy in R/M HNSCC 
(Table 1). 
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Table 1. Ongoing clinical trials with PI3K/AKT/mTOR inhibitors in HNSCC. 

Class Drug Patient Cohort Biomarker Phase  Clinical Trials Intervention Status 

Pan-PI3K inhibi-
tor 

Buparlisib (BKM-120) 
R/M HNSCC None III NCT04338399 Buparlisib + paclitaxel Recruiting 

LA-HNSCC HPV-positive I NCT02113878 Buparlisib with cispla-
tin + IMRT 

Completed, Await-
ing results 

Copanlisib (BAY 80-6946) 
R/M HNSCC None I NCT03735628 Copanlisib + 

nivolumab 
Active, not recruit-

ing 

R/M HNSCC PIK3CA mutation, PTEN 
mutation/loss 

II NCT02465060 Copanlisib Recruiting 

Isoform-specific 
PI3K inhibitor 

Alpelisib (BYL-719) (PI3Kα) 

LA-HNSCC HPV-positive II NCT03601507 Alpelisib Recruiting 

R/M HNSCC 
HRAS overexpression, 

PIK3CA mutation and/or 
amplification 

I/II NCT04997902 Tipifarnib + alpelisib Recruiting 

R/M HNSCC PI3K pathway alterations II NCT03292250 Alpelisib Completed, await-
ing results 

R/M HNSCC None II NCT02145312 Alpelisib Unknown 

R/M HNSCC None I NCT01822613 Alpelisib + LJM716 
Completed, await-

ing results 

LA-HNSCC None I NCT02282371 
Alpelisib with cetuxi-

mab + IMRT 
Completed, await-

ing results 

LA-HNSCC None I NCT02537223 
Alpelisib with cisplatin 

+ IMRT 
Completed, await-

ing results 
Duvelisib (VS-0145) (PI3K δ/γ) R/M HNSCC None II NCT05057247 Duvelisib + docetaxel Recruiting 

GSK2636771 (PI3K β) R/M HNSCC PTEN mutation/loss II NCT02465060 GSK2636771  Recruiting 

Parsaclisib (INCB050465) (PI3K β) R/M HNSCC None I NCT02646748 Parsaclisib + pembroli-
zumab 

Completed, await-
ing results 

Serabelisib (INK-117) (PI3K α) LA-HNSCC PIK3CA mutation, KRAS 
mutation 

I/II NCT04073680 Serabelisib + canagli-
flozin 

Unknown 

Taselisib (GDC-0032) (PI3K α/δ/γ) R/M HNSCC PIK3CA mutation, PTEN 
mutation/loss 

II NCT02465060 Taselisib Recruiting 
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Dual PI3K/mTOR 
inhibitor 

Gedatolisib (PF-05212384) R/M HNSCC PI3K pathway alterations I NCT03065062 Gedatolisib + palbo-
ciclib 

Recruiting 

AKT inhibitor 
Ipatasertib (GDC-0068) 

R/M HNSCC AKT mutation II NCT02465060 Ipatasertib Recruiting 

LA-HNSCC None I NCT05172245 
Ipatasertib with cispla-

tin + RT Recruiting 

R/M HNSCC None II NCT05172258 
Ipatasertib + pembroli-

zumab Recruiting 

Capivasertib (AZD5363) R/M HNSCC AKT mutation II NCT02465060 Capivasertib Recruiting 
AKT = AKT kinase; HPV = human papillomavirus; IMRT = intensity-modulated radiation therapy; mTOR = mammalian target of rapamycin; PI3K = phospho-
inositide 3-kinase; LA-HNSCC = locally advanced head and neck squamous cell carcinoma; R/M HNSCC = recurrent and metastatic head and neck squamous cell 
carcinoma. 
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Although PI3Kα inhibitors demonstrated some clinical benefits in patients with 
PIK3CA mutations, they are insufficient to achieve a CR, and prolonged treatment results in 
therapy resistance. For this reason, development of this class of drugs as standalone modal-
ities has not succeeded. In order to overcome therapeutic resistance and improve patient 
responses, PI3K pathway inhibitors are currently being evaluated for use in combination 
with other targeted therapies, chemotherapy, radiotherapy, and immunotherapies (Table 
1). The addition of the pan-PI3K inhibitor PX-866 to docetaxel did not significantly improve 
the median PFS when compared to docetaxel alone in patients with R/M HNSCC (92 days; 
95% CI, 46–119 vs. 82 days; 95% CI, 47–96; p = 0.42) or OS (263 days; 95% CI, 125–383 vs. 195 
days; 95% CI, 121–NR; p = 0.62) [79]. Likewise, the combination of PX-866 with cetuximab 
had similar median PFS and OS durations when compared to cetuximab alone (PFS: 80 days 
in both groups; p = 0.48; OS: 211 days; 95% CI, 149–279 in the combination group vs. 256 
days; 95% CI, 148–NR; p = 0.6) in the cetuximab-alone group. More importantly, patients 
harboring PIK3CA mutations did not have any response to combined PX-866 and cetuximab 
treatment [80]. The BERIL-1 phase-II trial in patients with platinum-refractory R/M HNSCC 
showed a modestly longer median PFS in patients receiving a combination of buparlisib and 
paclitaxel (4.6 months; 95% CI, 3.5–5.3) than in the paclitaxel and placebo group (3.5 months; 
95% CI, 2.2–3.7; p = 0.011) (NCT01852292) [81]. A phase-III trial of this combination in R/M 
HNSCC is ongoing (NCT04338399). A phase-I trial with copanlisib and cetuximab 
(NCT02822482) in patients with R/M HNSCC in whom platinum or cetuximab therapy 
failed was stopped early due to unfavorable toxic effects in the combination arm [82]. Over-
all, these trials showed limited clinical efficacy and significant drug toxicity in the combina-
tion groups, emphasizing the need for better biomarkers of sensitivity. 

However, in contrast to the results in R/M HNSCC, alpelisib in combination with 
drugs targeting the estrogen receptors has shown robust responses compared to single-
agent drugs, leading to the FDA approval of alpelisib for the treatment of PIK3CA-mutant 
metastatic breast cancer [60,61]. Two phase-II clinical trials are currently evaluating the 
clinical efficacy of alpelisib as monotherapy in HPV-positive HNSCC (NCT03601507) and 
alpelisib in combination with the farnesyltransferase inhibitor tipifarnib in HRAS- and 
PIK3CA-mutant HNSCC (NCT04997902).  

