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Abstract: Chia seed peptides (CSP) can be a source of multifunctional biopeptides to treat non-
communicable diseases. However, interactions and binding affinity involved in targeting specific
receptors remains unexplored. In this study, molecular simulation techniques were used as virtual
screening of CSP to determine drug-like candidates using a multi-target-directed ligand approach.
CSP fraction with the best bioactivities in vitro was sequenced. Then, a prediction model was built
using physicochemical descriptors (hydrophobicity, hydrophilicity, intestinal stability, antiangiogenic,
antihypertensive, and anti-inflammatory) to calculate potential scores and rank possible biopeptides.
Furthermore, molecular dynamics simulations (MDS) and ensemble molecular docking analysis
were carried out using four human protein targets (ACE, angiotensin converting enzyme; VEGF,
vascular endothelial growth factor; GLUC, glucocorticoid and MINC, mineralocorticoid receptors).
Five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR, GSRFDWTR) and
five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF) had the lowest energy score and higher
affinity for ACE and VEGF. The therapeutic effects of these selected peptides can be related to the
inhibition of the enzymes involved in angiogenesis and hypertension, due to formation of stable
complexes with VEGF and ACE binding sites, respectively. The application of MDS is a good resource
for identifying bioactive peptides for future experimental validation.

Keywords: bioactive peptides; ensemble docking; multifunctional bioactivities; molecular dynamics
simulations; chronic diseases

1. Introduction

In recent years, there has been an increased interest in finding bioactive peptides
that can prevent the risk of chronic diseases and/or boost the immune system. The
advancement of peptidomics and bioinformatics in food science has enabled integrated
studies to be carried out for the rapid development of food-derived bioactive peptides [1].
Moreover, the application of an integrated approach in the study of bioactive peptides
allows for their production to be optimized, leads to the discovery of peptides of specific
interest, and contributes to the understanding of the mechanism of action between bioactive
peptides and human target receptors [2]. Accordingly, this integrated approach is more cost-
effective and time-saving compared with the standard approach used, which involves more
laborious experimental tests to study bioactive peptides [2,3]. In view of the above, these
advancements have provided important tools for efficient discovery of novel peptides with
profitable biological activities, for the analysis of peptide datasets, and an understanding
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of their structure-activity relationships [3]. The latter will allow researchers to explore the
complete picture and/or entire spectrum of bioactivities from any protein source.

Chia (Salvia hispanica L.) seeds are recognized as an emerging protein source. Aside
from its role as dietary nutrients, it is being progressively recognized for its bioactive
properties due to the presence of essential and non-essential amino acids,ω-3 fatty acids,
phytosterol, and dietary fiber [4–6]. Recently, our research group demonstrated that chia
seed peptides, obtained by sequential and microwave-assisted proteolysis, exhibited promi-
nent chemical and cellular antioxidant [7], antimicrobial [8], and anti-aging [9] properties.
Similarly, other studies have reported that chia seed peptides possess in vitro antioxi-
dant [10], antibacterial [11], and anti-inflammatory [12] activities. Therefore, our aim
was to apply bioinformatics and in silico methodologies (i.e., physicochemical properties
prediction, molecular dynamics and molecular docking simulations) to predict potential
bioactivities associated with chia seed peptides. The outcomes of this study will generate
new knowledge into their mechanism of action associated with intermolecular interac-
tions within enzymes involved in well-recognized chronic diseases such as hypertension
and inflammation.

2. Results and Discussion

Chia seed is an interesting protein source that can be studied to identify peptides and
explore their potential bioactivities. Since chia seed peptides (CSP) obtained by sequential
and microwave-assisted proteolysis have demonstrated, in our laboratory, to have good
chemical and cellular antioxidant [7], antimicrobial [8], and anti-aging [9] in vitro activities,
they were selected for peptidomics sequencing and bioinformatic analysis. Many tradi-
tional in silico methods are challenging to adapt to certain classes of biomolecules, mostly
when the biomolecules consist of large and highly flexible chemical moieties (like peptides,
toxins, and antibodies). For example, generating libraries of large peptides is currently
feasible, due to massive mass spectrometry techniques and/or peptidomics approaches.
However, the prediction of properties, such as those related to the bioactivity of these
biomolecules enables either simplifying assumptions to be made or the application of new
approaches for predicting bioactivity [13]. Here, we conducted an in silico prediction of
physicochemical properties (hydrophobicity, hydrophilicity, intestinal stability, antiangio-
genic, antihypertensive, and anti-inflammatory, using molecular dynamics simulations
(MDS) and ensemble docking–virtual screening (VS) methods, with potential bioactive
peptides from chia seed, and correlated these properties with human molecular (protein)
targets (angiotensin converting enzyme (ACE), vascular endothelial growth factor (VEGF),
glucocorticoid (GLUC), and mineralocorticoid (MINC) receptors).

