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Excessive fetal growth alters HSPCs homeostasis through 

epigenetic programming of EGR1, KLF2, and KLF4 

transcriptional network 

Supplementary information 

Supplemental Figure 1: Methylation data processing. A heatmap is shown 

displaying the -log10 p-values of linear regression for top ranking principal components 

for each known covariate. The color keys correspond to numeric values for each 

covariate, with red indicating greatest significance. 

Supplemental Figure 2: HSPC subpopulations analysis (A) UMAP representing 

subpopulation clusters within each HSPC lineages. (B) Dot plot representing key 

markers used to annotate subpopulations. LT-HSC, long-term hematopoietic stem 

cell; HSC, hematopoietic stem cell; MPP, multipotent progenitor; LMPP, lymphoid-

primed multipotent progenitor; CLP, common lymphoid progenitor; Ery, Erythroid; 

EMP, erythron-myeloid progenitor; ErP, erythroid progenitor; Mk/Er, megakaryocyte 

and erythrocyte; GMP, granulocyte-monocyte progenitor; DC, dendritic cell; cycle, in 

G2/M phase. 

Supplemental Figure 3: DEG analysis. (A) Volcano plot representing DEG 

comparing LGA vs CTRL considering all lineage. Differentially expressed genes with 

adjusted p-value <0.05 and |log2FC| >0.5 are shown in red. (B) Bar plot representing 

the distribution across lineage for DEGs.  (C) Volcano plot representing DEG analysis 

at cell population level comparing LGA vs CTRL. Differentially expressed genes with 

adjusted p-value <0.05 and |fold change| >0.5 are shown in red. LT-HSC, long-term 
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hematopoietic stem cell; HSC, hematopoietic stem cell; MPP, multipotent progenitor; 

LMPP, lymphoid-primed multipotent progenitors; Erythro-Mas, erythroid and mast 

precursor cell. 

Supplemental Figure 4: ATAC-seq data processing. (A) UMAP representing 

subpopulation clusters based on chromatin accessibility. Clusters are associated to 

lineage based on overlap with annotations through label transfer from transcriptomic 

data. (B) Dot plot representing the top enriched transcription motifs within lineage 

specific peaks. Lineages no represented do not have lineage specific peaks. (C) 

Volcano plot representing differentially accessible peaks (Down/Up peaks). 

Differentially open peaks with adjusted p-value <0.001 and |log2FC| >0.25 are shown 

in red. (D) Dot plot representing enrichment for transcription factor motif within Up 

peaks identified comparing chromatin accessibility between LGA and CTRL. 

Supplemental Figure 5: TFs and pseudotime lineage specific characterization. 

(A) Heatmap representing the lineage specific regulon activity highlighting lineage

specific TF. LT-HSC, long-term hematopoietic stem cell; HSC, hematopoietic stem 

cell; MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent progenitors; 

Erythro-Mas, erythroid and mast precursor cell. Regulon including lower confidence 

targets are identified with the “e” suffix. (B) Boxplots of the pseudotime distribution 

across lineage demonstrating a positive correlation between differentiation process 

and pseudotimes. 

Supplemental Methods 
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Sample collection. Cord blood from neonates was the source of material for this 

study. Biological samples and clinical information were collected from consenting 

women who delivered healthy infants without any anomalies or dysmorphic features 

and following an uncomplicated intrapartum course, without evidence of fetal distress 

(normal Apgar scores and cord blood gases without acidemia). The groups were 

comprised of infants with appropriate growth (CTRL) or large for gestational age (LGA) 

neonates (matched for gestational age at delivery and sex). Both birth weight and 

ponderal index (a measurement of neonatal weight relative to length) were used to 

identify case and control subjects. LGA were defined by birth weight and ponderal 

index values greater than the 90th percentile for gestational age and sex. Control 

infants had normal parameters (between 10th and 90th percentiles) for both birth weight 

and ponderal index. Maternal and infant characteristics are shown in Supplemental 

Table 7. 

Isolation of CD34+ HSPCs. CD34+ cells, which constitute approximately 1% of 

nucleated blood cells in umbilical cord blood, were isolated from the cord blood 

specimen using an immunomagnetic separation technique. Mononuclear cells were 

separated using PrepaCyte-WBC following which CD34+ cells were obtained by 

positive immunomagnetic bead selection, using the AutoMACS Separator (Miltenyi 

Biotech). This resulted in the isolation of cells with 95% purity. We cryopreserved the 

purified cells in 10% dimethyl sulphoxide using controlled rate freezing. 

