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Abstract: Defective functional-group-endowed polymer semiconductors, which have unique photo-
electric properties and rapid carrier separation properties, are an emerging type of high-performance
photocatalyst for various energy and environmental applications. However, traditional oxidation
etching chemical methods struggle to introduce defects or produce special functional group structures
gently and controllably, which limits the implementation and application of the defective functional
group modification strategy. Here, with the surface carboxyl modification of graphitic carbon nitride
(g-C3N4) photocatalyst as an example, we show for the first time the feasibility and precise modifica-
tion potential of the non-thermal plasma method. In this method, the microwave plasma technique is
employed to generate highly active plasma in a combined H2+CO2 gas environment. The plasma
treatment allows for scalable production of high-quality defective carboxyl group-endowed g-C3N4

nanosheets with mesopores. The rapid H2+CO2 plasma immersion treatment can precisely tune
the electronic and band structures of g-C3N4 nanosheets within 10 min. This conjoint approach
also promotes charge-carrier separation and accelerates the photocatalyst-catalyzed H2 evolution
rate from 1.68 mmol h−1g−1 (raw g-C3N4) to 8.53 mmol h−1g−1 (H2+CO2-pCN) under Xenon lamp
irradiation. The apparent quantum yield (AQY) of the H2+CO2-pCN with the presence of 5 wt.% Pt
cocatalyst is 4.14% at 450 nm. Combined with density functional theory calculations, we illustrate that
the synergistic N vacancy generation and carboxyl species grafting modifies raw g-C3N4 materials by
introducing ideal defective carboxyl groups into the framework of heptazine ring g-C3N4, leading to
significantly optimized electronic structure and active sites for efficient photocatalytic H2 evolution.
The 5.08-times enhancement in the photocatalytic H2 evolution over the as-developed catalysts reveal
the potential and maneuverability of the non-thermal plasma method in positioning carboxyl defects
and mesoporous morphology. This work presents new understanding about the defect engineering
mechanism in g-C3N4 semiconductors, and thus paves the way for rational design of effective poly-
meric photocatalysts through advanced defective functional group engineering techniques evolving
CO2 as the industrial carrier gas.

Keywords: g-C3N4; carboxyl group; defect engineering; non-thermal plasma method; CO2 utilization

1. Introduction

Preparation of high-performance photocatalytic materials by using non-metallic ele-
ments (such as C, N, O) with rich reserves and no secondary pollution is an ideal way to
realize solar energy clean conversion [1,2]. Graphitic carbon nitride (g-C3N4), a unique 2D
layered non-metallic material, has an energy band structure that is very suitable for the two
key semi-reaction steps of photocatalytic water splitting and hydrogen production. It also
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has high thermal stability and can be synthesized easily. Therefore, it is widely regarded as
a photocatalytic material with broad application prospects in photocatalytic decomposition
of aquatic hydrogen and artificial photosynthesis. It has important research value in the
fields of organic pollutant degradation and carbon dioxide reduction. However, at present,
g-C3N4 still faces problems such as the serious recombination of photo-generated charge
carriers, unfavorable electronic structure and limited active sites [3,4]. How to regulate its
melon structure and electronic structure for better energy and environmental applications
has become one of the research hotspots in this field.

Recent research shows that introducing defects and functional groups into the triazine
structural unit of g-C3N4 is one effective way to solve the above problems. However, the
reported methods of introducing nitrogen defects usually involve multi-step operation and
harsh reaction conditions (such as high-temperature treatment in the reducing atmosphere).
The experimental process is dangerous and unapplicable at a large scale. More importantly,
most of the defects are uneven surface defects, and the degree of defects uncontrollable,
which is very unfavorable for accurately controlling the electronic structure of g-C3N4.
Therefore, more refined and integrated defect control strategies are needed.