PIK3CA gene mutations are classified as canonical or noncanonical. Canonical mutations 
are the most common, occurring in one of three hotspot locations (E542, E545, and H1047) of 
the p110α subunit and leading to the activation of the PI3K pathway. Noncanonical mutations 
are rare, distributed throughout the p110α subunit, and may be activating or non-activating. 
Moreover, around 27% of the noncanonical mutations characterized in TCGA are unique to 
HNSCC and have not been identified in other cancers with PIK3CA alterations [83]. Alpelisib, 
in addition to being effective against canonical PIK3CA alterations, has shown efficacy in pre-
clinical models with three frequently occurring noncanonical mutations [61,84]. Moreover, a 
recent study also reported a remarkable response (73% tumor shrinkage) in an HNSCC patient 
with a noncanonical activating PIK3CA mutation who received alpelisib monotherapy [83], 
underscoring the need to further understand the noncanonical PIK3CA mutation biology.  

Despite ongoing clinical trials of PI3K inhibitors, their clinical translation has been 
challenging owing to their modest efficacy as single agents, their unfavorable toxicity pro-
files, the emergence of resistance, and the lack of a biomarker-selective approach for treat-
ment. In retrospect, these disappointing clinical studies may have been predicted by pre-
clinical studies that demonstrated that although PIK3CA-mutant HNSCC cell lines are 
more sensitive to PI3K inhibitors than PIK3CA-wt HNSCC cell lines [62,63], PI3K inhibi-
tion leads only to growth arrest, not cell death [85]. 

4.4. PI3K Inhibitors for NOTCH1-Mutant HNSCC 
NOTCH1 is one of the most frequently mutated genes in HNSCC [12]. Functional 

characterization has confirmed structural predictions that most of the NOTCH1 mutations 
in HNSCC are LOF mutations, supporting a tumor-suppressor function for NOTCH1 in 
HNSCC [86]. The occurrence of these mutations may predict a response to ICI and PI3K 
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inhibitors [86]. Previous research from our group used an unbiased pharmacogenomics 
approach and identified a remarkable correlation between NOTCH1 LOF mutations and 
sensitivity to PI3K inhibitors in HNSCC cell lines [87]. Testing of a panel of seven different 
PI3K pathway inhibitors in 59 HNSCC cell lines showed that the NOTCH1 mutation cor-
related with inhibitor sensitivity. PI3K inhibition led to more apoptosis in NOTCH1-mu-
tant than in NOTCH1-wt HNSCC cell lines in vitro. Similarly, NOTCH1-mutant HNSCC 
xenografts treated with PI3K pathway inhibitors demonstrated elevated cell death and 
significant tumor volume reduction in vivo [87]. 

This promising preclinical evidence was bolstered by findings from two independent 
studies reporting that vulnerability to PI3K inhibition was conferred by NOTCH1 muta-
tions. PX-866 led to significant tumor reduction in two NOTCH1-mutant HNSCC patient-
derived xenograft models [63]. Activation of the NOTCH signaling pathway in breast can-
cers conferred resistance to PI3K/mTOR inhibitors [88]. One patient with heavily pre-
treated R/M HNSCC with a LOF NOTCH1 mutation was enrolled in a phase-I study of 
bimiralisib and had a PR (85% reduction in target lesion) that was sustained for 36 weeks 
[89]. This observation was later tested in a phase-II trial (NCT03740100) [90] that showed 
modest single-agent activity of bimiralisib in NOTCH1-mutant HNSCC. Patients treated 
with bimiralisib had better outcomes (ORR: 17%, OS: 7 months, and PFS: 5 months) than 
historical control patients treated with standard therapies (ORR: 5.8%, OS: 5.1 months, 
and PFS: 2.7 months). Overall, these studies support NOTCH1 LOF mutations as a predic-
tive biomarker for the sensitivity to PI3K pathway inhibitors in HNSCC. 

Mechanistic studies revealed a differential protein expression profile between 
NOTCH1-mutant and -wt HNSCC cells when treated with PI3K inhibitors. PDK1, a down-
stream signaling molecule in the PI3K pathway [87], and Aurora kinase B were exclusively 
and significantly downregulated in NOTCH1-mutant HNSCC on PI3K inhibition [91,92]. 
As a result, depleting cellular levels of NOTCH1 [87], PDK1 [87], or Aurora kinase B [93] 
in NOTCH1-wt HNSCC cells sensitized them to PI3K/AKT/mTOR inhibition, leading to 
cell death. Since PI3K pathway inhibitors have modest single-agent activity, these mech-
anistic studies may identify effective combinatorial approaches that are superior to mon-
otherapy and may also overcome the innate and acquired resistance that may develop 
with the use of targeted therapy. 

4.5. Aurora Kinase Inhibitors 
Aurora kinases are serine-threonine kinases that play an important role in cell-cycle 

regulation. These kinases help in the regulation of cell division, most importantly promot-
ing the entry into mitosis, centrosome maturation, microtubule spindle assembly, and 
completion of cytokinesis. Overexpression of the Aurora kinases induces aneuploidy and 
genomic instability, which are frequently observed in many tumors [94]. McMillan’s 
group was the first to demonstrate that HPV-transformed cells were sensitive to the Au-
rora A kinase inhibitor alisertib [95]. Using HPV-transformed cells, they showed that 
alisertib led to mitotic delay, polyploidy, and apoptosis in vitro and decreased tumor size 
in vivo [96–98]. In addition to HPV status, our in vitro studies [99] have shown that protein 
levels of Rb predict the response of squamous cancer cells to Aurora kinase inhibitors. 
Manipulating Rb protein expression altered the sensitivity to Aurora kinase inhibitors in 
HNSCC and other cancer types [100–102]. In addition, we observed that inhibition of Rb 
upregulated mitotic checkpoint complex (MCC) genes and resulted in chromosomal in-
stability and prolonged mitosis. Our recent study has demonstrated that the combination 
of depletion of the MCC protein TRIP13 with low alisertib concentrations selectively en-
hanced cell death in HPV-positive, but not HPV-negative, HNSCC cells. 