CSP library was initially built to reflect differences in physicochemical properties of
selected peptides, and subsequentially those properties were used as descriptors. Several
studies have reinforced the use of descriptors, showing the effectiveness of predicting
a potential pharmaco-kinetic behavior based on ligand virtual screening techniques [14,15].
However, very few examples of peptides have shown the expected effectiveness [15,16].
Overall, a total of 1954 peptides were identified from the <3 kDa CSP fraction obtained from
controlled enzymatic proteolysis. After the list of peptides were screened using Peptide
Ranker, a total of 83 peptides were predicted as being bioactive (49 database peptides
and 34 de novo peptides) according to their score (>0.8 threshold) (Table 1). This web
server allowed us to predict the likehood of all the peptides for being bioactive using
a neural network based on amino acid sequences and specific structure feature analysis [17].
Interestingly, it is important to note that the shortlisted database-peptides had a length
between 7 and 17 amino acid residues, while shortlisted de novo peptides had a length
between 4 and 6 amino acid residues. Scientific literature reports that bioactive peptides
tend to be between 2–20 amino acids in length [18], with cores (hydrophobic or hydrophilic)
of 4–5 amino acids that guide the interaction within the binding sites. Furthermore, several
in silico bioactivity predictors have incorporated “peptide sequence length” as a descriptor
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into their quantitative structure relationship models [19,20]. Our de novo peptides fullfilled
the necessary length to be considered as bioactive by different in silico predictors.

Table 1. In silico analysis results of selected peptide sequences from chia seed.

No. Peptide Sequence Peptide
Ranker Score

PreAIP AntiAngio-Pred AHTpin

Score Prediction Score Prediction Score Prediction

Database peptides

1 FNLVFFLL 0.951 0.416 AIP −0.21 Non-AAP −0.58 Non-AHT
2 EGDVFWIPRF 0.940 0.418 AIP −0.5 Non-AAP −0.12 Non-AHT
3 DHFPFIY 0.933 0.518 AIP 0.04 AAP 0.47 AHT
4 EGGIWPF 0.929 0.344 AIP 0.48 AAP −0.1 Non-AHT
5 GFEWITF 0.922 0.57 AIP 0.47 AAP −0.89 Non-AHT
6 GLDFPELPLGM 0.919 0.481 AIP −0.61 Non-AAP 1.31 AHT
7 GQTPLFPRIF 0.912 0.412 AIP 0.41 AAP 0.65 AHT
8 GDAHYDPLFPF 0.909 0.323 Non-AIP −1.23 Non-AAP 0.95 AHT
9 NNVFYPF 0.903 0.344 AIP −0.34 Non-AAP 0.22 AHT

