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Supplementary Figure S1. Effect of AEA on gene expression relevant to antibiotic resistance and biofilm 
formation. MDRSA CI-M was incubated in the absence or presence of 50 µg/ml of AEA for 2 h, and then 
the relative gene expression was determined by quantitative RT-PCR. The data presents a representative 
experiment where two AEA-treated samples were calculated against two control samples, and using the 
following 9 housekeeping genes: gmk, glyA, gyrA, gyrB, proC, recF, rho, rpoB, and asnC. *p<0.05. The 
relevant function of these genes are described in Supplementary Table S1. Other genes are published 
in Banerjee et al. Sci. Rep. 11: 8690, 2021.
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Supplementary Figure S2. 
AEA treatment increases the 
susceptibility to methyl 
green. MDRSA CI-M was 
exposed to 50 or 25 µg/ml 
AEA for 1 h in TSBG, and then 
10 µl was spotted on TSA or 
TSA with 0.02% methyl green, 
and the plates were 
incubated overnight at 37°C.



Supplementary Figure S3. AEA increases cell-bound extracellular DNA. MDRSA CI-
M was exposed to 50 µg/ml AEA for 2 h in TSBG at 37°C, washed in PBS and then 
exposed to 2 μM TOTO-1 for 20 min at room temperature.
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Supplementary Figure S4. AEA did not alter the affinity of wheat germ 
agglutinin (WGA), concanavalin (ConA) or Dextran (average MW 10,000 Dalton) to 
the bacterial surface. MDRSA CI-M was incubated in the absence or presence of 50 µg/
ml of AEA for 2 h, and then the bacteria were incubated with 10 µg/ml of 
AlexaFluor647-conjugated WGA. ConA or Dextran for 20 min prior to analysis by 
flow cytometry. Grey line: Unstained bacteria; Black line: Control; and Red line: AEA-
treated bacteria.



Supplementary Figure S5. LH607 expressing an inducible FtsZ-GFP (SA103; pLOW ftsZ-
gfp, pGL485 (ermR, catR, tetR)) was exposed to 50 µM IPTG for 2 h and then incubated in 
the absence or presence of 50 μg/ml AEA for 2 h and the green fluorescence visualized by 
spinning disk confocal microscopy.
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DivIVAControl 50 µg/ml AEA 2h

Supplementary Figure S6. LH607 expressing inducible DivIA-GFP (SA356; PdivIVA 
divIVA-gfp::Pspac divIVA, pGL485 (ermR catR tetR)) was exposed to 50 µM IPTG for 
2 h and then incubated in the absence or presence of 50 μg/ml AEA for 2 h and the 
green fluorescence visualized by spinning disk microscopy.



Supplementary Figure S7. LH607 expressing EzrA-GFP (SA353; ezrA::ezrA-gfp, 
pGL485 (ermR catR)) was exposed to 50 µM IPTG for 2 h and then incubated in the 
absence or presence of 50 μg/ml AEA for 2 h and the green fluorescence visualized by 
spinning disk microscopy.

EzrAControl 50 µg/ml AEA 2h



Supplementary Figure S8. RN4220 expressing inducible DnaK-GFP (SA307; pLOW 
dnaK-msgfp, pGL485 (ermR catR)) was exposed to 50 µM IPTG for 2 h and then 
incubated in the absence or presence of 50 μg/ml AEA for 2 h and the green 
fluorescence visualized by spinning disk microscopy.