Substantial preclinical data targeted toward Aurora kinases have resulted in the devel-
opment of multiple small molecule inhibitors. Drugs that are being tested in clinical trials 
are the pan-Aurora kinase drugs AMG 900, ilorasertib (ABT348), and danusertib (PHA-
739,358); the Aurora kinase A- and B-targeted drugs AT-9283 and TT00420; the Aurora ki-
nase B-targeted drugs barasertib (AZD1152) and chiauranib; the Aurora kinase A-specific 
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drugs alisertib (MLN8237) and ENMD2076. Alisertib is being widely evaluated in various 
tumor indications, with seven ongoing early-phase clinical trials including a phase-I/II trial 
in Rb-deficient HPV-positive HNSCC in combination with a PD-1-inhibitor (NCT04555837). 

4.6. FGFR Inhibitors 
The FGFR family consists of four transmembrane receptor tyrosine kinases, FGFR1–

4, which are activated by 18 fibroblast growth factor (FGF) ligands [103]. FGFR1–3 are 
commonly amplified and overexpressed in HNSCC [104,105], with 10% to 17% of HNSCC 
tumors having recurrent FGFR1 amplifications [106,107]. FGFR3-activating mutations are 
present in 11% of HPV-positive oropharyngeal SCCs (OPSCCs) [29,108]. FGFR fusions are 
also found to be strong predictors of a response; however, the frequency of FGFR3-TACC3 
fusions is lower in HNSCC patients (0.7%) [12]. 

FGFR inhibition is effective for some cancers with FGFR alterations. The FGFR-TKI 
erdafitinib was approved for patients with advanced urothelial cancers harboring specific 
FGFR genomic alterations [109]. Dumbrava et al. [110] showed a CR to an FGFR inhibitor 
in a patient with R/M HNSCC with FGF amplifications. A small phase-I study (n = 10) 
showed a disease control rate of 80% with the FGFR TKI rogaratinib [111]. Several ongoing 
clinical studies with a variety of FGFR inhibitors in cancers with FGFR genomic alterations 
are open to HNSCC patients. The outcomes of these trials will provide insights into the 
clinical efficacy of FGFR inhibition in HNSCC. 

4.7. Epigenetic Targeted Inhibitors 
Certain epigenetic modifications—that is, changes in gene expression that do not in-

volve DNA sequence changes—play a crucial role in cancer development and the interac-
tion between tumor cells and their microenvironment [112]. At present, nine FDA-ap-
proved agents, representing four epigenetic targets (DNMT, HDAC, IDH, and EZH2), are 
used for the treatment of a variety of cancers, and several drugs that target epigenetic 
mechanisms are currently in clinical trials [113]. Many studies have reported that HPV-
negative HNSCC has lower DNA methylation levels than HPV-positive HNSCC, which 
harbors distinctly hypermethylated genomes [114]. Thus, researchers expect that HPV-
positive HNSCC will have a more robust response to epigenetic targeted therapy. 

Rodriguez et al. [115] investigated the combination of the HDAC inhibitor vorinostat 
with the PD-1-inhibitor pembrolizumab in patients with PD-L1-positive, immunother-
apy-naive R/M HNSCC. This trial found higher response rates (32%) in the combination-
treated cohort than in the control (20%) group treated with single-agent anti-PD-1 mAbs. 
These results point to a need for further clinical investigation in a phase-II study. A patient 
cohort preselected for PD-L1 expression would also be needed in further assessments of 
the combination treatment. 

Regarding DNMT inhibitors, a phase-I trial of the use of the DNMT inhibitor azacyt-
idine as neoadjuvant monotherapy, involving a phase-IB trial of decitabine monotherapy, 
is currently underway in patients with HPV-positive HNSCC. In addition, the trial is also 
examining R/M HNSCC patients’ use of decitabine in combination with PD-L1 inhibitor 
durvalumab, regardless of HPV status. Results from this study in patients with ICI refrac-
tory HNSCC are pending (NCT03019003). 

4.8. VEGF Inhibitors 
Vascular endothelial growth factor (VEGF) inhibitors are used to block angiogenesis 

in several solid tumors, such as colorectal, renal cell, ovarian, gastric, and thyroid cancers 
[116]. FDA-approved bevacizumab is a VEGF-targeted mAb used to treat numerous can-
cers, either as a single agent or in combination with chemotherapy or radiotherapy [116]. 
In vitro data in HNSCC showed decreased VEGF secretion [117], reduced tumor growth, 
and enhanced cancer cell death when bevacizumab was used with radiotherapy [118]. In 
a phase-III trial in R/M HNSCC, adding bevacizumab to platinum-based chemotherapy 
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significantly improved both the PFS (p = 0.0014) and ORR (p = 0.016), although no signifi-
cant improvement in OS was found [119]. Moreover, the bevacizumab-chemotherapy 
combination was associated with significantly more treatment-related grade 3–5 bleeding 
events (6.7% vs. 0.5%; p <0.001) and treatment-related deaths (9.3% vs. 3.2%; p = 0.022) 
than chemotherapy alone [120]. 

Studies of VEGFR inhibitors in R/M HNSCC showed modest effects. Vandetanib, a 
TKI that inhibits both EGFR and VEGFR, resulted in an ORR of 13% (PR in 2/15 patients) 
when combined with docetaxel in platinum-resistant R/M HNSCC [121]. The VEGFR TKIs 
sorafenib and sunitinib were both well-tolerated but also had only modest therapeutic 
effects [122,123]. Given their modest activity and considerable toxicity, most VEGFR in-
hibitor development has been halted for R/M HNSCC, with the exception of lenvatinib, 
which is being tested in combination with immunotherapy (described below). 