10 EYPPLGRF 0.901 0.395 AIP 1.01 AAP 1.04 AHT
11 KPLPFELF 0.898 0.409 AIP 0.6 AAP 0.55 AHT
12 DVWDPFQDFPL 0.895 0.461 AIP 0.11 AAP 0.41 AHT
13 SDKNGYFF 0.883 0.418 AIP −0.82 Non-AAP −1.16 Non-AHT
14 VPIPVPLPF 0.883 0.318 Non-AIP −0.24 Non-AAP 2.29 AHT
15 SNVFDPF 0.876 0.338 Non-AIP −0.87 Non-AAP −0.06 Non-AHT
16 TPLFPRIF 0.876 0.393 AIP 1.03 AAP 0.58 AHT
17 DQNPRSFFL 0.873 0.444 AIP 1 AAP −0.67 Non-AHT
18 QLQRWFR 0.871 0.519 AIP 2.22 AAP −0.62 Non-AHT
19 GFEWVAF 0.868 0.59 AIP −0.94 Non-AAP 0.3 AHT
20 SFNLPIL 0.867 0.408 AIP −0.4 Non-AAP −0.15 Non-AHT
21 QEGGIWPF 0.863 0.37 AIP 0.39 AAP −0.52 Non-AHT
22 GSRFDWTR 0.858 0.488 AIP 2.17 AAP −1.36 Non-AHT
23 ADFYNPR 0.853 0.303 Non-AIP 0.92 AAP 0.44 AHT
24 APSKDAPMF 0.851 0.452 AIP −0.16 Non-AAP −0.24 Non-AHT
25 GFEWITFK 0.847 0.578 AIP 0.28 AAP −0.66 Non-AHT
26 NGFEWITF 0.842 0.549 AIP 0.4 AAP −1.03 Non-AHT
27 VNEGDVFWIPRF 0.841 0.414 AIP −1.1 Non-AAP −0.52 Non-AHT
28 SSNVFDPF 0.841 0.304 Non-AIP −0.93 Non-AAP −0.17 Non-AHT
29 FNIVFPG 0.839 0.385 AIP −1.68 Non-AAP 0.76 AHT
30 VPVFPPPLN 0.837 0.435 Non-AIP −0.26 Non-AAP 2 AHT
31 GIDIPPPR 0.835 0.316 Non-AIP 0.55 AAP 0.47 AHT
32 APAEKGFAGF 0.832 0.402 AIP −1.39 Non-AAP 0.23 AHT
33 DQNPRSFF 0.830 0.433 AIP 1.05 AAP −0.92 Non-AHT
34 SRPWPIDY 0.827 0.486 AIP 2.26 AAP −0.04 Non-AHT
35 QNGFEWITF 0.825 0.573 AIP 0.46 AAP −1.47 Non-AHT
36 RPGDVFVFPR 0.825 0.383 AIP −0.98 Non-AAP 0.22 AHT
37 DNGIIYPW 0.823 0.32 Non-AIP −0.36 Non-AAP 0.15 AHT
38 NPQAGRF 0.822 0.376 AIP −0.43 Non-AAP 0.03 AHT
39 APVGSPVGSTGGNFGVF 0.817 0.476 AIP −1.1 Non-AAP 0.39 AHT
40 APPPVLAL 0.816 0.396 AIP 0.61 AAP 0.07 AHT
41 FPLLNYL 0.813 0.554 AIP −0.18 Non-AAP 1.31 AHT
42 RNNVFYPF 0.811 0.378 AIP 0.61 AAP 0.49 AHT
43 GNIFRGL 0.811 0.452 AIP −0.34 Non-AAP −0.6 Non-AHT
44 FPGLADRM 0.810 0.333 Non-AIP −1.01 Non-AAP 0.67 AHT
45 SNEWDPSFR 0.806 0.393 AIP 0.81 AAP −1.34 Non-AHT
46 SMLSPHW 0.806 0.42 AIP 0.22 AAP −0.24 Non-AHT
47 SLDVWDPFQDFPL 0.804 0.464 AIP 0.44 AAP 0.59 AHT
48 SPDLIRRM 0.803 0.399 AIP 1.12 AAP −0.74 Non-AHT
49 FGNVFKGM 0.803 0.32 Non-AIP −1.68 Non-AAP −0.8 Non-AHT
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Table 1. Cont.

No. Peptide Sequence Peptide
Ranker Score

PreAIP AntiAngio-Pred AHTpin

Score Prediction Score Prediction Score Prediction

De novo peptides

1 QFRF 0.980 0.361 AIP ND - −0.05 Non-AHT
2 FDRF 0.978 0.301 Non-AIP ND - −0.79 Non-AHT
3 GRPW 0.971 0.266 Non-AIP ND - 0.84 AHT
4 FWDR 0.964 0.347 AIP ND - −0.74 Non-AHT
5 FRSF 0.962 0.339 Non-AIP ND - −0.76 Non-AHT
6 GPHW 0.958 0.354 AIP ND - 1 AHT
7 KPPF 0.955 0.294 Non-AIP ND - 2.09 AHT
8 WLPR 0.943 0.306 Non-AIP ND - 1.13 AHT
9 FWDH 0.938 0.318 Non-AIP ND - −0.61 Non-AHT