DnaKControl 50 µg/ml AEA 2h



Supplementary Figure S9. Overnight cultures of the various S. aureus strains 
were
resuspended to an OD600nm of 0.1 in TSBG and incubated in TSBG for 2 hrs with 50 µM 
IPTG to induce gene expression. Then the bacteria were incubated in the absence or 
presence of 50 µg/ml AEA and the planktonic growth was measured each 10 min for 20 
hrs.
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Supplementary Figure S10. Appearance of a high molecular weight protease 
activity following AEA treatment. A. Gelatin zymogram: SDS-extracts of control or 50 µg/
ml AEA (2h)-treated MDRSA CI-M were run in a 5% non-reduced SDS-PAGE containing 1.2 
mg/ml gelatin, and following incubation in protease reaction buffer for 24 h at 37°C, the 
gel was stained with Coomassie blue. A double band clear region was observed in 
the AEA-treated bacteria in the upper part of the gel representing protein complexes 
>>250kD. B-C. Gelatin (B) and casein (C) Zymograms of MDRSA CI-M that have been 
exposed to 50 µg/ml AEA and/or 50 µg/m MET for 2h. The upper part of the gel was 
7.5%, while the lower part was 15%. Some of the substrate have electrophoresed from 
the 7.5% gel into the 15% gel. The two lower panels of B and C are black and white 
images of the two separate parts of the gel. To better visualize the >>250kD proteolytic 
bands, the images were inverted. In the lower panel, the proteolytic bands appear as 
clear regions within the gel. D. Silver stain of the same samples run in B and C using a 
4-15% gradient gel. C=Control; A=AEA; M=MET; AM= AEA+MET. SDS-extraction was done 
on the same OD of bacteria.



The image of the whole gel of Suppl. Fig. 10A.



Supplementary Figure S11. A. Anandamide treatment didn’t interfere with 
secreted protease activity. A-B. MDRSA CI-M was incubated in the absence or 
presence of 50 µg/ml AEA for 2 h, and then either 10 µl of the bacterial culture (A) or 10 
µl of the culture supernatant (B) were inoculated on TSA agar plates containing 1.5% 
gelatin. The plates were incubated for 24 h and stained with crystal violet. Clear areas 
are seen in both control and AEA-treated bacteria indicating the degradation of 
gelatin by secreted proteases.
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Supplementary Table S1 –Relevant function of genes studied. 

Gene Relevant gene functions  Reference 

abcA An ATP-dependent transporter that confers resistance to β-lactam antibiotics. 

abcA is regulated by MgrA, NorG, Rot and sarZ. 

[1,2] 

airSR AirSR two-component system is involved in resistance to reactive oxygen species by 

upregulating Staphyloxanthin production. 

An airSR Staphylococcus aureus mutant exhibited reduced autolysis rates and reduced 

viability in the presence of vancomycin. 

[3,4] 

arlR The two-component system ArlRS confers oxacillin resistance by inducing the expression 

of spx. 

ArlR regulates the expression of more than hundred genes involved in different functions, 

including autolysis, cell division, growth, and pathogenesis. 

ArlRS activates MgrA-mediated transcription of genes including cell wall-anchored 

adhesins (ebh, sdrD), polysaccharide and capsule synthesis genes, cell wall remodeling 

genes (lytN, ddh), genes involved in metal transport (feoA, mntH, sirA), anaerobic 

metabolism genes (adhE, pflA, nrdDG) and a large number of virulence factors (lukSF, 

lukAB, nuc, gehB, norB, chs, scn and esxA). 

[5-8] 

atlA The initial attachment of S. aureus to a surface depends on the autolysin AtlA. Autolysins 

promotes the release of extracellular DNA to the biofilm matrix. 

AtlA is also involved in cell division, cell wall turnover and bacterial lysis.  

[9-11] 

cidA The CidA murein hydrolase regulator contributes to extracellular DNA release and biofilm 

formation in Staphylococcus aureus. 

CidA increases the activity of murein hydrolases and promotes the detachment of bacteria 

from the biofilm and their spread to new infection sites in the dispersion phase. 

CidA is a holin that is antagonized by the anti-holin Lrg system. 

[12,13] 

clpP Inactivation of ClpXP protease led to increased β-lactam resistance in a MRSA USA300 

strain. 

A truncating mutation in clpP leads to vancomycin resistance. 

ClpP degrades the autolysin Sle1 required for proper cell division. 

ClpXP degrades superoxide dismutase (SodA) making the bacteria more prone to cell 

death.  

ClpXP degrades the transcription factor Spx that confers antibiotic resistance. 

[14-18] 

codY CodY is a nutrient-sensing regulator that affect the expression of over 200 genes. Among 

others it represses metabolic genes and virulence genes. 

CodY represses capsule production. 

A codY mutant is resistant to butyrate-induced growth inhibition. 