4.9. IAP Inhibitors 
Cellular inhibitor of apoptosis (cIAPs) and X-linked IAP (XIAP) proteins are both neg-

ative regulators of caspase-mediated apoptosis, and additionally, XIAPs also regulates mi-
tochondria-mediated apoptosis [124]. A potent, orally active, small-molecule IAP inhibitor, 
Debio 1143 (AT-406, SM-406, xevinapant), may promote apoptosis in tumor cells by block-
ing both XIAP and cIAPs via restoration of caspase activity [125]. Sun and colleagues inves-
tigated the efficacy of Debio 1143 in a phase-II study evaluating 96 patients who received 
chemoradiotherapy (high-dose cisplatin and concurrent radiotherapy) with or without 
Debio 1143 (NCT02022098) [125]. The median PFS in the group that received chemoradio-
therapy alone was 16.9 months; the median PFS was not reached in the group that also re-
ceived Debio 1143 (p = 0.0069). At 2 years, the chemoradiotherapy + Debio 1143 group had 
a PFS rate of 72%, while the chemoradiotherapy-only group had a PFS rate of 41% (p = 
0.0026). In addition, the chemoradiotherapy + Debio 1143 combination had a favorable 
safety profile at 2 to 3 years of follow-up [126]. This was the first treatment regimen to have 
better efficacy than chemoradiotherapy in a randomized trial. In February 2020, Debio 1143 
was designated as a breakthrough therapy by the FDA for the treatment, in combination 
with chemoradiotherapy, of patients with locally advanced HNSCC that were previously 
untreated and unresectable. A phase-III trial of Debio 1143 is currently ongoing in combina-
tion with chemoradiotherapy and is expected to enroll about 700 patients (NCT04459715). 
These data suggest that inhibition of IAPs is yet another novel and promising approach for 
patients with high-risk locally advanced HNSCC. However, all relevant current trials are 
focused on locally advanced HNSCC, with none in the R/M HNSCC setting. 

4.10. STAT3 Inhibitors 
Several lines of evidence support a role for a signal transducer and activator of tran-

scription 3 (STAT3) in HNSCC progression and survival [127]. Activated STAT3, defined 
as phosphorylated or nuclear STAT3, is found in 37% to 75% of HNSCC tumors and as-
sociated with a more advanced disease stage and poor survival [128–130]. Likewise, there 
are increased levels of phosphorylated STAT3 in most HNSCC cell lines [131]. HNSCC 
preclinical models depend on constitutively activated STAT3 for proliferation and sur-
vival [129,132,133]. The small-molecule STAT3 inhibitor TTI-101 inhibited anchorage-de-
pendent and -independent growth of multiple human HNSCC cell lines in vitro and re-
duced tumor growth of radiation-resistant human HNSCC xenografts in vivo [131]. 

In addition to its direct effects on cancer cells, STAT3 also contributes to tumor vas-
cularization and cancer immune evasion [134] by inhibiting the maturation of dendritic 
cells [135–138] and stimulating immunosuppressive cells in the tumor microenvironment, 
including myeloid-derived suppressor cells [139–141], M2 macrophages [135,142,143], T-
helper 17 cells [144–146], and regulatory T cells [135]. The combination of the antisense 
STAT3 oligonucleotide danvatirsen with α-PD-L1 therapy (durvalumab) in HNSCC pa-
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tients improved response rates over those in historic controls treated with α-PD-L1 ther-
apy alone [147]. This result suggests that STAT3 inhibition may synergize with ICI in R/M 
HNSCC. Inhibiting STAT3 may also reduce immune-related adverse events [148].  

However, inhibiting STAT3 in patients has been a challenge. The small-molecule 
STAT3 inhibitor TTI-101 is currently undergoing phase-I testing. No currently recruiting 
trials are investigating the most advanced of the STAT3 antisense oligonucleotides, dan-
vatirsen (IONIS-STAT3-2.5Rx, AZD9150). The recent development of proteolysis-target-
ing chimera (PROTAC) drugs offers a promising future strategy for specifically inhibiting 
STAT3 in humans [127]. 

4.11. Antibody-Drug Conjugates 
Antibody-drug conjugates (ADCs) are complex targeted agents that are composed of 

an antibody attached to a cytotoxic drug. This has shown promise in the treatment of certain 
cancers, including acute leukemia, breast cancer, cervical cancer, and Hodgkin’s lymphoma. 
Since they are delivered locally, ADCs are expected to be more effective and safer compared 
to standard chemotherapy [149]. ADCs are targeted to tissue factors expressed on tumor cell 
surfaces so that they can deliver a toxic payload to these cells [150]. Tisotumab vedotin is an 
ADC consisting of a human mAb that binds to tissue factor-011 and a microtubule-disrupt-
ing agent, monomethyl auristatin E. The FDA has granted accelerated approval to tiso-
tumab vedotin for the treatment of adults with R/M cervical cancer that has progressed dur-
ing or after chemotherapy. The drug was approved based on data points from the innovaTV 
204 trial in a phase-II setting (NCT03438396), where 101 patients were treated and demon-
strated an ORR of 24% (95% CI, 15.9–33.3%), with a CRR of 7% and median duration of 
response of 8.3 months (95% CI, 4.2 months–NR) [151]. Preliminary data from the phase-II 
innovaTV 207 trial (NCT03485209), which enrolled HNSCC patients who experienced dis-
ease progression after treatment with platinum chemotherapy and an ICI, demonstrated 
antitumor activity and a manageable safety profile. Patients receiving tisotumab vedotin 
alone had an ORR of 16%, median PFS of 4.2 months, and median OS of 9.4 months [152]. 

5. Immunotherapy for Head and Neck Cancer 
Immunotherapy can be an effective treatment option for HNSCC given the nature of 

enhanced mutation in tumor cells, which leads to immune cell infiltration [153,154]. The 
responses of ICIs are dependent on tumor-derived T-cells [155]. The FDA approved the 
use of the PD-1 mAb nivolumab for the treatment of platinum-resistant R/M HNSCC in 
2016 and the use of pembrolizumab as a frontline treatment for HNSCC in 2019, markedly 
altering the landscape of standard HNSCC therapy and engendering a major shift toward 
immunotherapy as a focus of future therapy development. 

5.1. PD-1/PD-L1 Inhibitors 
PD-1 is an immune-response suppressor primarily expressed on immune cells such 

as T and B lymphocytes, dendritic cells, and myeloid cells. Binding with the ligands, PD-
L1 or PD-L2 activates PD-1, and prolonged PD-1 activation impairs and exhausts the im-
mune response. HNSCC cells, among many other types of cancer cells, express PD-L1 
[156,157]. PD-L1 expression inhibits the anticancer responses of tumor-infiltrating lym-
phocytes (TILs) and allows tumor cells to evade immune surveillance. 