10 FDKF 0.937 0.32 Non-AIP ND - −0.87 Non-AHT
11 FRGL 0.937 0.318 Non-AIP ND - −0.38 Non-AHT
12 DFKF 0.932 0.336 Non-AIP ND - −0.87 Non-AHT
13 KDFLFP 0.929 0.352 AIP −0.03 Non-AAP −0.79 Non-AHT
14 EFRF 0.922 0.289 Non-AIP ND - 0.99 AHT
15 APHW 0.918 0.389 AIP ND - 0.03 AHT
16 RPAF 0.909 0.28 Non-AIP ND - 0.89 AHT
17 ARGW 0.908 0.317 Non-AIP ND - −0.76 Non-AHT
18 FKAF 0.907 0.31 Non-AIP ND - −0.67 Non-AHT
19 WEFLTF 0.907 0.329 Non-AIP 0.43 AAP −0.89 Non-AHT
20 HVFF 0.878 0.349 AIP ND - −0.21 Non-AHT
21 WAPH 0.873 0.313 Non-AIP ND - 0.99 AHT
22 RPSF 0.872 0.334 Non-AIP ND - 0.7 AHT
23 HPAYW 0.871 0.392 AIP 0.1 AAP 1.81 AHT
24 DLRF 0.863 0.319 Non-AIP ND - −0.56 Non-AHT
25 QLRF 0.863 0.344 AIP ND - 0.21 AHT
26 GKFL 0.850 0.316 Non-AIP ND - −0.48 Non-AHT
27 QRYF 0.848 0.327 Non-AIP ND - 0.89 AHT
28 FWDNH 0.834 0.345 AIP −0.63 Non-AAP 0.05 AHT
29 FPLK 0.834 0.336 Non-AIP ND - 1.07 AHT
30 RAFL 0.831 0.349 AIP ND - −0.42 Non-AHT
31 FPLLN 0.820 0.483 AIP −0.1 Non-AAP 0.22 AHT
32 WDPSYR 0.816 0.325 Non-AIP 2.67 AAP 0.11 AHT
33 GLKF 0.810 0.348 AIP ND - −0.48 Non-AHT
34 HPNPRL 0.808 0.358 AIP 0.51 AAP 0.98 AHT

ND: Not determined due to server limitations; PreAIP: Peptides with a score > 0.342 are predicted as anti-
inflammatory peptides (AIP); AngioPred: a positive score is predicted as an antiangiogenic peptide (AAP);
AHTpin: a positive score is predicted as an antihypertensive peptide (AHT); a score > 1 is predicted as high
stability, while a score < 1 is predicted as normal stability.

The descriptors of the whole library were used to filter out the peptides with PreAIP,
AHTpin, and AntioAngioPred servers for the prediction of their anti-inflammatory, an-
tihypertensive, and antiangiogenic potentials before the ensemble docking analyses. In
this scenario, physicochemical properties such as hydrophilicity, hydropathy, hydropho-
bicity, intestinal absorption (Table 2), and potential bioactivities (e.g., anti-angiogenic,
anti-inflammatory, and antihypertensive) were prioritized, expecting that, among the
screened peptide library, peptides with potential activity towards previously described
protein targets could be identified [21]. Overall, it was observed that 52 and 42 of the
83 selected peptides were predicted as anti-inflamatoy and antihypertensive, respectively.
This suggests that most of the selected peptides contained amino acids and structural
features that contributed to those bioactivities.
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Table 2. Physicochemical chracteristics of selected chia seed peptide sequences.

No. Peptide Sequence Intestinal
Stability Hydrophobicity Hydropathicity Hydrophilicity Charge Molecular

Weight

Database peptides

1 FNLVFFLL 0.73 0.42 2.56 −1.78 0 1012.35
2 EGDVFWIPRF 2.391 −0.02 −0.01 −0.27 −1 1265.57
3 DHFPFIY 1.094 0.11 0.07 −0.94 −1 938.13
4 EGGIWPF 0.945 0.19 0.07 −0.67 −1 805
5 GFEWITF 2.512 0.24 0.66 −1.09 −1 899.11
6 GLDFPELPLGM 2.79 0.12 0.46 −0.29 −2 1188.54
7 GQTPLFPRIF 1.079 −0.01 0.16 −0.58 1 1175.52
8 GDAHYDPLFPF 2.144 0.02 −0.35 −0.37 −2 1278.52
9 NNVFYPF 0.798 0.06 −0.01 −1.2 0 900.09

