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Cancer is a common name for several distinct diseases caused by uncontrolled cell
growth and proliferation. More than 200 types of cancer are described in the literature,
each of them with its own identity given by specific gene, protein or hormone signatures.
However, concerted and redundant dysregulations of mitogenic pathways arising from
growth factor receptors (GFRs) are common events in all cancer types [1,2].

These sophisticated membrane-spanning proteins harmonize the information flow
from several sources, controlling the mitogenic network in the normal cell. The complexity
of GFRs function is supported by their multiple regulatory mechanisms, including feedback
loops, multidirectional cross-communication and redundancy in downstream signalling.
Recent large-scale studies identified alterations in genes and proteins of several GFRs such
as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor α/β
(PDGFR α/β), vascular endothelial growth factor receptors (VEGFRs), IGF-1R, fibroblast
growth factor receptor (FGFR), etc. [3].

The majority of malignant diseases are related to aberrant intra- and intercellular
communication, associated with subverted GFRs pathways. At the molecular level, the
overactivation of GFRs induces a mitogenic response and maintains cancer cell growth.
Four main mechanisms are known to generate aberrant activation of GFRs in malignant
diseases: autocrine/paracrine activation, genomic amplification, chromosomal rearrange-
ments and gain-of-function mutations [4,5].

GFs mediate their mitogenic function by binding to and activating GFRs with intrinsic
tyrosine kinase (TKs) activity. Cancer cells produce GFs or reprogram and force other
cells to produce GFs according to their own needs, becoming independent of endocrine
signalling and finally leading to constitutive receptors activation in tumours [6–8].

GFRs gene amplification, also known as genomic DNA copy number amplification,
has been found in a wide variety of tumours, causing receptor protein upregulation and
overactivation, inducing oncogenic behaviour and resistance to therapy [9,10].

Chromosome rearrangements mechanism is a usual condition of malignant cells, in
which a fragment of chromosomes is deleted or inverted, giving rise to fusion proteins that
are responsible for the formation of several types of malignancies. The BCR-ABL fusion
oncoprotein, which fuses the ABL1 tyrosine kinase gene on chromosome 9 to the BCR
gene on chromosome 22, was the first tyrosine kinase fusion identified [11]. Chromosome
rearrangements leading to fusion proteins are also found in many solid cancers, such as
breast cancer, brain tumours, lung cancer, colorectal cancer, etc. [12–15].

Gain-of-function mutations can exercise mitogenic functions by stimulation of growth
factors or by inducing constitutive activation of GFRs, driving uncontrolled cell prolifera-
tion and tumour progression [16].

Once activated, GFRs trigger a wave of intracellular signalling events, mediated by
two major pathways: mitogen-activated protein kinase (MAPK) and phosphoinositide
3-kinases (PI3K) cascades [17].

Many intracellular proteins involved in rat sarcoma virus (RAS)/MAPK or PI3K/AKT
pathways can also function as oncogenes. Mutations affecting key proteins in RAS/MAPK
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or PI3K/AKT pathways are known to be crucial in maintaining the malignancy of different
types of cancers [18–20].

Many effector proteins in GFRs signal transduction, such as PI3K, extracellular signal-
regulated kinase 1/2 (ERK1/2) or MAPK can act as junction for multiple signalling path-
ways [21]. It is also well demonstrated that mutations in mammalian target of rapamycin
(mTOR), RAS or rapidly accelerated fibrosarcoma (RAF) are very common in malignant
diseases [22].

Crosstalk and collaboration between GFRs and other protein families are constantly
being discovered, making the receptor signalling system far more complex. For example, G
protein-coupled receptors (GPCRs) can engage GFRs to mediate cell proliferation, differ-
entiation, and vice versa, several GFs use GPCRs proteins to exert their mitogenic signal
signalling [23].

Moreover, the evasion of apoptotic signals and the requirement of angiogenesis were
also found to be of fundamental importance for tumour progression and metastasis. In
this context, high expression of GFRs aids blood vessel formation, cell migration and the
inhibition of apoptosis [24,25].

All this information has guided the development of compounds, designed to target
one or more of these pathways in cancer cells. A vast variety of GFR signalling inhibitors
have been developed, many of which have been approved by the Food and Drug Adminis-
tration (FDA). While some FDA-approved inhibitors are selective for individual GFRs (e.g.,
Alectinib, Afatinib, Dacomitinib, Erlotinib, Gefitinib, Lapatinib, etc.), others demonstrate
efficiency by inhibiting several receptors (e.g., Dasatinib, Lestaurtinib, Imatinib, Ponatinib,
Vandetanib, etc.). However, the development of novel therapeutic strategies for cancer
treatment is tightly restricted by the similarities between the normal and malignant cells.
GFR-directed therapy that would theoretically selectively kill malignant cells and reduce
the toxicity associated with nonselective conventional chemotherapy may be a promising
treatment for cancer. Based on this rationale, different strategies have been developed to in-
hibit the oncogenic effects of GFRs (e.g., small-molecule inhibitors, monoclonal antibodies,
siRNA, antisense oligodeoxynucleotides, triple helix, dominant-negative mutants, etc.).

This Special Issue will cover the latest preclinical and clinical progress made in the
areas associated with GFRs’ oncogenic signalling.
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