Surface functionalization can improve the photocatalytic performance of g-C3N4 by
adjusting and optimizing its basic structural units (molecular level), which is significantly
different from the strategy of heterojunction construction [5,6]. Surface functionalization
mainly involves functional group modification and surface defect modification. In the
former, adjusting the molecular structure of g-C3N4 to expand its light response and reduce
photoinduced charge recombination is an effective method to improve the photocatalytic
performance of g-C3N4. Given the organic properties of the g-C3N4 conjugated structure, g-
C3N4 photocatalysts can be very feasibly prepared by adjusting the molecular composition
through copolymerization [7,8]. Noticeably, the diversity of organic reactions provides vari-
ous methods to design supramolecules for modifying g-C3N4 with nitrogen-rich precursors
and comonomers. The surface properties, texture and electronic structure of g-C3N4 can
be optimized by introducing special functional groups into the g-C3N4 conjugate system.
Meanwhile, surface defect modification of g-C3N4 can effectively enhance charge sepa-
ration, optimize energy band structure and broaden light response range. Therefore, in
recent years, various surface defects, such as carbon vacancy, nitrogen vacancy, cyanamide
defect and structural edge defect, have been widely studied to improve the photocatalytic
performance of g-C3N4. In general, it is better to integrate the advantages of the above two
defect types, such as ring opening defect carboxyl structure. However, because conven-
tional chemical methods easily cause excessive oxidation corrosion, it is very challenging
to prepare ring opening defective or carboxyl endowed carbon nitride using a green and
industrialized process [9,10].

One important and reasonable idea of preparing carbon nitride photocatalysts modi-
fied by defective functional groups is to first introduce point defects and then graft func-
tional groups on point defects. Clearly, the introduction of point defects, whether holes or
dopants, is powerful in modifying the surface, optical and electrical properties of g-C3N4,
and thus improves the performance of photocatalysis in water decomposition, carbon diox-
ide reduction and nitrogen fixation [11]. Generally, g-C3N4 nanomaterials will have some
significant changes after the introduction of point defects, such as (1) tunable band gap,
(2) defect-induced intermediate gap, (3) larger surface area, (4) inhibited recombination of
photogenerated electrons and holes, and (5) improved adsorption and activation of reactant
molecules. More importantly, our previous work shows that functional group modification
is unstable in most cases if the functional groups are directly grafted. For example, the
carboxyl group has a large space station [12]. If there is no point vacancy configuration,
high-quality defect functional group modification can be hardly achieved.

At present, there is a lack of reliable schemes and techniques for accurate and unified
engineering designing of defects. Noticeably, the common synthesis problem of g-C3N4
is its proneness to aggregation, which requires a layered process to achieve the uniform
introduction of defects. In addition, the developed synthesis method must be low-cost
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and scalable to allow the scaled-up production of controllable defective catalysts, which is
still a great challenge to date. At the same time, the relationship between defects and the
photocatalytic activity of different forms of g-C3N4 needs more exploration, which is worth
research from experimental, calculational and analytical perspectives.

Herein, we designed a low-temperature plasma technology that mainly used CO2
resource to achieve defect site regulation and carboxyl structure introduction in carbon
nitride in one step. Previous research on CO2/H2 plasma confirms that the mixing of
CO2 and H2 directly influences the plasma parameters and results in a large fraction of
H atoms and carboxyl precursor species [13,14]. Both optical emission spectroscopy and
quadrupole mass spectrometry can detect H species (through the lines Hα, Hβ, and Hγ),
CO, CO2, CO2

+, O2, OH, O, C2, CO, and CO+ [15,16]. These plasma components provide
many possibilities for optimizing the surface properties and electronic structure of poly-
mer semiconductors towards rational carboxyl-defective modification, but have not been
studied in the rational design and synthesis of functional group defect-endowed g-C3N4.
A highly ionized H2+CO2 plasma environment was developed using a rational microwave
surface wave plasma approach and employed for rational carboxyl defect regulation of
g-C3N4. In this study, the changes in sample morphology, functional group structure and
photoelectric properties after plasma treatment were analyzed by various characterizations.
Together with density functional theory (DFT) calculation, the mechanisms of electronic
structure optimization and surface-active site improvement were analyzed. In addition, the
necessity for simultaneous use of hydrogen and carbon dioxide plasma and the potential of
non-thermal low-temperature plasma technology in dealing with polymer semiconductor
defect structures were discussed.