10 EYPPLGRF 0.392 −0.15 −0.79 −0.07 0 978.21
11 KPLPFELF 1.859 0.05 0.32 −0.33 0 990.3
12 DVWDPFQDFPL 1.608 −0.03 −0.41 −0.23 −3 1378.65
13 SDKNGYFF 1.183 −0.17 −0.98 −0.1 0 977.14
14 VPIPVPLPF 2.283 0.3 1.46 −1.01 0 978.35
15 SNVFDPF 0.585 0.01 0.06 −0.43 −1 824.97
16 TPLFPRIF 1.143 0.05 0.69 −0.75 1 990.3
17 DQNPRSFFL 1.023 −0.27 −0.89 −0.01 0 1123.34
18 QLQRWFR 1.066 −0.48 −1.47 −0.19 2 1033.3
19 GFEWVAF 2.466 0.27 0.97 −1.06 −1 855.06
20 SFNLPIL 2.342 0.2 1.29 −1.06 0 803.04
21 QEGGIWPF 1.213 0.08 −0.38 −0.56 −1 933.15
22 GSRFDWTR 0.667 −0.44 −1.56 0.38 1 1024.21
23 ADFYNPR 1.132 −0.33 −1.4 0.13 0 882.02
24 APSKDAPMF 1.538 −0.09 −0.34 0.17 0 963.22
25 GFEWITFK 2.682 0.07 0.09 −0.58 0 1027.3
26 NGFEWITF 2.499 0.13 0.14 −0.93 −1 1013.23
27 VNEGDVFWIPRF 2.24 −0.02 0.05 −0.33 −1 1478.84
28 SSNVFDPF 0.2 −0.02 −0.05 −0.34 −1 912.06
29 FNIVFPG 2.136 0.28 1.26 −1.16 0 793.02
30 VPVFPPPLN 1.974 0.14 0.57 −0.79 0 979.3
31 GIDIPPPR 0.964 −0.13 −0.53 0.3 0 864.1
32 APAEKGFAGF 3.43 0.05 0.12 −0.05 0 994.24
33 DQNPRSFF 1.044 −0.36 −1.48 0.21 0 1010.17
34 SRPWPIDY 1.413 −0.22 −1.21 −0.15 0 1033.25
35 QNGFEWITF 2.539 0.04 −0.27 −0.8 −1 1141.38
36 RPGDVFVFPR 3.379 −0.19 −0.21 0.1 1 1189.51
37 DNGIIYPW 0.959 0.07 −0.28 −0.76 −1 977.19
38 NPQAGRF 0.929 −0.31 −1.27 0.06 1 788.95
39 APVGSPVGSTGGNFGVF 2.935 0.14 0.53 −0.56 0 1549.95
40 APPPVLAL 1.457 0.24 1.32 −0.76 0 777.06
41 FPLLNYL 1.841 0.22 1.11 −1.43 0 879.14
42 RNNVFYPF 0.769 −0.17 −0.58 −0.67 1 1056.29
43 GNIFRGL 1.294 −0.03 0.33 −0.41 1 775.99
44 FPGLADRM 2.43 −0.09 0.04 −0.01 0 906.16
45 SNEWDPSFR 0.992 −0.37 −1.81 0.43 −1 1137.29
46 SMLSPHW 1.339 0.02 −0.23 −0.91 0 857.09
47 SLDVWDPFQDFPL 1.558 0 −0.12 −0.31 −3 1578.91
48 SPDLIRRM 1.23 −0.38 −0.59 0.55 1 987.27
49 FGNVFKGM 1.854 0.07 0.44 −0.57 1 899.19
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Table 2. Cont.