In the phase-IB KEYNOTE-012 study, patients with R/M HNSCC who received pem-
brolizumab had an ORR of 18% and 6-month PFS rate of 23% [158–160]. In the single-arm, 
phase-II KEYNOTE-055 study, patients with R/M HNSCC that was resistant to both plat-
inum agents and cetuximab received pembrolizumab. The ORR was 16%, median PFS 
was 2.1 months, and median OS was 8 months [161]. 

The CheckMate 141 randomized phase-III trial compared nivolumab to the standard 
of care in patients with R/M HNSCC who had disease progression within 6 months of 
receiving platinum-based chemotherapy [162]. The ORR was 5.8% for standard care and 
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13.3% for nivolumab. The primary endpoint, OS, was significantly better in the nivolumab 
group than in the standard-care group (7.7 months vs. 5.1 months, p = 0.01) [163]. These 
results made nivolumab a standard treatment option for platinum-resistant R/M HNSCC. 
At the 2-year follow-up, CheckMate 141 showed a sustained OS advantage in patients 
treated with nivolumab compared to those treated with standard care (16.9% vs. 6%) [163]. 

KEYNOTE-048 was a randomized, phase-III trial for previously untreated R/M 
HNSCC (n = 882) with three arms: pembrolizumab alone, pembrolizumab plus chemo-
therapy (5-fluorouracil and a platinum-based agent), and chemotherapy plus cetuximab. 
Outcomes were reported for the total study population and for groups with PD-L1 com-
bined positive scores (CPS) of 20 or higher and 1 or higher. Pembrolizumab alone was 
compared to chemotherapy plus cetuximab. Pembrolizumab plus chemotherapy was 
compared to chemotherapy plus cetuximab. 

In the total study population, patients treated with pembrolizumab plus chemother-
apy had a longer median OS than patients treated with the prior standard of care, chem-
otherapy plus cetuximab (13 vs. 10.7 months; p = 0.034). The median OS for the pembroli-
zumab-alone group was longer than that for the chemotherapy plus cetuximab group in 
both the CPS ≥ 20 (14.7 vs. 11 months; p = 0.004) and CPS ≥ 1 (13.6 vs. 10.4 months; p = 
0.001) subgroups [164]. Based on KEYNOTE-048, pembrolizumab was approved by the 
FDA for use as the first-line therapy (in combination with chemotherapy) in all patients 
with R/M HNSCC. It was also approved as a single agent in those with CPS ≥ 1. 

A recent post-hoc analysis compared the CPS <1 (n = 128) and CPS 1–19 (n = 373) sub-
groups [165]. In the CPS < 1 subgroup, the median OS duration of patients treated with pem-
brolizumab was shorter than in patients treated with chemotherapy plus cetuximab (7.9 vs. 
11.3 months; HR, 1.51; 95% CI, 0.96 to 2.37). In the CPS 1–19 subgroup, however, the median 
OS was slightly longer in the pembrolizumab group (10.8 vs. 10.1 months; HR, 0.86; 95% CI, 
0.66 to 1.12). The median OS duration for the group with CPS <1 receiving pembrolizumab 
plus chemotherapy was 10.7 months, as compared to 11.3 months in the group receiving 
chemotherapy plus cetuximab (HR, 1.21; 95% CI, 0.76 to 1.94). In the group with CPS 1–19, the 
median OS was 12.7 months for the pembrolizumab plus chemotherapy group and 9.9 
months for the chemotherapy plus cetuximab group (HR, 0.71; 95% CI, 0.54 to 0.94). 

Despite the clear benefits of ICI, only a subset of patients with R/M HNSCC benefit-
ted from it. Expression of PD-L1 is the best-studied predictive biomarker for PD-1/PD-L1 
inhibitors. The number of PD-L1-positive cells (including tumor cells, lymphocytes, and 
macrophages) compared to the total number of viable tumor cells, referred to as the CPS 
value, when known in the HNSCC setting, allows for a better response to immunotherapy 
compared to analyzing PD-L1 expression alone [166]. Around 50% to 60% of HNSCC tu-
mor cells express PD-L1 (i.e., the total positive score) [167], but when infiltrating immune 
cells are included in the measurement (i.e., CPS), the percentage of PD-L1-positive cells 
increases to 85%. Subgroup analysis of KEYNOTE-048 patients confirmed better re-
sponses to ICI with increasing CPS scores. 

There are several other biomarkers that have been studied but not fully validated yet, 
which can contribute toward better response prediction to anti-PD1 therapy, for example, 
expression of PD-L2 [168]. KEYNOTE-012 data revealed that PD-L2 protein expression 
helped in predicting the response to anti-PD-1 therapy irrespective of expression of PD-L1 
[169]. Another example of a biomarker helping in predicting the response to anti-PD1 ther-
apy can be attributed to the HPV status, as well. In the KEYNOTE-012 trial, patients with 
PD-L1-positive/HPV-positive disease had a better ORR than PD-L1-positive/HPV-negative 
disease, with 25% and 14% ORR, respectively. In this case, from the overall patient pool, 
62% patients had a HPV-negative status, whereas 38% were HPV-positive [158]. Subse-
quently, another trial (KEYNOTE-048) showed that HPV-positive patients displayed better 
results for combination therapy involving pembrolizumab plus chemotherapy, thereby en-
abling such patients to potentially receive combination therapy [170]. A number of trials are 
currently underway to evaluate several different combinations using ICI, therapeutic vac-
cines, co-stimulatory agonists, and targeted and cytotoxic agents (Table 2). 
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Table 2. Ongoing clinical trials evaluating novel immunotherapies in patients with recurrent/metastatic HNSCC. 