2. Results and Discussion
2.1. DFT Calculation of Carboxyl-Defective g-C3N4

Nowadays, g-C3N4 polymeric semiconductors show intriguing prospects by virtue of
rich sources, high stability, and easy regulation. Nevertheless, an ambiguous understanding
about the structural and electronic modulation processes of this fascinating material will in-
evitably hamper further progress. Therefore, the DFT calculation of ideal carboxyl-defective
g-C3N4 was performed to better regulate molecular structure design. Previous studies on
carboxyl defect materials mostly focus on carbon materials similar to carbon nitride materi-
als. The introduction of oxygen-containing functional groups such as carboxyl groups into
carbon materials can regulate the catalytic activity by changing the local properties of the
catalyst. However, the roles of different oxygen-containing functional groups in catalytic
ozonation and quantitative structure–activity relationships of carbon materials are still
unclear. Moreover, previous theoretical calculations ignored the possibility and stability of
g-C3N4 configuration.

Based on the common sense that hydrogen plasma easily produces N-site defects [17,18],
we determined a variety of possible carboxyl defect structures of g-C3N4 through DFT
calculation (Figure 1). In the typical closed-loop state, the evolutionary structure is unstable
after simulation, which is manifested in the disintegration of the carboxyl structure, and
the two-dimensional plane structure cannot be maintained. Therefore, we believe that the
open-loop defect structure of g-C3N4 is favorable [19]. Many evolutionary simulations
demonstrate that the structure designed in Figure 1d,e is relatively stable, and the open-
loop state finally evolves into a local stable state with two-dimensional plane stability.
Calculation of the density of states of the optimized structure shows that despite no
large change in the main energy band structure, there is an obvious intermediate energy
level around 1.15 eV, which is mainly caused by the change of N 2S orbit. Therefore, we
believe that plasma treatment is suitable for producing carboxyl defect sites with open
ring structure. From the perspective of DFT, this defect site is conducive to optimizing the
electronic structure of the material and is expected to provide more surface-active sites,
especially for the energy level requirements of photocatalytic hydrogen production.
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Figure 1. The DFT modeling closed-loop and open-loop structure of carboxyl-defective g-C3N4 at N
vacancy point defect site (gray, blue, pink and red spheres: C, N, Cu and O, respectively). (a) Original
closed-loop configuration and (b) unsubstantiated structure after evolution with (c) 2D in-plane top
view structure; (d) original open-loop configuration and (e) rational structure after evolution with
(f) corresponding total density of states.

Introducing nitrogen deficiency into the framework of g-C3N4 as the critical preposi-
tioned point defects for the subsequent carboxyl grafting is one effective solution to the
catalyst preparation problems, so it has attracted extensive attention from researchers.
However, the reported methods of introducing nitrogen defects usually involve a multi-
step operation, and need harsh reaction conditions (such as reducing atmosphere or high
temperature treatment), which are dangerous in the experimental process, practically inap-
plicable and cannot control the degree of defects. Therefore, how to prepare g-C3N4 with
controllable nitrogen defect by a simple synthetic method and thus to further improve the
photocatalytic activity is of great research significance [20,21]. Meanwhile, effective and
mild treatment of carboxyl defects without affecting the main structure of materials is also
a major challenge in the regulation of carboxyl defects. As an electroless discharge, the
microwave surface wave plasma technique described above can form large-area uniform
high-quality joint H2+CO2 plasma, which has the potential of large-scale industrial appli-
cation. Furthermore, the microwave surface wave discharge mode used here is expected
to show great potential in rational regulation of carboxyl defects of polymer semicon-
ductor photocatalysts and in sustainable CO2 utilization, in addition to the traditional
dielectric-barrier discharge mode. CO2, a cheap, non-flammable and non-explosive gas, is a
practical choice from economic and safety perspectives. Moreover, since CO2 is considered
to be the primary greenhouse gas contributing to global warming, the conversion of CO2
molecules into high-value-added products is of great importance for fundamental research
and industrial applications.