Genome-wide DNA methylation assay. The HELP-tagging assay was performed 

after isolation of genomic DNA from frozen CD34+ HSPCs, digested to completion by 

either HpaII or MspI. The digested DNA was ligated to two custom adapters containing 
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Illumina adapter sequences, an EcoP15I recognition site and the T7 promoter 

sequence. Using EcoP15I, we isolated sequence tags flanking the sites digested by 

each enzyme, methylation-sensitive HpaII or methylation-insensitive MspI, followed 

by massively parallel sequencing of the resulting libraries (Illumina Technology). HpaII 

profiles were obtained for each sample, calculating methylation scores using a 

previously generated MspI human reference. 

Single-cell RNA sequencing libraries preparation. Each cryopreserved CD34+ 

cells from each sample were thawed in a water bath at 37°C 1min before to be 

resuspended in 10 ml of pre-heated medium. Cell suspensions were filtered with a 

MACS pre-separation filter 20 μm and centrifuged 5min at 300g. Cell pellets were 

resuspended in Deionized Phosphate Buffer Saline 1X (DPBS, GIBCO™, Fisher 

Scientific 11590476) with 0.04% Bovine serum albumin (BSA) for counting on a 

Corning Cytosmart cell counter by Trypan blue (Trypan Blue solution, 11538886, 

Fisherscientific) counterstaining for viability check. Cell suspension was loaded on a 

Chromium 10x Genomics controller following the manufacturer protocol using the 

chromium single-cell v3 chemistry with single indexing. Specifically, single cells, 

reverse transcription (RT) reagents, Gel Beads containing barcoded oligonucleotides, 

and oil were combined on a microfluidic chip to form nanoliter-scale reaction vesicles. 

Within each reaction vesicle, a single cell was lysed, the Gel Bead was dissolved to 

free the identically barcoded RT oligonucleotides into solution, and reverse 

transcription of polyadenylated mRNA occurs. As a result, all cDNAs from a single cell 

will have the same barcode, allowing the sequencing reads to be mapped back to their 

single cells of origin. The gene expression library also carries an additional unique 

molecular identifier (UMI) to distinguish individual, captured mRNA molecules for 
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quantification. The preparation of NGS libraries from these barcoded cDNAs was then 

carried out in bulk reaction. Gene expression libraries were sequenced using 100 pb 

paired-end reads on NovaSeq 6000 system following the manufacturer 

recommendations (Illumina) at a minimum depth of 25,000 reads. Following 

sequencing, BCL or FASTQ files can be analyzed using the Cell Ranger analysis 

pipeline. Cell Ranger performs sample demultiplexing, barcode processing, and 

counting of transcripts in single cells. Secondary analyses, such as dimensionality 

reduction, cell clustering, and differential gene expression, are performed through 

Seurat and detailed bellow.

HTO protocol. After cell counting and viability check, cell Hashtag (HTO) staining was 

used for cell stimulation following the cell-hashing protocol.1 For each samples, cells 

were resuspended in 100 μl of staining buffer (DPBS BSA 2%, Tween-20 0,01%) with 

10 μl of Fc blocking reagent HumanTruStainFc™ (422302, Biolegend) and incubated 

15 min at 4°C. 1 μl of antibody was added (TotalSeq™-A anti-human Hashtag from 1 

to 6, 0251, 0252, 0253, 0254, 0255, 0256, Biolegend) followed by a 30 min incubation 

at 4°C. Cells were washed 3 times in staining buffer with one filtration step by MACS 

pre-separation filter 20 μm (Miltenyi Biotec) to a final resuspension in DPBS 0.04%. 

Cell suspensions from each sample were pooled (n=3 to 6 per library) prior to loading 

on a Chromium 10x Genomics controller following the manufacturer protocol using the 

Chromium single-cell v3 chemistry with single indexing. Gene expression libraries 

preparation were performed as described above. HTO libraries preparation were 

performed using the adapted Biolegend protocol (https://www.biolegend.com/en-

us/protocols/totalseq-a-antibodies-and-cell-hashing-with-10x-single-cell-3-reagent-
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v3-3-1-protocol). The resulting libraries were pooled at equimolar proportions with        kit-

a 9 for 1 ratio for Gene expression library and HTO library respectively. 