Novel Immunotherapies in Combination with PD-1/PD-L1 Inhibitors, and Other Novel Checkpoint Inhibitor/Immunotherapies 
Drug(s) Study Phase Clinical Trials Study Name Intervention HPV Status 

Lenvatinib III NCT04199104 LEAP-10 Pembrolizumab vs. pembrolizumab + lenvatinib HPV-positive 
Bempegaldesleukin II/III NCT04969861 PROPEL-36 Bempegaldesleukin + pembrolizumab  

Nivolumab + ipilimumab III NCT03700905 IMSTAR-HN Nivolumab + ipilimumab vs. surgery + RT HPV-negative 
Nivolumab III NCT03576417 NIVOSTOP Nivolumab + RT + cisplatin vs. RT + cisplatin unknown 

Nivolumab + ipilimumab III NCT02741570 CheckMate 651 Nivolumab + ipilimumab vs. SOC (EXTREME regimen) HPV-positive 
Abemaciclib I/II NCT03655444  Abemaciclib + nivolumab  

Ramucirumab I/II NCT03650764  Ramucirumab + pembrolizumab unknown 
Duvelisib I/II NCT04193293  Duvelisib + pembrolizumab unknown 

Intratumoral MK-1454 II NCT04220866  Intratumoral MK-1454 + pembrolizumab vs. pembrolizumab unknown 
Eftilagimod alpha II NCT04811027 TACTI-003 Eftilagimod alpha + pembrolizumab vs. pembrolizumab HPV-positive 

BNT113 II NCT04534205 AHEAD-MERIT BNT113 + pembrolizumab vs. pembrolizumab HPV-positive 
PDS0101 (HPV E6/E7 vaccine) II NCT04260126 VERSATILE002 Pembrolizumab + PDS0101 (HPV E6/E7 vaccine) HPV-positive 

Pepinemab I/II NCT04815720 KEYNOTE B84 Pepinemab + pembrolizumab  
Atezolizumab II NCT03818061 ATHENA Atezolizumab + bevacizumab HPV-positive 

Avelumab I NCT03498378  Avelumab + Palbociclib + cetuximab unknown 
Alisertib I NCT04555837  Alisertib + pembrolizumab HPV-positive 

Cemiplimab II NCT04831450  Maintenance cemiplimab (anti-PD1)  
Other Novel Checkpoint Inhibitors/Immunotherapy 

Tiragolumab II NCT04665843 SKYSCRAPER-09 Tiragolumab + atezolizumab vs. atezolizumab HPV-positive 
Relatlimab II NCT04326257  Nivolumab + relatlimab vs. nivolumab + ipilimumab unknown 

Monalizumab III NCT04590963 INTERLINK-1 Monalizumab + cetuximab vs. cetuximab  
Epacadostat I/II NCT02327078 ECHO-204 Epacadostat + nivolumab unknown 

Enoblituzumab I NCT02475213 MGA271 Enoblituzumab + pembrolizumab unknown 
IMA201 I NCT03247309  IMA201 (TCR-engineered in solid tumors, ACTengine)  

KITE-439 I NCT03912831  KITE-439 (E7 T-cell receptor + cyclophosphamide + fludarabine) HPV-positive 
Autologous TILs II NCT03083873  Autologous TILs HPV-positive 

HPV, human papillomavirus; RT, radiotherapy; SOC, standard of care; TCR, T-cell receptor; TIL, tumor-infiltrating lymphocyte. 
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5.2. Vaccines 
HPV-positive HNSCC contains E6 and E7 oncoproteins that are recognized as non-

self-antigens required to maintain the malignant phenotype [171]. HPV-targeted thera-
peutic vaccines work against HPV infection by inducing a T-cell response. There are FDA-
approved HPV vaccines available in the market to protect from high-risk HPV infection 
and cancer caused by them [172], but these vaccines do not treat established cancer. 

E6/E7 antigen-targeting vaccines demonstrated efficacy in patients with HPV-in-
duced cervical intraepithelial neoplasia and are now being evaluated in an R/M HNSCC 
setting [173]. However, vaccines targeting HPV16 have, by themselves, failed to treat re-
current advanced HPV-positive cancers. Therefore, combinations of ICI with therapeutic 
HPV vaccines are being tested for recurrent advanced HPV-positive cancers. A phase-
IB/II trial (NCT03260023) of an HPV16 E6/E7 and IL-2 vaccine (TG4001) plus a PD-L1 in-
hibitor in patients with R/M HPV16-positive cancers that did not respond to available 
standard treatments demonstrated an ORR of 23.5% [174]. The vaccine-immunotherapy 
combination induced an HPV16 E6/E7-specific T-cell response and increased the number 
of TILs in the tumor microenvironment. 

A combination of a synthetic long-peptide HPV16 vaccine (ISA101) with nivolumab, 
in a phase-II study, showed promising data with a 33% ORR and median OS duration of 
17.5 months (NCT02426892) in patients with HPV16-positive R/M HNSCC [175]. In addi-
tion, two more phase-II trials of ISA101 are underway, one with utomilumab, a CD137 
agonist, for patients with incurable HPV16-positive OPSCC (NCT03258008) [176], and the 
other with cemiplimab in R/M HPV16-positive OPSCC. 

ADXS11-001 (axalimogene filolisbac) is a live-attenuated vaccine encoding an HPV16 
E7 oncoprotein. It is currently in phase-II trials evaluating the HPV-specific T-cell re-
sponse and safety in a neoadjuvant setting in HPV-positive OPSCC (NCT02002182). DPX-
E7 is a synthetic peptide-based vaccine targeting HPV16 E711-19, which is under investi-
gation in an open-label phase-IB/II trial. This trial, the results of which have not yet been 
released, includes HLA-A*02-01 patients with HPV16-associated OPSCC, anal cancer, and 
cervical cancer (NCT02865135). 

Studies have shown that the E6 oncoprotein regulates telomerase reverse transcrip-
tase (TERT) gene transcriptional activation, leading to its overexpression on cancer cell 
surfaces and thereby cell proliferation. A vaccine containing telomerase-derived cancer 
peptides, UCPVax, has been designed to activate CD4+ T-helper cells against telomerase-
expressing cells. It is currently in a phase-II VolATIL trial (NCT03946358) in combination 
with atezolizumab in locally advanced or metastatic HPV-positive patients. 