Figure 2 illustrates the proposed schematic diagram of preparing carboxyl-defective
g-C3N4 by introducing prepositioned point defects through joint H2+CO2 plasma. The
core concept to endow defective functional groups is to first introduce point defects by H2
plasma and then in situ graft functional groups on point defects by CO2 plasma, which
have been verified to be useful in the modulation of defective carbon nitride materials for
electrochemical applications [22].
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Figure 2. The proposed schematic diagram of preparing carboxyl-defective g-C3N4 by introducing
prepositioned point defects through joint H2+CO2 plasma.

2.2. Morphology

On the basis of theoretical calculations and simulations, we used the modulated
microwave nonthermal plasma equipment to gently and quickly modify the materials.
Figure 3 displays the typical TEM images of raw g-C3N4 and H2+CO2 plasma-treated
g-C3N4 (H2+CO2-pCN). The raw g-C3N4 has an irregularly sized and thick-layer-stacked
structure (Figure 3a,b). Interestingly, the TEM images of H2+CO2-pCN (Figure 3c,d) show
a stretched graphene-like nanosheet structure with many mesopores. The morphological
changes of g-C3N4 photocatalysts before and after the H2+CO2 plasma treatment are due to
the shear effect of mixed plasma species of H (through the lines Hα, Hβ, and Hγ), CO, CO2,
CO2

+, O2, OH, O, C2, CO, and CO+. The multilayer nanobelt structure of H2+CO2-pCN
reveals a large number of active edge sites, which can realize multiple visible-light reflection
and scattering to improve energy utilization efficiency, and have a large interlayer distance,
which is conducive to mass transfer [23,24].
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2.3. Physicochemical Characterization

All the raw g-C3N4 samples were synthesized via urea thermal polymerization. The
crystal structure of the polymer semiconductor g-C3N4 was investigated by XRD patterns
(Figure 4a). Specifically, the two main peaks around 13.1◦ and 27.7◦ can be indexed to (100)
interplanar structural packing and (002) interlayer stacking peaks, respectively. Different
types of plasma treatments basically did not change the polymerization structure of the
material, indicating that the method has high mildness and will not excessively oxidize
or corrode the material or destroy its photoelectric properties and surface-active sites.
FTIR was further used to identify the potential surface functional group structure. The
multiple absorption peaks at 1200–1650 cm−1 in Figure 4b correspond to the stretching
vibrations of N=C and N–(C)3 in the CN heterocyclic ring, and the sharp peak at 814 cm−1

is attributed to the respiratory vibration of the triazine structural unit [25]. The triazine
structure of the g-C3N4 matrix was maintained after the plasma treatment. The multiple
broad peaks at 3000–3500 cm−1 belonging to N-H, –OH and –COOH stretching vibrations
slightly changed in the plasma-treated sample, which may be evidence for the reformation
of carboxyl-related structures. The most important evidence for the successful introduction
of carboxyl groups comes from solid-state 13C NMR (Figure 4c). All samples contain two
strong peaks at 165.8 and 156.3 ppm (Figure 4c), which correspond to the characteristic
C3N and C2N–NHx atoms in the heptazine units of g-C3N4, respectively. In addition, a
new broad peak at about 147–155 ppm emerges only in H2+CO2-pCN, which belongs to
the C atoms in –COOH. These structural and functional group characterization results
indicate that the H2+CO2 plasma method is useful in developing carboxyl-defective g-C3N4
photocatalysts [26,27]. Noticeably, none of the H2-pCN and CO2-pCN control samples
show carboxyl properties, which indicates the necessity of the joint H2+CO2 plasma mode.