Nuclei isolation for Single-cell ATAC sequencing 

After thawing CD34+ cells as describe in Single-cell RNA sequencing libraries 

preparation, nuclei were isolated based on 10X Genomics protocol for low cell input 

(<100k cells, Nuclei Isolation for Single Cell ATAC Sequencing CG000169-Rev D). 

Lysis time, optimized to isolate without damage nuclei, was set to 3min. 

Single-cell ATAC sequencing libraries preparation. Chromatin accessibility was 

analyzed on a cell by-cell basis through the use of microfluidic partitioning to capture 

single cells and prepare barcoded, next-generation sequencing (NGS) libraries. 

Transposition is performed in bulk upon application of the enzyme transposase, which 

enters the nuclei and preferentially fragments the DNA in open regions of chromatin 

while adapter sequences are simultaneously added to the ends of the DNA fragments. 

Transposed nuclei are loaded onto a microfluidic chip, which is run in the Chromium 

Controller instrument. In the instrument, nuclei are partitioned individually with a single 

Gel Bead forming droplets, or Gel Beads-in-emulsion (GEMs). Each Gel Bead 

contains oligonucleotides with a unique 16 base pair 10x Barcode sequence and 

matching adapter sequence that enables attachment of transposed DNA fragments 

for an ATAC library. The product is taken through a pre-amplification PCR step to fill 

gaps and ensure maximum recovery of barcoded ATAC fragments. Subsequently, the 

pre-amplified product is used as input for ATAC library construction. Resulting libraries 

were sequenced using 150bp paired-end reads on the Illumina NovaSeq 6000 system 

at a recommended depth of 25,000 read pairs per cell. Following sequencing, BCL or 
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FASTQ files were analyzed using the Cell Ranger ATAC analysis pipeline. Cell Ranger 

ATAC performs sample demultiplexing, barcode processing and identification of open 

chromatin regions in single cells. Secondary analyses, such as dimensionality 

reduction, cell clustering, and peak analysis were performed through Seurat and 

detailed bellow (Signac Pipeline2). 

CFU assay. To assess clonogenic progenitor frequencies, 3 × 104 CD34+ HSPC cells 

were plated in methylcellulose containing SCF, GM-CSF, IL-3 and EPO (H4434; 

STEMCELL Technologies). Colonies were scored 14 days later. Experiment was 

performed in triplicates. 

Zero-inflated CpG filtering for methylation analysis 

To filter Zero inflated CpGs inherent in such sequencing-based protocol, we filter CpG 

loci according to their detection rate across samples and the Msp1 reference. To 

optimize the threshold of filtering, we created two global quality score of the 

methylation data: one based on the percentage of real non-zeros hypermethylation 

across highly methylated loci, and the other representing the dependency of the 

sample covariance to the percentage of detected loci by samples. The threshold for 

each CpG quality metric were chosen according to the knee of the distribution curve 

that represents the increase of the global quality scores across the tested thresholds. 

Accordingly, we filtered out CpG loci with less than 5 Msp1 count (over 76,541,158 

total read counts), with a Confidence Score (defined as the sum of all count for HpaII 

libraries and Msp1 library, normalized by library size) less than 16/100M reads, and 

with more than 95% of samples with zero count. We also removed CpG loci when 

presenting at least 70% of zero count across samples and without any sample having 
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a methylation score between 0 and 10 (excluded). 754,931 out of 1,709,224 CpGs 

were conserved for further analysis. 

Linear modeling and differential methylation analysis 

To identify differentially methylated CpGs (DMCs), we performed linear regression and 

statistical modeling using the Limma R package.3 To identify confounders to be 

included in the model, we assess the linear correlation between technical and 

biological covariates and the 10 first principal components (PCs) computed from the 