Nucleic acid-derived vaccines, such as DNA and RNA vaccines, are easier to synthe-
size and develop compared to peptide vaccines. MEDI0457, a DNA vaccine, was evalu-
ated in a phase-IB/II trial enrolling 22 patients with locally advanced HPV16/HPV18-pos-
itive HNSCC. The tumor regression rate was 50%, and an increase in T-effector cells could 
overcome HPV-driven tumor immune evasion. Currently, MEDI0457 is being evaluated 
in combination with the PD-L1 inhibitor durvalumab in a phase-IB/IIA study 
(NCT03162224) of 35 patients with HPV-associated R/M HNSCC. BNT113 is an RNA lip-
oplex-based mRNA vaccine encoding HPV16 E6 and E7 that is being evaluated in combi-
nation with pembrolizumab in HPV-positive and PD-L1-expressing HNSCC 
(NCT04534205). In the future, HPV-directed therapeutic vaccines may move beyond tar-
geting E6 and E7 to include the viral E1, E2, E4, E5, and L1 proteins [177]. 

In addition to HPV vaccines, recent advances in NGS technologies have led to better 
identification of neoantigens, thereby boosting the development of cancer vaccine re-
search and strategies. Cancer vaccination enhances tumor-specific CD4+ and CD8+ T cells, 
which eliminates tumor cells without affecting the normal cells. Currently, two neoanti-
gen vaccine trials are ongoing. First, there is a combination of personalized cancer vac-
cination with an anti-PD-1 mAb in a phase-IB setting, focused on advanced HNSCC pa-
tients. The tumor-derived neoantigens would be specific to an individual and tumor 
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(NCT03568058) in this study. Second, there is a phase-I trial with HNSCC patients with 
progressive disease after anti-PD-1 or anti-PD-L1 treatment. The patients in the trial have 
been termed as requiring a “personalized and adjusted neoantigen peptide vaccine” 
(PANDA-VAC); they will be vaccinated with six neoantigens alongside treatment with 
pembrolizumab (NCT04266730).  

5.3. Adoptive Cellular Therapy 
Chimeric antigen receptor (CAR)-T cell therapy is a popular treatment option for he-

matologic malignancies [178]. CAR-T cells use activated cytotoxic T lymphocytes that are 
primed to patient-specific antigens to cause tumor cell death. There have been several 
CAR-T-based cell therapy trials against different antigens for HNSCC. For example, T4 
immunotherapy, a CAR-T cell therapy primed to antigens for the ErbB family (EGFR, 
HER2-4), which is highly upregulated in HNSCC [179], was studied in a dose-escalation 
phase-I study for locally advanced or recurrent HNSCC. The CAR-T cell doses were in-
creased from 1 × 107 to 10 × 107 T4+ T cells in different patient cohorts. After 6 weeks, 
patients who received the highest dose of 10 × 107 T4+ T cells displayed stable disease. 
The overall disease control rate was 69%, despite the patients having had rapidly pro-
gressing tumors on trial entry [179].  

In addition to T4 CAR-T cell therapy, recent research has focused on developing ef-
fective HPV-targeted T-cell receptors (TCRs). This therapeutic approach involves intro-
ducing a tumor antigen to alter or modify the genetics of T-cells. The genetically altered 
T-cells express receptors targeting a restricted epitope (HLA-A*02:01) of E6 TCR T cells. 
This has been investigated for treatment of patients with metastatic HPV16-positive 
HNSCC [180]. Initial results from a phase-I/II trial carried out in a pool of 12 patients with 
various metastatic, HPV16-positive, HLA-A*02:01-positive cancers showed that two pa-
tients had partial responses to this therapy. E6 TCR memory T cells were observed in these 
two patients at a high percentage after one month of treatment and ~7% after 10 months 
of treatment. However, no levels of E6 TCR memory T cells could be observed in patients 
who did not respond to the therapy [181,182]. Other ongoing TCR therapy trials include: 
E7 TCR treatment in HLA-A*02:01-positive patients with relapsed/refractory HPV16-pos-
itive cancers (KITE-439, NCT03912831); HPV-E6-specific TCR T-cell transfer in HPV-pos-
itive HNSCC (NCT03578406); autologous TIL infusion (LN-145/LN-145-S1) followed by 
IL-2 administration in patients with R/M HNSCC (NCT03083873). 

5.4. Novel Immunotherapies 
Apart from PD-1, other T-cell exhaustion markers are also targets for ICI and are 

upregulated in HPV-positive HNSCC, such as cytotoxic T-lymphocyte protein 4 (CTLA4), 
T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and lymphocyte activation 
gene 3 protein (LAG3) [183,184]. 

Potential ICI resistance mechanisms in R/M HNSCC are diverse, and many molecu-
lar targeted agents are being tested in combination with ICIs. Potential combinations of 
ICI with Aurora kinase and STAT3 inhibitors are described above. Additional ICI-con-
taining combinations are also being investigated based on the success of this strategy in 
other solid tumors. HPV-specific immunotherapies are further under development. The 
summary below is not exhaustive but focuses on the most promising or clinically ad-
vanced combinations. 

Recently, a multi-kinase inhibitor against VEGFR1-3, lenvatinib, was tested with 
pembrolizumab and showed a 46% ORR in patients with advanced solid tumors [185]. 
Chen et al. [186] reported an ORR of 28.6% with a median OS of 6.2 months in a small 
cohort (n = 14) of patients with immunotherapy-refractory HNSCC. Two ongoing phase-
II trials are testing combinations of lenvatinib with pembrolizumab for heavily pretreated 
R/M HNSCC patients. In addition, a study of a combination of pembrolizumab with the 
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VEGFR2 inhibitor cabozantinib for patients with PD-L1-positive, CPS >1 R/M HNSCC re-
sulted in an impressive ORR of 45% and an overall clinical benefit rate of 90%. The 1-year 
OS and PFS rates were 68% and 52%, respectively [187]. 

Previous studies have shown that PI3K pathway inhibition modulates the tumor mi-
croenvironment and has a direct effect on immune cells that could be used to improve 
patient responses [188]. Tumor hypoxia has been reported to be a resistance mechanism 
in R/M HNSCC patients treated with a PD-1 blockade. Preclinical studies in PD-1-inhibi-
tor-resistant mouse models showed resistant tumors had high oxidative metabolism that 
led to increased intratumoral hypoxia and decreased CD8+ T cells [189]. Moreover, PI3K 
inhibitors induced a decrease in tumor hypoxia specifically in head and neck tumor xen-
ograft models [190]. Therefore, the addition of PI3K inhibitors to ICI therapy could im-
prove responses in patients who otherwise would not benefit from ICI therapy alone. 
However, combining PI3K inhibitors with ICI has been challenging as PI3K inhibitors may 
alter antitumor immunity or lead to immune-related adverse events. This obstacle could 
be overcome by adopting a modified treatment regimen with intermittent, rather than 
daily, dosing of PI3K inhibitors [191,192]. Notably, a phase-I/II trial with copanlisib com-
bined with nivolumab and/or ipilimumab is ongoing in patients with advanced solid can-
cers who have genomic alterations in PIK3CA and PTEN (NCT04317105). 