The UV-vis spectrum exhibits an optical absorption edge around 430 nm (Figure 4d).
On the basis of the above structural characterizations, we conclude that a typical polymeric
carbon nitride with a tri-s-triazine-based structure is successfully obtained. The optical
properties and light-harvesting abilities of g-C3N4 samples were slightly modified by
the unique H2+CO2 plasma treatment. The bandgaps and band structure of g-C3N4
were illustrated according to the electronic bandgaps determined from the transformed
KubelkaMunk function in Figure 5e as well as the XPS valence band spectra of raw g-C3N4
and H2+CO2-pCN (Figure 4f). The narrowed bandgap of H2+CO2-pCN (2.58 eV) compared
with the initial state of raw g-C3N4 (2.70 eV) reveals the enhanced visible-light harvesting
ability and electronic structure of the carboxyl deficient g-C3N4 [28].

XPS demonstrates that the chemical compositions of g-C3N4 both before and after
plasma treatment are mainly carbon and nitride as well as a tiny signal of O 1s, which
was slightly enhanced after the H2+CO2 plasma treatment (Figure 4f). The calculated
surface O/C atomic ratio increases from 0.021 to 0.043 during the plasma process, which
aligns with the introduction of carboxyl groups verified by 13C NMR. High-resolution C 1s
(Figure 5b), N 1s (Figure 5c) and O 1s (Figure 5d) spectra of H2+CO2-pCN were investigated
to further reveal the defect structure and chemical composition of H2+CO2 plasma-treated
g-C3N4. The C 1s spectrum exhibits two main peaks centered at 284.8 and 288.4 eV, which
are assigned to the graphitic carbon and the sp2-bonded carbon of the tri-s-triazine-based
structure, respectively. The N 1s spectrum shows four binding peaks at 398.7, 399.3, 400.8
and 404.5 eV, representing bi-coordinated N (C–N=C), tri-coordinated N (N-3C), amino N
(C–NHx, x = 1,2) and π-excitation in the framework, respectively [29]. The strong amino N
in H2+CO2-pCN indicating more exposed edges was obtained for fast charge separation.
The O 1s XPS spectra of H2+CO2-pCN show clear carboxyl properties by an enriched
O–C=O signal at 531.3 eV, which is invisible in raw g-C3N4 samples [30]. All the XPS
results show that the carboxyl defects are preferentially formed, and the mechanism may be
related to the deficient N point site, which is consistent with the theoretical calculation and
experimental design. In our previous work using ammonia plasma and oxygen plasma,
such an obvious beneficial carboxyl structure has never been observed, so this result
is exciting.
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2.4. Electronic and Electrochemical Properties

MCNN has higher photogenerated electron hole separation efficiency than g-C3N4
(Figure 6a,c), which can be attributed to the electron repositioning caused by the carboxyl
defects. After the H2+CO2 plasma treatment, the fluorescence signal decreases gradually,
indicating the introduction of carboxyl group is conducive to the rapid radiation electron
hole recombination at the band tail of carboxyl defects. The electrochemical impedance
diagram shows that the charge transfer of carboxyl deficient g-C3N4 is enhanced in com-
parison with the original g-C3N4. The valid evidence of more obvious carrier separation
comes from the significantly enhanced photocurrents of H2+CO2-pCN over the raw g-C3N4
(Figure 6c) [31,32]. EPR was employed to further study the state of delocalized electrons on
the π–conjugated aromatic ring of g-C3N4, which showed the same g value. This result sug-
gests the electronic structure after H2+CO2 plasma relocation is still highly covalent rather
than delocalized, indicating that plasma treatment is a conservative carboxyl structure
regulation, which is different from other reported chemical methods.
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2.5. Visible-Light-Driven H2 Evolution Performances and Optimization Mechanism