A strain lacking codY regulatory activity produces a PIA-dependent biofilm. 

[19-24] 

essC essC encodes a ESAT-6 secretion system C component belonging to the Type VII protein 

secretion system (T7SS) involved in virulence,  

EssC possesses a membrane-bound multidomain ATPase and is involved in protein 

transport. 

[25] 

fmhB FmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. 
This interpeptide plays a role in the stability of the S. aureus cell wall, acts as an anchor 

for cell wall-associated proteins and is essential for methicillin resistance. 

Any shortening of the pentaglycine side chain reduces or even abolishes methicillin 

resistance. 

[26] 

gpsB GpsB localizes to mid-cell during cell division and interacts with the core divisome 

component FtsZ.  

GpsB stimulates the GTPase activity of FtsZ and promotes bundling of FtsZ filaments, 

thus enabling cell division. 

Depletion of GpsB caused cell division arrest and cell lysis, whereas overproduction of 

GpsB led to too early activation of FtsZ, resulting in the formation of enlarged cells. 

[27]



isaA IsaA is a highly immunogenic, noncovalently cell wall-bound lytic transglycosylase  that 

is co-regulated with the glycylglycine endopeptidase LytM. 

Deletion of isaA in a MRSA strain led to decreased biofilm formation and reduced β-lactam 

resistance. 

[28,29] 

lrgAB LrgA is an anti-holin that antagonizes the activity of murein hydrolases. 

A lrgAB mutant showed increased extracellular murein hydrolase activity. 

The lrgAB mutation were more sensitive to penicillin when approaching the stationary 

phase of growth, the time at which the lrgAB operon is maximally expressed. However, 

the lrgAB mutation did not affect penicillin-induced killing of cells growing in early-

exponential phase, a time in which lrgAB expression is minimal. 

Inactivation of lrgB increases cell lysis-dependent eDNA release and enhances biofilm 

formation. 

[13,30,31] 

luxS LuxS mutants of S. aureus showed increased biofilm formation, reduced autolysis and 

increased expression of the vancomycin resistance-associated VraRS two-component 

regulatory system. 

[32-35] 

lytSR LytSR senses changes in the membrane potential and confers resistance to antimicrobial 

peptides. 

LytSR is a two-component system that regulates the expression of the anti-holin lrgA and 

lrgB. 

[30,36,37] 

mecA mecA encodes for the PBP2a variant that shows low affinity for β-lactam antibiotics, and 

thus confers β-lactam resistance. 

[38] 

pbp4 A penicillin-binding protein that can confer β-lactam resistance, which is thought to be due 

to its high transpeptidase activity, that results in the production of a highly cross-linked 

cell wall peptidoglycan. 

[1,39,40] 

prsA The foldase PrsA is required for proper folding of PBP2a and thereby promotes β-lactam 

resistance. 

Deletion of prsA altered oxacillin resistance and caused a decrease in PBP2A membrane 

expression without affecting mecA mRNA levels. 

[41,42] 

saeRS The SaeRS two component system controls the production of over 20 virulence factors 

including hemolysins, leukocidins, superantigens, surface proteins, and proteases. 

SaeRS negatively regulates the expression of genes involved in cytolysis (lrgA) and 

autolysis (lytS, atlE and aae). 

A saeRS mutant showed increase susceptibility to penicillin and oxacillin and was more 

prone to autolysis. 

[43-45] 

sasG The SasG surface protein promotes biofilm formation, especially during the accumulation 

phase, which requires physiological levels of zinc ions. 

[46,47] 

sigB SigB affects biofilm maturation by repressing the expression of RNAIII that has anti-

biofilm activities. 

A sigB mutant showed increased RNAIII expression, elevated extracellular protease levels 

and altered murine hydrolase activity. 

[48] 

sle1 The autolysin Sle1 is important for the onset of daughter cell separation. 

Sle1 is a substrate of the ClpXP protease. 

High Sle1 levels in bacteria lacking ClpXP activity confer β-lactam hyper-resistance. 

[18] 

sprX SprX is a small non-coding RNA that positively regulates the expression of the autolysin 

regulator WalR, resulting in increased induction of the autolysins isaA and lytM. 