Two phase-II trials investigated the combination of cetuximab with either pembroli-
zumab or nivolumab [193,194]. The combination containing pembrolizumab showed 
promising results, with an ORR of 45% and median OS of 18 months in patients with 
platinum-refractory tumors who received no prior anti-EGFR therapy or immunotherapy. 
The nivolumab + cetuximab combination showed an ORR of 22% in a population with a 
high proportion of patients who had previously received cetuximab or ICI treatment [194]. 
Based on these data and the clear unmet need for therapy options in ICI-resistant R/M 
HNSCC, the combination of cetuximab and pembrolizumab is now included in the Na-
tional Comprehensive Cancer Network guidelines [195]. 

EAGLE was a randomized phase-III study that compared the anti-PD-L1 mAb dur-
valumab plus the CTLA4 inhibitor tremelimumab to chemotherapy in R/M HNSCC. Dur-
valumab did not improve survival, either as a single agent or in combination with 
tremelimumab. Moreover, the HPV biomarker status did not predict a response to the 
combination [196]. CheckMate 651 was a phase-III trial comparing nivolumab plus ipili-
mumab with chemotherapy plus cetuximab as a frontline therapy in platinum-eligible pa-
tients with R/M HNSCC. The study did not meet the primary endpoint, but there were 
some positive observations in terms of OS for a small set of patients who had tumors that 
expressed PD-L1 with a CPS ≥20 [197]. Thus, current data do not support a role for CTLA4 
inhibition in HNSCC. 

A couple of other mAb combination-based treatments with PD-1/PD-L1 inhibitors 
are also currently under investigation, e.g., tiragolumab, humanized anti-TIGIT mAb, and 
relatimab, an anti-LAG3 mAb. Combination therapy involving tiragolumab and atezoli-
zumab (PD-L1 inhibitor) is currently being evaluated as a frontline treatment for PD-L1-
positive R/M HNSCC in the SKYSCRAPER-09 trial (NCT04665843). Along similar lines, a 
combination of relatlimab and nivolumab is also under trial for R/M HNSCC treatment 
(NCT04326257). 

HPV16 oncoproteins in HPV-positive HNSCC have led to development of HPV-spe-
cific immunotherapies. One such example is a fusion protein, CUE-101, which selectively 
binds and activates HPV16 E7-specific CD8+ T cells, as shown in preclinical studies [198]. 
It is currently being evaluated in a dose-escalation and expansion phase-I study with or 
without a PD-1-inhibitor as a frontline treatment for patients with HPV16-positive R/M 
HNSCC (NCT03978689). Initial data showed increased tumor-infiltrating T cells (CD3+ 
GZMB+) in tumor tissue post-CUE-101 administration in one patient, and out of 33 pa-
tients, eight demonstrated no disease progression for 12 weeks or more [199]. 

In addition to activation of antigen-specific T cells, a newly developed treatment mo-
dality called near-infrared photoimmunotherapy (NIR-PIT) is currently being studied. It 
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uses a mAb that is attached to IRDye700DX (IR700), a photo-absorbing dye, and activated 
by near-infrared light [200]. This causes the cells to die by swift swelling, blebbing, and 
rupturing, allowing the internal cell contents to come into contact with the extracellular 
compartment, leading to a strong immune response. A 50% ORR in previously inoperable 
HNSCC patients was observed in a phase-I/II trial of cetuximab with NIR-PIT 
(NCT02422979) [201]. NIR-PIT was approved as a treatment regimen for recurrent 
HNSCC in Japan given its high efficacy and low adverse event rate. A phase-III trial in-
volving NIR-PIT is currently ongoing (active since 2018) for HNSCC patients with recur-
rent characteristics who have experienced treatment failure or tumor progression during 
or after at least two lines of therapy. 

Additional approaches that are under investigation but beyond the scope of this re-
view include oncolytic viruses, inhibitors of B7-H3 (enoblituzumab), inhibitors of IDO1 
(epacadostat), NKG2A inhibitors (monalizumab), and definitive therapy for the treatment 
of oligometastatic disease. 

6. Conclusions 
The management of R/M HNSCC is rapidly evolving. Although current approaches 

to systemic therapies are limited to chemotherapy, anti-PD-1 immunotherapy, and cetux-
imab, multiple new approaches are currently under development and investigation. Pro-
gress in understanding the genomic landscape and tumor microenvironment of HNSCC 
has helped in delivering personalized and effective treatment approaches. For example, 
HRAS-mutant HNSCC responds to the farnesyltransferase inhibitor tipifarnib. Other 
promising targeted therapies include PI3K inhibitors for NOTCH1-mutant tumors and 
Aurora kinase inhibitors for Rb-deficient, HPV-positive HNSCCs. With recent approval 
of the ADC tisotumab vedotin for cervical cancer and promising phase-II results in 
HNSCC, it is highly possible that tisotumab vedotin will represent another option in R/M 
HNSCC. Recent advances in ICI have improved outcomes in both HPV-positive and -
negative HNSCC. Advancements in data and research around molecular structures and 
immunological features have equipped us to differentiate between HPV-positive and -
negative HNSCC and enabled us to create targeted therapeutic approaches as well as per-
sonalized medicine beyond ICI. Amongst these new opportunities, the most promising 
are NIR-PIT for localized recurrence; novel fusion proteins; anti-HPV therapeutic vac-
cines; HPV-specific adoptive T-cell therapies for HPV-positive R/M HNSCC; the combi-
nation of targeted therapies with ICIs. Future therapies for R/M HNSCC are likely to be 
directed toward specific patient subpopulations based on a better understanding of cancer 
biology. 
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