The above physiochemical and photoelectric performance tests confirm that only the
H2+CO2 plasma-treated g-C3N4 samples (H2+CO2-pCN) are endowed with the proposed
carboxyl structure. A simple photocatalytic hydrogen production experiment was car-
ried out (Figure 7a,b) to further verify the properties of electronic structure and active
site regulation. The gas chromatography determined H2 evolution rates over the 5 wt%
Pt loaded g-C3N4 samples before and after H2+CO2 plasma treatment were 1.68 and
8.53 mmol h−1g−1, respectively. The photocatalytic H2 evolution results reveal the signifi-
cant photocatalytic performance enhancement of H2+CO2 plasma-treated g-C3N4, which
was empowered by the rational CO2 plasma generated carboxyl defective structure based
on the H2 plasma generated nitrogen point-deficient g-C3N4. The H2+CO2-pCN produced
by this facile in situ plasma synthesis strategy also shows a high apparent quantum yield
(AQY) of 4.14% at 450 nm, which is close to industrial utility [33].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 15 
 

 

situ plasma synthesis strategy also shows a high apparent quantum yield (AQY) of 4.14% 
at 450 nm, which is close to industrial utility [33].  

 
Figure 7. (a) Time course of H2 evolution and (b) rates of the photocatalytic H2 evolution over 5 wt.% 
Pt-loaded g-C3N4 before and after H2+CO2 plasma treatment in 10 vol% TEOA solution under visi-
ble-light irradiation (λ ≥ 380 nm) (30 mg of the catalyst used in each experiment). 

With the help of theoretical calculation, we believe the improvement of hydrogen 
production performance of photocatalysts prepared by the plasma method is due to the 
favorable hydrophilic sites [34,35] and rearranged electronic structure [36,37] caused by 
carboxyl defects (Figure 8). The carboxyl defect sites may also promote the binding state 
of Pt cocatalysts for H2 generation. As a result, more active sites for hydrogen production 
were developed, and thus both the H2O to H2 reaction and the H+ to H2 reaction were 
boosted, leading to the superior H2 evolution performance.  

 
Figure 8. Schematic diagram of the dual-enhancement mechanism of structural carboxyl defect sites 
on the promoted H2 production activity of g-C3N4. Left: structure diagrams of defective carboxyl site 
with hydrophilic properties facilitating the H2O to H2 reaction; right: corresponding charge distri-
bution map with electron-rich site facilitating the H+ to H2 reaction. 

Based on the above experimental results, we believe that the plasma modification 
strategy proposed in this paper can effectively control the defect structure and electronic 
structure of g-C3N4 material to promote its photocatalytic activity. Although the introduc-
tion of appropriate carboxyl groups is beneficial to the g-C3N4 polymer semiconductor, 
the preparation methods are limited long-term [10,38]. The non-thermal microwave 
plasma method developed here is able to process samples at the kilogram level within 
minutes in the laboratory stage [39,40], and thus is promising in the rational design and 
low-cost, scaled-up preparation of structure precisely modulated materials for industrial 
application.  
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visible-light irradiation (λ ≥ 380 nm) (30 mg of the catalyst used in each experiment).

With the help of theoretical calculation, we believe the improvement of hydrogen
production performance of photocatalysts prepared by the plasma method is due to the
favorable hydrophilic sites [34,35] and rearranged electronic structure [36,37] caused by
carboxyl defects (Figure 8). The carboxyl defect sites may also promote the binding state
of Pt cocatalysts for H2 generation. As a result, more active sites for hydrogen production
were developed, and thus both the H2O to H2 reaction and the H+ to H2 reaction were
boosted, leading to the superior H2 evolution performance.
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distribution map with electron-rich site facilitating the H+ to H2 reaction.
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Based on the above experimental results, we believe that the plasma modification
strategy proposed in this paper can effectively control the defect structure and electronic
structure of g-C3N4 material to promote its photocatalytic activity. Although the introduc-
tion of appropriate carboxyl groups is beneficial to the g-C3N4 polymer semiconductor, the
preparation methods are limited long-term [10,38]. The non-thermal microwave plasma
method developed here is able to process samples at the kilogram level within minutes
in the laboratory stage [39,40], and thus is promising in the rational design and low-cost,
scaled-up preparation of structure precisely modulated materials for industrial application.