DNA methylation data (Supplemental Figure 1). PC1 was associated with Group 

(LGA or CTRL), Sex, Maternal age, Ethnicity (latino or not), and Cohort (from already 

published batch or from the new batch), so we included them in the model. However, 

the main factor of covariability was the detection rate (number of loci detected in each 

sample). This variable not only depends on technical variability, but also have a 

biological component (fully methylated CpGs would not be detected, so a global DNA 

hypermethylation will results on a low detection rate). Therefore, to preserve the 

biological influence while isolating the technical variability of the detection rate, we 

classified each sample within each group in four equally sized classes from “very low 

detection rate” to “very high detection rate”. Contrary to the detection rate, this 

detection level within group was not correlated with the biological covariates (e.g., 

group and the maternal age) thus we included it in the linear model as well. We also 

included PC2 to the model as it was the second contributor to variability in our dataset 

and was not correlated to any known covariates. We performed a differentially 

methylated analysis (LGA vs CTRL) considering the new batch of samples counting 

16 CTRL and 16 LGA as well as considering all samples together adding to the newly 

generated data the already published data, for a total number of samples of 34 CTRL 
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and 36 LGA. 2 CTRL samples from previously generated data were excluded for this 

analysis as ethnicity information were missing and was part of our linear model. 

Gene-methylation score 

LinkWeight. We link CpG to gene following one of these 2 approaches: i) CpG were 

linked to gene based on transcription start site (TSS) distance, in respect to a 200kb 

window.  If more than one gene is located at +/- 200 kb of the CpG locus, we kept only 

the closest gene based on its TSS. 

For this TSS based link, the LinkWeight was defined as: 

If x < 1 kb:    LinkWeight = 1 

If x < 20 kb:   LinkWeight = 0.5 + 0.5 x !1000/x 

Else:     LinkWeight = 0.5 x !1000/x 

Where x is the CpG distance to the TSS 

or ii) CpG were linked to gene based on expression quantitative trait loci (eQTL) data, 

if located in a 1 kb window around associated single nucleotide polymorphism (SNP). 

We used blood specific and tissue wide SNPs-gene cis-association from the 

Genotype-Tissue Expression (GTEx) analysis V8 (dbGap Study Accession: 

phs000424.v8.p). 1.2M out of a total of 1.7M of CpGs were associated to genes 

including 320K associated thanks to GTEx data. 

For this SNP based link, the LinkWeight was defined as: 

If mean(-log10(psnp)) > q90:     LinkWeight = 1 

Else:     LinkWeight = mean(-log10(psnp))/q90 
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psnp is the nominal p-value of the association between the SNP and the gene;        Where 

q90 is the 90th percentile of the p-value distribution. 

RegWeight. To give more weight to CpG methylation change that have more chance 

to impact gene expression, we weighted each CpG methylation change according to 

the CpG location in candidate or known regulatory regions. This RegWeight is defined 

as 0.5 + 1.5 × (ChIPScore + EnsRegScore) / 2 where ChIPScore refers to CD34+ 

specific genomic annotation defined using CD34+ specific histone marks as previously 

described4 and EnsRegScore refers to regulatory regions defined based on the 

Ensembl Regulatory build hg19 genome annotation.5 

The ChIPscore is defined as: 

If l in Enhancer or promoter region:    ChIPScore = 1 

If l in poised Enhancer region:      ChIPScore = 0.75 

If l in Gene-body region:      ChIPScore = 0.5 

If l in HeteroChromatin region:     ChIPScore = 0 

Where l is the CpG locus. 

The EnsRegScore is defined as: 

If l in CTCF Binding Site, Promoter, Enhancer: EnsRegScore = 0,5 

If l in Open chromatin, Promoter Flanking Region:    EnsRegScore = 0,25 

If l in TF motif binding site region:    EnsRegScore = EnsRegScore + 0,5 

Where l is the CpG locus. 

To optimize the LinkWeight and RegWeight, a simulated dataset of 36,720 CpGs that 

recapitulates the range of the different methylation metrics (methylation change and 
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p-value of the significance) and genomic features (location in regulatory region,

distance to TSS, presence in eQTL region) present in our original dataset was created. 

This dataset was then used to scale weights to respect the following importance order: 

methylation change = pvalue > TSS distance = eQTL region > CD34+ specific 

genomic annotation > Ensembl Regulatory build annotation. 

2) To concatenate CpG-Scores at gene level: gene-methylation score

To summarize the CpG methylation change at the gene level, we aggregated the CpG-

Scores into a gene-methylation score by taking care of i) alleviate the arbitrary number 

of CpGs per gene and ii) interpret differently CpG influences located on the promoter 

of them in others genomic region. 