SprX upregulates the expression of the virulence genes cell wall-associated clumping 

factor B (clfB) and delta hemolysin (hld). 

Down-regulation of sprX resulted in decreased biofilm formation and higher resistance to 

Triton X-100-induced lysis. 

[49,50] 

spx Spx is a stress-induced transcriptional regulator that controls the expression of trfA 

implicated in antibiotic resistance. 

Spx expression is regulated by the ArlRS two-component system. 

Deletion of arlRS sensitized MRSA to oxacillin, while overexpression of Spx in the ΔarlRS 

strain restored oxacillin resistance. 

[5,51-53] 



A spx mutant was hypersensitive to a wide range of stress conditions including high and 

low temperature, high osmolarity, and hydrogen peroxide due to lack of trxB thioredoxin 

reductase transcription. 

YjbH controls the degradation of Spx by ClpP. 

tarO TarO is involved in the initial step of cell wall teichoic acid synthesis. TagO catalyzes the 

reversible transfer of GlcNAc-1-P from UDP–GlcNAc to the undecaprenyl phosphate 

scaffold to produce lipid-α (GlcNAcα–PP-Undecaprenyl). 

A tagO mutant showed increased cell surface hydrophobicity, enhanced autolytic activity, 

impaired biofilm formation, and reduced expression of icaADBC and PIA genes. 

Deletion of tarO in a MRSA strain restored their sensitivity to methicillin. 

[54-56] 

tarA TagA is involved in the step after TagO in cell wall teichoic acid synthesis. TagA is a 

ManNAc transferase that adds ManNAc from a sugar nucleotide donor (UDP-ManNAc), 

producing a ManNAc (β1 → 4) GlcNAcα–PP- Undecaprenyl product, called lipid-β. 

[54] 

tarM/tarS TarM and TarS add α-linked and β-linked N-acetylglucosamine, respectively, to the poly-

ribitol chain of the growing wall teichoic acid. 

Eliminating tarS from a MRSA strain sensitized the bacteria to β-lactams. This suggests 

that β-O-GlcNAcylation of wall teichoic acids is required for MRSA resistance. 

[54,57] 

tarG/tarH The TagGH transporter transfer the wall teichoic acid across the membrane. 

TagG is essential for bile-induced biofilm formation in S. aureus and its expression 

protects the bacteria from bile-induced cell lysis. 

[54,58] 

trfA TrfA is required for the degradation of the MazE antitoxin and thus affects dormancy and 

tolerance to antibiotics. 

trfA transcription is regulated by the redox sensitive transcriptional factor Spx. 

[51,53,59] 

walKR The WalKR two-component system controls cell wall metabolism by regulating autolysin 

production such as sceD, ssaA, lytM and atlA. 

A deletion mutation in walRK conferred vancomycin resistance. 

[15,60] 



Supplementary Table S2 – Primers used for quantitative real-time PCR for 

Staphylococcus aureus. 

Gene Forward Primer Reverse Primer  Reference 

16S rRNA CCAGCAGCCGCGGTAAT CGCGCTTTACGCCCAATA [61] 

abcA CAAGAACCTATTGAACCGACAGAA GTGGGATTTGGAACGACACA [1] 

airR TGCTGATGGTTATGAAATGA CATCTTGTGCCTTAGGATGT [19] 

airS TTCCTAGCCAAAATGACAATA TTCAGTATTTGGAGACGCTAC [19] 

arlR TTCTTCAATATCAAACGGCTTA GACAACAATCTACACCTAT [5] 

asnC TCGGTGGATCTGAACGTGTGGA GTGGCACACTACCATAACGACG [62] 

atlA AACAGCACCAACGGATTAC CATAGTCAGCATAGTTATTCATTG [49] 

cidA CTACTACTACAACTAGGAATCATC TTTAGCGTAATTTCGGAAGC [63] 

clpP AACAACAAATCGCGGTGAAC CATAAATCGCAAAACCAGCTGT This paper 

codY ATCGCATCAAAAGTTGCAGA CGTGATTCAATTACACCAGCA [19] 