3. Materials and Methods
3.1. Materials

Analytical grade urea obtained from Aladdin Industrial Corp. (Shanghai, China)
was used as the precursor of g-C3N4 and used without further purification. High-purity
hydrogen gas (containing 95% Ar as safety carrier gas) and high-purity carbon dioxide gas
were purchased from Qingkuan Corp. (Shanghai, China).

3.2. Preparation of Raw g-C3N4 and Carboxyl-Defective g-C3N4

Raw g-C3N4 was synthesized by direct thermal polycondensation of 10.0 g of urea,
which was put in a covered crucible and placed in muffle furnace at 560 ◦C for 4 h at a
heating rate of 5 ◦C·min−1. The resulting light-yellow powder after natural cooling to
room temperature was ground to a fine powder in an agate mortar and marked as g-C3N4.
Plasma-treated modified g-C3N4 samples were all synthesized by plasma immersion in a
sample chamber for 3 min. The plasma-treated g-C3N4 samples were named according to
the used plasma source (H2-pCN, CO2-pCN, H2+CO2-pCN).

3.3. Plasma Equipment and Process

The plasma technique is well recognized to be able to generate very highly ionized
reactive plasma species (e.g., electrons, ions, excited atoms), and to enable reactions that
cannot be achieved by conventional methods. For decades, CO2 plasma has been used
as a soft oxidation approach to generate the surface carboxyl group of carbon materials
to achieve hydrophilicity or improved electrochemical activity. Besides, dielectric barrier
discharge plasma was used to prepare N/C vacancy-embedded g-C3N4 catalysts in situ
under H2 atmosphere. These generated plasma species further interact with the polymer
surface through possible reactions such as etching, cross-linking, and chemical modification.
As a consequence, functional groups with desired surface properties are generated on the
surface of polymers, such as –OH, –CO, –NH and –COOH. To date, many plasma processes
have been developed. Among them, CO2 plasma is capable of adhesion promotion as it can
form –COOH on polymer surface, and is somewhat less destructive to polymer backbone
chains than conventional oxygen-based plasma. To achieve large-area uniform plasma
surface modification in industry, the demand for plasma source is increasing. Due to high
dissociation, large area and uniformity, electrodeless microwave plasma is promising in
industry, although the equipment is expensive.

For this purpose, we developed a microwave surface wave plasma device shown in
Figure 9 to achieve uniform plasma surface modification. The 2.45 GHz microwave was
employed as a source to generate surface wave plasma under a quartz window via slot
antenna cut on the bottom of waveguide [41]. The working gas system was determined
by a vacuum system, cut-off valves, a gas mass flow controller and a gas tank together to
create a necessary environment in the processing chamber. When microwave energy was
applied, uniform plasma was formed within 1 s. On the sample state, we set an electrode
to apply bias voltage to form an accelerating field, which can be used to control the ion
energy bombing to the sample.
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3.4. Characterization of Carboxyl-Defective g-C3N4