To alleviate the influence of the number of CpGs linked to a gene, the WeightnCpG defined 

above was optimized by modelling the influence of each CpGs and gene features on 

the gene-methylation score and empirically test different WeightnCpG  parameters to select 

the parameter that will preserve the influence of key factors (methylation change, 

significance of the methylation change, genomic context) but correct for the number 

of associated CpGs. This model was tested using the linear regression function from 

base R function and was defined as followed: 

gene_score~n.cpg.gene+n.cpg.sig.gene+pval+meth.change+chromatin_feature+ensembl_reg_score+i

n_eQTL_region+abs(tss_dist)) 

Where for each gene, n.cpg.gene is the number of CpG linked and n.cpg.sig.gene  is the 

number of CpGs significantly differentially methylated (p-value<0.001). pval and 

meth.change are the p-value and log2(FoldChange) of the methylation change, 

chromatin_feature is the CD34+ specific genomic annotation,  ensembl_reg_score is the 

Ensembl Regulatory build annotation, in_eQTL_region is the presence of the CpG in eQTL 

region, and abs(tss_dist) is the absolute distance between the CpG and the TSS. 
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Gene-methylation score validation 

To validate that the gene-methylation score better highlights genes susceptible to be 

transcriptionally impacted by the methylation change than others methylation metrics, 

the association between these methylation metrics and gene expression change was 

tested. To do that, DEGs (adjusted p-value <0.05) found in 6 LGA vs 8 Control HSPCs 

samples using the pseudo-bulk DESeq2 analysis was used as response variable. 

Then, Wilcoxon tests was performed for each methylation metrics on the difference of 

this methylation metrics between DEGs and non-DEGs. The methylation metrics 

tested were: p-value, -log10(p-value), log2(FoldChange) and log2(FoldChange)*-

log10(p-value) of the most significant CpG for each gene, as well as, average of the p-

value, the -log10(p-value), the log2(FoldChange), and the log2(FoldChange)*-log10(p-

value) across all CpGs link to the gene. Considering the 9 methylation metrics tested, 

the gene-methylation score presents the best association with DEGs (Figure 2). 

Gene Set enrichment analysis 

We assessed enrichment for biological pathways in epigenetically altered genes by 

performing gene set enrichment analysis (GSEA). We ranked the genes based on 

their methylation gene-score, from the most epigenetically altered (highest gene-

methylation score) to the less epigenetically altered (lowest gene-methylation score) 

and performed GSEA using the clusterProfiler package.6 For KEGG pathways and 

Gene Ontology (GO) terms, we used the gseKEGG and gseGO functions, 

respectively. For GWAS physiological or pathological traits, we obtained the list of 

susceptibility genes for each trait from the “reported genes” column of the GWAS 

catalog database7 and used the GSEA function. We excluded for traits with less than 
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ten susceptibility genes. For Regulon enrichment in epigenetically altered genes or 

differentially expressed genes (see Coregulatory network analysis section), we also 

used this GSEA function using Regulon as gene-set considering the gene-methylation 

score and the log2FC x (-log10(p-value)) for the expression. 

Transcription factor motif enrichment analysis 

We performed transcription factor (TF) motif enrichment analysis using the HOMER 

software.8 We assess the enrichment for 437 known TF motifs (included in the 

HOMER software) in ±20 bp regions around the DMCs (p-value < 0.001 and |DNA 

methylation change| > 25) compared to 50K randomly selected loci (background) from 

our dataset presenting a high GC content. 

Single cell RNA-seq dataset preprocessing 

Unique Molecular Index (UMI) Count Matrices for gene expression and for HTO 

libraries were generated using the CellRanger count (Feature Barcode) pipeline. 

Reads were aligned on the GRCh38-3.0.0 transcriptome reference (10x Genomics). 

Filtering for low quality cells according to the number of RNA, genes detected, and 

percentage of mitochondrial RNA was performed. For HTO sample, we normalized 

the HTO matrix using centered log-ratio (CLR) transformation and cells was assigned 

back to their sample of origin using HTODemux function of the Seurat R Package 

(v4).9 Then, we normalized the gene expression matrix for cellular sequencing depth 

and regress for mitochondrial percentage and cell cycle phases differences using the 

variance stabilizing transformation (vst) based Seurat::SCTransform function. 