essC ACCATCGTTCGCCAAGGA TGGCTGTGGCGGTCTTTC [64] 

fmhB AAGCGAGGTACGACAGTAGAACG CATCTCCATCTTCATGCAACGCA [61] 

glyA CTACAAACTCACAGCCAC GTATCGGAAGCGGTTATG [61] 

gmk2 CCATCTGGAGTAGGTAAAGG CTACGCCATCAACTTCAC [61] 

gtf TGGTGACGCCGAAGGACTC GCAGCACGAGCAGGAACAC [61] 

gpsB TCCTGAGGTCTTGATGTTGC TGGCTCGTGGCTATAGAAGA This paper 

gyrA TGGCCCAAGACTTTAGTTATCGTTATCC TGGGGAGGAATATTTGTAGCCATACCTAC [61] 

gyrB GGTGCTGGGCAAATACAAGT TCCCACACTAAATGGTGCAA [61] 

isaA GCAGGTGCTACTGGTTCATCAG GATTCACGAGCGATGATTGC [49] 

lrgA TGAAACAACAAAAAGACGCATCAAAACCAG ACTTCGCCTAACTTAACAGCACCAG [6] 

lrgB TATTTGGTGTGGCCTTCCTC AAACAGATTGTTGCCGGTTC [63] 

luxS CGGACTACATTCATTAGAACATT TTACAAGCAGGCACTTCA [65] 

lytR ATTAGGAGCTAAGATTCAAAAGATG TTGACTGCTTGTTCAATACG [63] 

lytS GCATGGTTCTATCGTCGGTACATTG ACTTACTTTGCGTTTCGGCTTCAC [6] 

pbp4 CTAAAGGTGAGCAAAGGATAAATGG TCTCTTGGATAGTCCGCGTGT [1] 

proC GGCAGGTATTCCGATTGA CCAGTAACAGAGTGTCCAAC [61] 

prsA AGTTAATGATAAGAAGATTGACGAACAAA GAAGGGCCTTTTCAAATTTATCTTT [42] 

recF AGTTATAGACACGGCACG GCGTCGTCTTATTTGAGG [61] 

rho GGAAGATACGACGTTCAGAC GAAGCGGGTGGAAGTTTA [61] 

RNAII TATGAATAAATGCGCTGATGATATACCACG TTTTAAAGTTGATAGACCTAAACCACGACC [61] 

rpoB TCCTGTTGAACGCGCATGTAA GCTGGTATGGCTCGTGATGGTA [61] 

saeR AAGTGGCGACCATTACAT CATTATTGCCTCAAATACGT [66] 

saeS TGCCAATACCTTCATCGCTAA CAATATCGAACGCCACTTGA [67] 

sasG ATCGTCAGTCACTCATAAC TATCAACACTTCCGTAACC [65] 

sigB TCGATAACTATAACCAAAGCCT AAGTGATTCGTAAGGACGTCT [68] 

sle1 TCAGGATCTGCAACAACGAC CCTTTACCAATTTCAGCACGAC [15] 

sprX ATAATCTTTCTAGACGTATTCAAA CAGGCTATATAGTTCACTCCTACT [6] 

spx GCTTATTACGTCGTCCAATTATTTTA CGTACGAACTTTTCTAGGTAAGAA [16] 

tarA GTTGCTGATGGGACAGGAGT TGCATATTGTGCCGCTTCTA [17] 

tarG ATCAGTATGTGGTTCTTCATC TGCTGCACGGTATGATTCAG [17] 

tarH ATCATTGGCGGTTCTTTGTC TGCACGCATACCACTTGAAT [17] 

tarO TTCCATCCTGCCAAAATA GAATGGAACTGCTAAGATAACA [17] 

tarM TAATGCTAATAATGGTGCTG GGTCCATCACAAATCATAAT [18] 

tarS CACGAAACAAGAAGCACA TGATTACCAACACGCACT [18] 

trfA ATCGAGGCCCGTGGATTTAG TCGACACCTTTTTCAAAGGCA [4] 

walR CAAATGGCTAGAAAAGTTGTTGTAG CAGTAAGCATTATTATTGGCATTTCG [6]
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