Morphology of g-C3N4 photocatalysts before and after the H2+CO2 plasma mod-
ification was recorded by a JEM-2200F transmission electron microscope (TEM) at an
accelerating voltage of 300 kV. The polymerization structure of the photocatalysts was
determined by an X-ray diffractometer (XRD, Smartlab9K Advance). Fourier transform
infrared spectra (FTIR) were recorded with a Nicolet IS5 spectrometer. Solid-state 13C
nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance III 400 NMR
spectrometer. A Thermo Scientific Escalab 250Xi X-ray photoelectron spectroscope (XPS)
was run under Al Kα monochromatization to perform XPS elemental analysis and valence
spectrum analysis. All ultraviolet-visible (UV-vis) absorption spectra were conducted
with a UV-vis absorption spectrophotometer (UV-3600 plus). The photo-electron and hole
recombination rates of the photocatalysts were determined by a fluorescence spectrometer
(PL, Hitachi FLS1000) at room temperature. Electron paramagnetic resonance (EPR) signals
were investigated on a Bruker model EPR A300 spectrometer. Electrochemical impedance
spectroscopy (EIS) and transient photocurrents were recorded by a Chi660e electrochemical
workstation based on a conventional three-electrode system from frequency 0.01 Hz to
100 kHz at the circuit potential.

3.5. DFT Calculation

Spin-polarized DFT calculations were performed using the package CASTEP. The
core electrons were treated with ultrasoft pseudopotentials. Given the calculation cost,
geometrical optimization was conducted only at the gamma point. After the optimization,
the total density of states and differential charge density of the carboxyl defect endowed
g-C3N4 systems were calculated with a cutoff energy of 340 eV and a self-consistent field
tolerance of 1 × 10−6 eV per atom.

3.6. Photocatalytic Degradation Experiment

Visible-light-driven photocatalytic H2 production was tested through a 25 ◦C thermo-
static Labsolar-6A system (Perfect Light Company, Beijing, China) with a 300 W Xenon-arc
lamp with a 380–420 nm cutoff filter as the light source. A TEOA aqueous solution (10 vol%)
was used to provide a sacrificial agent. A H2PtCl6 solution was used to prepare 5 wt.% Pt-
loaded g-C3N4 samples. After illumination per hour under magnetic stirring, the produced
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gas was quantified by a Shimadzu GC-2018 gas chromatograph. For the photocurrent
measurements, the same Xenon lamp and filter were used, which is consistent with the
light source used in the photocatalysis experiments.

4. Conclusions

Using semiconductors to absorb solar energy to produce hydrogen from water decom-
position is a very effective way to convert solar energy into chemical energy. g-C3N4 has
attracted extensive attention because of its high physicochemical stability, adjustable elec-
tronic structure and molecular adjustability. The key to improving the energy application
of g-C3N4 materials is to accurately regulate the structures, so as to modulate photoelectric
properties and surface-active sites. At present, most studies focus on enlarging the surface
area of catalysts, elemental doping and forming complexes with other (semi)conductors, so
as to optimize solar energy utilization. A few attempts have been made to enhance its inher-
ent low activity based on precise molecular tunability strategies. In this work, a unique fast
H2+CO2 plasma immersion treatment approach was developed to enhance the migration
and separation of charge carriers. We find the proposed synergistic N vacancy generation
and subsequent carboxyl species grafting pathway is reasonable and necessary. The ring
opening carboxyl defect structure is considered to be stable and is optimized by DFT
calculation, resulting in significant changes in the intermediate energy level. The existence
of carboxyl defects in the polymer g-C3N4 matrix promotes the formation of a porous struc-
ture, and exposes more active sites for photocatalytic hydrogen production. In conclusion,
the rational H2+CO2 plasma-treated H2+CO2-pCN with an optimized electronic structure
and active sites shows 5.08-times higher photocatalytic hydrogen production performance.
Compared with the ammonia plasmon and oxygen plasma treatment method previously
reported by our group, the current work is more in-depth and accurate, and is designed
beyond the conventional chemical etching, element doping and functional group regula-
tion. In terms of synthetic method, an in-depth multi-step collaborative structure design is
proposed and verified, and systematic DFT calculations and electronic mechanism opti-
mization mechanisms are involved. This study provides fresh understanding about precise
molecular regulation of g-C3N4 via a sustainable and scalable CO2 plasma technique.
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