Supplemental Table 8 contains information on number of cells per sample. 
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Early Hematopoietic reference map (Hematomap) creation and mapping 

We integrated the 7 CTRL datasets (n = 16,912 cells) with the Seurat (v4) Canonical 

Correlation Analysis (CCA) and graph based integration tool using the 3,000 most 

expressed genes across datasets to correct for batch effect. The 30 first dimensions 

of the PCA of the batch effect corrected matrix was used to generate the Shared 

Nearest-neighbor (SNN) graph and the UMAP. Graph-based clustering using Louvain 

algorithm with a resolution parameter of 0.6 on the FindCluster function was used to 

cluster cells. Each cluster was annotated using cell type specific markers. Markers for 

each cluster were identified using FindAllMarkers function with default parameter. 

Genes were then ranked based on their expression fold change the difference of 

detection of this gene in the cluster versus all other clusters and the specificity for the 

cluster, and top cluster-specific genes were compared with published cell type-specific 

genes. This hematomap was then used as reference to annotate all datasets for the 

different hematopoietic cell types thanks to Seurat (v4) MapQuery function. 

PseudoBulk differential expression analysis 

PseudoBulk differential expression analysis between LGA and CTRL cells within each 

hematopoietic cell type was performed using the DESeq2 R package10 to assess 

influence of group, stimulation and interaction between group and stimulation. We 

aggregated the gene count by sample within each cell type before performing the 

differential expression analysis. We included the batch and the sex as cofounding 

covariates in the negative binomial Generalized linear model (GLM). 

Over-representation test 
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Over representation test was performed on Differentially Expressed Genes (DEGs) 

using the enrichGO and enrichKEGG of the clusterProfiler R package depending on 

the Gene sets of interest. 

Population distribution analysis 

To test for cell type proportion difference between CTRL (n = 6) and LGA (n = 6) 

samples we used the Wilcoxon rank-sum test for comparing the proportions of each 

cell type between in LGA and Control samples. Two samples were assigned as 

outliers based on lineage distribution using the boxplot, i.e., Tukey method, and 

therefore excluded from this analysis. 

Pseudotime analysis 

Differentiation trajectory analyses were conducted with monocle11 

(https://www.bioconductor.org/packages/monocle/). Preprocessed Seurat object were 

imported unsing importCDS function from the monocle R package. Monocle’s 

orderCells function was used to arranged cells along a pseudo-time axis to indicate 

their position in a developmental continuum. Monocle generates for each cell a 

pseudotime value in respect to predefined cell of origins (roots). Here the same LT-

HSC cells were used as roots for the whole integrated dataset to have comparable 

pseudotime across conditions. We specify the root of the trajectory programmatically, 

as recommended, by first grouping the cells according to which trajectory graph node 

they are nearest to. Then, calculating what fraction of the cells at each node come 

from the earliest time point. Then by picking the node that is most heavily occupied by 

early cells and returns that as the root. 
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To test the difference in pseudotime between LGA and CTRL samples, we modelled 

the influence of LGA on the pseudotime at the cell level with a Linear Mixed-Effects 

Model using lme4 R package and estimated the p-value using the lmerTest R 

package. The model formula used was: 

pseudotime ~ 1 +group+ group:lineage_hmap + (1|sample) 

Where pseudotime is the pseudotime of the cell, group is the group (LGA or Control), 

group:lineage_hmap is the interaction between the group and the lineage of the cell, 

and sample is the sample from which the cell comes from. To test if the LGA conditions 

was associated with a reduced proportion of cells with low pseudotime 

(undifferentiated state), Wilcoxon test was performed on the percentage of cells below 

each pseudotime from 0 to 30. The outliers identified in the population distribution 

analysis was also excluded for this analysis 

Coregulatory network analysis 

To identify coregulated genes by a same TF (regulons) on our dataset, we used the 

SCENIC workflow12 on a batch corrected matrix for all samples (CTRL, CTRL HTO 

and LGA HTO). The batch corrected matrix was obtained using the Seurat (v4) 

integration tool. We used the GENIE3 R package to identify co-expressed gene 

modules and the RcisTarget R package to infer potential TF targets for each module. 

Regulatory modules (regulons) were identified from co-expression and DNA motif 

analyses. Regulons were then evaluated in each cell to ascertain their activities by the 

AUCell package in Bioconductor. To reduce the computational time during the 

coexpression module identification using the GENIE3 algorithm, we subset the batch 

corrected gene expression matrix by picking randomly 100 cells by sample and by cell 

type. After regulons identification based on this subset of cells, we score the regulons 
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activity in each cell on the entire dataset using the AUCell algorithm. All TFs and 

targeted genes of high confidence regulons based on RcisTarget was used to build a 

directed graph representing interaction between TF and genes. 