No. Peptide Sequence Intestinal
Stability Hydrophobicity Hydropathicity Hydrophilicity Charge Molecular

Weight

De novo peptides

1 QFRF ND −0.31 −0.6 −0.45 1 596.73
2 FDRF ND −0.32 −0.6 0.25 0 583.68
3 GRPW ND −0.33 −1.85 −0.1 1 514.64
4 FWDR ND −0.38 −1.52 0.02 0 622.73
5 FRSF ND −0.2 0.07 −0.42 1 555.67
6 GPHW ND 0.01 −1.53 −0.97 0 495.6
7 KPPF ND −0.16 −1.07 0.12 1 487.64
8 WLPR ND −0.23 −0.8 −0.55 1 570.74
9 FWDH ND −0.04 −1.2 −0.85 −1 603.69

10 FDKF ND −0.15 −0.45 0.25 0 555.67
11 FRGL ND −0.11 0.42 −0.33 1 491.63
12 DFKF ND −0.15 −0.45 0.25 0 555.67
13 KDFLFP 1.208 −0.29 −0.6 0.25 0 597.71
14 EFRF ND 0.04 −0.97 −1.1 0 509.62
15 APHW ND −0.02 0.07 −0.13 0 765.97
16 RPAF ND −0.24 −0.38 0 1 489.61
17 ARGW ND −0.25 −1 −0.22 1 488.6
18 FKAF ND 0.09 0.88 −0.62 1 511.66
19 WEFLTF 1.16 0.22 0.72 −1.27 −1 842.04
20 HVFF ND 0.34 1.65 −1.75 0 548.69
21 WAPH ND 0.04 −0.98 −1.1 0 509.62
22 RPSF ND −0.37 −1.02 0.2 1 505.61
23 HPAYW 1.398 0.03 −1.04 −1.34 0 672.81
24 DLRF ND −0.33 −0.35 0.43 0 549.66
25 QLRF ND −0.33 −0.35 −0.28 1 562.71
26 GKFL ND 0.05 0.57 −0.33 1 463.62
27 QRYF ND −0.46 −1.63 −0.4 1 612.73
28 FWDNH 1.425 −0.16 −1.66 −0.64 −1 717.81
29 FPLK ND −0.01 0.28 −0.32 1 503.68
30 RAFL ND −0.09 0.97 −0.45 1 505.65
31 FPLLN 1.991 0.19 1.06 −1.18 0 602.78
32 WDPSYR 1.486 −0.4 −2.1 0.1 0 822.95
33 GLKF ND 0.05 0.57 −0.33 1 463.62
34 HPNPRL 1.534 −0.4 −1.77 0.15 1 732.91

ND: Not determined due to server limitations (peptides ≤ 4 amino acid residues).

Particularly, in relation to the prediction of antiangiogenic peptides, due to the software
limitation for processing peptides with lengths of at least of 5 amino acid residues, the
majority of de novo peptides (i.e., 27) were not subjected to such analysis because of their
short amino acid length. From the rest, 29 peptides were predicted as antiangiogenic, while
27 were considered as non-angiogenic. The process of angiogenesis is a vital step towards
the formation of malignant cancer tumors [22]. Antiangiogenic peptides could therefore
be promising candidates in the treatment for cancer. Thus, most of the peptides showed
potential antiangiogenic (anti-tumor), anti-inflammatory, and antihypertensive properties.
Other studies have applied in silico analysis of select peptides obtained from different
protein sources to identify potential bioactivies such as amaranth [23], milk protein [24],
chicken breast [17], and kerfir milk [25], with promising results.

Dimensional reduction in calculated physicochemical properties was evaluated using
Principal Component Analysis (PCA), which displayed a clustering hypothesis against
three potential bioactivies, e.g., antiangiogenic (AAP), anti-inflamatory (AIP), and anti-
hypertensive (AHT). Surprinsigly, physicochemical properties such as hydrophilicity, hy-
drophobicity and hydropathicity, clustered together with the aforementioned bioactivites,
respectively (Figure 1). However, due to the high complexity of the analyzed biomolecules
(e.g., tautomeric states, rotable bonds and side-chain diversity), the variance coverage was
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limited to nearly 72% (PC1-PC2). Furthermore, in chemoinformatics approaches toward
natural products, these methodologies gave insights into the relationship between the cal-
culated properties and possible bioactivity [26]. Acording to PCA and clustering analysis,
four different molecular targets were selected; those targets were related to hypertension
(angiotensin converting enzyme), inflammation (glucocorticoid and mineralocorticoid
receptors), and angiogenesis (vascular endothelial growth factor).
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Figure 1. Principal Component Analysis of calculated physicochemical and bioactivity properties.
AAP, antiangiogenic; AHT, antihypertensive; AIP, anti-inflammatory; IS, Intestinal Stability. Each dot
corresponds to a peptide in the library (Table 1).

A hybrid all-atom Molecular Dynamics Simulations and ensemble docking-virtual
screening workflow was applied to each target; 300 ns of Gaussian Accelerated Molecular
Dynamics simulations were performed on each target, in order to recover a major con-
formational diversity of protein structure that stems into more robust molecular docking
analysis [27,28]. Three diverse conformations of each target were used as initial docking co-
ordinates for the peptide library, and the score (Kcal mol−1) was averaged with the Vinardo
Scoring Function. As shown in Figure 2, the avegare scoring values of targets and peptide
library complexes showed lower energy values for VEGF and ACE (~−3 Kcal mol−1 and
−5 Kcal mol−1, respectively) and higher values for mineralocortidoid and glucocorticoid
receptors (~3 Kcal mol−1 and 12 Kcal mol−1, respectively). This difference may arise from
more constrained binding sites on mineralocorticoid and glucocorticoid receptors, which
generally evolve around the structure of phenanthrene core ligands [21,29].
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Figure 2. Ensemble docking-virtual screening scores of chia seed peptides towards select human
protein targets: MINC (mineralocorticoid), GLUC (glucocorticoid), ACE (angiotensin converting
enzyme), and VEGF (vascular endothelial growth factor).

Figure 3 shows the binding modes and ligand interaction diagrams of selected peptides
from library vs. selected molecular targets. In the case of ACE (Figure 3A,B) and VEGF
(Figure 3C,D), these targets displayed superficial binding sites (interfacial regions), which
are highly dependent on the conformation of receptor proteins. Furthermore, the resulting
binding modes for VEGF and ACE were more stable (lower energy) and in good agreement
with those previously described [30]. Additionally, for ACE, the lowest energy peptide
(SRPWPIDY) is posed on the same binding site of the spike protein for the SARS-CoV-
2 virus (Figure 3A), displaying electrostatic interactions with amino acid residues (D30
and E37); whereas basic residues K26, H34 and R393 mediate atractions to D7 and COO-

terminal group of the Y8 residue. Moreover, the indole moiety of peptides was estabilized
by aliphatic sidechains of V93 and backbone of T92 and K94. ACE was able to bind peptides
through a flexible loop comprising A386–R393, which displays amphiphatic propierties,
since it includes hydrophobic sidechains (A386, A387, F390) and backbone and amide
sidechain from N388.

The resulting peptide library for VEGF binding modes corresponds to the previously
described binding sites of natural products and pharmaceutical drugs [22]. The proposed
binding sites of VEGF are located on the C-terminal and comprise residues such as Y124,
P125, Y130, and M179, which mainly impose short-range van der Waals (vdW) interactions
with ligands; whereas D126, E129 and R167 are involved in long range electrostatic inter-
actions. All the displayed interactions contribute to the recognition of de novo peptides
that contain positively charged residues such as R and K, along with aliphatic residues
L, A and F (Figure 3C,D). However, certain short length peptides, as de novo, resemble
the binding modes of natural ligands of nuclear receptors; those peptides displayed lower
energy scores due to hydrogen bond interactions with W31 and T210 of the GLUC receptor,
and hydrophobic interactions L39, I132, and M212 (Figure 3E,F). MINC showed the same
pattern of hydrogen bonding through W57 and K147; whereas hydrophobic interactions
with aliphatic sidechains of peptides were stabilized with A47, L46, F103, M51, V54, and
L83 (Figure 3G,H).
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with WPRSPIDY; (C,D): Vascular Endothelial growth factor (VEGF) in complex with FVNYPF;
(E,F): Glucocorticoid receptor (GLUC) in complex wit KFAF; (G,H): Mineralocorticoid receptor
(MINC) in complex with RLDF. Ligand interactions were calculated around a 5 Å distance cutoff.