Single cell ATAC-seq data processing 

Reads were aligned to the GRCh38 reference and peaks were called using Cell 

Ranger ATAC pipeline (10X Genomics) generating a unified peak count matrix. Cells 

with less than 500 counts in these peaks were filtered out. Overlapping peaks from 

the different libraries were merged to generate a unified set of peaks. Unified peaks 

with a width over 10kb or less than 20bp were filtered out. 

Data were then analyzed through the Signac workflow2. EnsDb.Hsapiens.v86 

annotation package with UCSC hg38 style was used to annotate peaks. For QC 

filtering, cells with less than 5000 or above 60000 counts in peaks as well as cells with 

more than 15% of reads outside peaks regions were filtered out. Cells with more than 

0.15% of reads in blacklist region as defined by the ENCODE project13  were also 

filtered out. Finally, cells with a ratio of mononucleosomal to nucleosome-free 

fragments (nucleosome signal) over 1 or a TSS enrichment less than 2 or more than 

10 were filtered out. Before clustering, the peak count matrix was normalized using 

term frequency-inverse document frequency (TF-IDF) to correct for differences in 

cellular sequencing depth and give higher values to more rare peaks. Singular value 

decomposition (SVD) was used to reduce dimensions based on latent semantic 

indexing (LSI) approach. Batch effect was corrected from these LSI components using 

RunHarmony function14 default parameters. First LSI component was excluded from 

downstream clustering steps, as this component was highly correlated to the 

sequencing depth (technical variability).  UMAP and graph-based clustering using 

Share Nearest Neighbour Graph (SNN) and smart local moving (SLM) clustering 
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algorithm was performed on the 2nd to 30th batch corrected LSI components. Cells 

were then annotated for hematopoietic cell type using a label transfer approach based 

on the hematomap reference. Gene level count matrix was first generated using 

GeneActivity function and normalized using SCTransform. Cells anchors between 

hematomap and ATAC datasets were defined thanks to FindTransferAnchors function 

based on canonical correlation analysis (CCA) reduction. Hematopoietic lineage 

labels were then predicted for each ATAC cells using these anchors and the 

TransferData function. 

To identify putative lineage specific peaks, peak calling was then performed at lineage 

level using MACS2 based CallPeaks function and the predicted lineage label as 

grouping variable. Lineage specific peaks were identified using FindMarkers function 

(Signac) with Logistic Regression (LR) models including cellular sequencing depth as 

latent variable. 

Supplemental Table 8 contains information on number of cells per sample. 

Differential accessibility analysis and TF motif enrichment analysis 

Peaks differentially accessible between two specific conditions were identified using 

FindMarkers function (Signac) with Logistic Regression (LR) models including cellular 

sequencing depth as latent variable. 

FindMotifs function (Signac) was used to calculate enrichment for TF motif in specific 

set of peaks compared to a background set of peaks. For TF motif enrichment in 

lineage specific peaks, the default parameters were used (background correspond to 

40000 peaks representative of sequence characteristics of the query features). For TF 

motif enrichment in DMCs containing peaks, background was defined as all peaks 

containing methyl assay queried CpGs. 
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Integrative Gene Regulatory Network construction 

To build the gene regulatory network integrating gene expression and open chromatin 

data, we used TF-target interactions from the SCENIC regulons analysis. TF-target 

interactions were included if TF motif was present in peak and peak was associated 

to HSC. We represented TF-target interactions four our TFs of interest: EGR1, KL2 

and KLF4 using the network R package. Node represents gene of the network and 

was annotated as following: i) if the gene is a TF and if the gene is differentially 

expressed in HSC comparing LGA vs CTRL (adjusted p-value < 0.05 and |fold change| 

>0.5). Gene label represent Gene-methylation score.  Edge represent TF-gene target

regulatory link and was annotated as following: if the peak linking the TF to the target 

gene (by presence of TF motif in it) i) have DMCs comparing LGA vs CTRL (p-value 

<0.001 and |methylation difference| > 25), ii) are differentially accessible comparing 

LGA vs CTRL HSC (adjusted p-value<0.001 and |log2FC|>0.25). 
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