The aim of this study was to integrate a multi-target-directed ligand approach, where
peptides with lower binding energies can be shared as ligands towards the four evaluated
human target proteins. To achieve this goal, the 20 lowest-binding, free energy peptides
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for each target protein were plotted and those that rely on the intersection of a Venn
diagram (five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR,
GSRFDWTR) and five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF)) were selected
as potential multi-target-directed ligands, and turned into candidates for a future synthesis
and in vitro evaluation (Figure 4). Those peptides can be considered as multifunctional
peptides, which may be preferred over single-activity peptides, as they can simultaneously
trigger, modulate, or inhibit multiple physiological pathways. The subset of selected
peptides contained five know-sequence peptides (already described in databases and mass
spectra data) and five de novo peptides (non previously described), which demonstrate
that the in silico methods may assist in the identification of possible ligand hits.
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Figure 4. Venn diagram of identified peptides with their human target protein interactions. The
numbers indicate independent subsets of shared peptides with the lowest binding free energy
among molecular targets. Ten different peptides comprise the subset of multi-target directed ligands.
Angiotensin converting enzyme (ACE), Mineralocorticoid receptor (MINC), Glucocorticoid receptor
(GLUC), Vascular Endothelial growth factor (VEGF).

Finally, we applied an absorption, distribution, metabolism, and excresion (ADME)
prediction to evaluate drug-likeness parameters on the subset of selected multi-target di-
rected peptides. The pharmaco-kinetic profiles of the complete subset assessed 25 different
properties within the acceptable range for 95% of known drugs [31]. Table 3 lists the criteria
used for each descriptor, as well as the calculated parameters and chemical similarity to
approved drugs.
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Table 3. Calculated drug-likeness parameter for subset of 10 selected peptide sequences.

Parameters NNVFYPF FNIVFPG SRPWPIDY QLQRWFR GSRFDWTR DFKF DLRF FKAF FRSF QFRF

MW (g/mol) 899.9 792.93 899.07 10.33.19 1024.1 555.63 549.62 511.62 555.63 596.68
H-bond donors 8 6 8.5 17.5 14.5 5.75 7.75 5.75 7.75 9.75

H-bond acceptors 19.25 17 19 22.5 22.4 10.25 11.25 9.25 10.95 12.75
logP o/w a −3.56 −1.83 −2.79 −5.68 −4.64 −1.06 −1.83 −1.43 −1.28 −3.14
logS wat b −1.87 −3.77 −0.49 −1.18 −0.24 −0.68 −0.64 −0.79 −2.72 −0.96

NlogK has Serum Protein Binding c −2.39 −1.88 −2.53 −3.35 −3.18 −1.23 −1.54 −1.02 −1.26 -1.75
Apparent Caco-2 Permeability

(nm/s) d 0 0 0 0 0 0 0 0 0 0

Apparent MDCK Permeability
(nm/s) e 0 0 0 0 0 0 0 0 0 0

logKp for skin permeability f −9.04 −6.92 −8.53 −14.29 −13.53 −8.69 −9.95 −8.26 −8.62 −10.60
Qualitative Model for Human

Oral Absorption Low Low Low Low Low Low Low Low Low Low

Most similar pharmaceutical drugs
Troxerutin,
Voglibose,

Monoxerutin

Lymecycline,
Troxerutin,

Proglumetacin

Razoxane,
Hexopre-

naline,
Dihydralazine

Everolimus,
Amiodarone,
Fenethylline

Everolimus,
Droxidopa,
Polaprezinc

Hexoprenaline,
Lisinopril,

Lymecycline

Hexoprenaline,
Voglibose,

Lymecycline

Hexoprenaline,
Lisinopril,

Lymecycline

Aminopterin,
Lymecycline,
Hexobendine

Hexobendine,
Hexopre-

naline,
Lymecycline

a Predicted logarithm of partitioning coefficient for octanol/water phases (range for 95% of drugs: −2.0 to 6.0). b Predicted logarithm of aqueous solubility in mol/dm3 (range for 95% of
drugs: −6.0 to 0.5). c Predicted logarithm of serum protein binding (range for 95% of drugs: −1.5 to 1.5). d Predicted apparent Caco-2 cell rate permeability in nm/s (range for 95% of
drugs: <25, >500). e Predicted apparent MDCK cells rate permeability in nm/s (range for 95% of drugs: <25, >500). f Predicted apparent for skin permeability rate permeability Kp
in cm/h).
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As shown in Table 3, the subset of selected peptides displayed lower calculated
logP o/w partition coefficients that can be associated with increased permeability across
membranes, despite having high molecular weight (>500 Da) and several hydrogen bond
interactions. Similarly, different in silico techniques have addressed that the prediction of
skin permeability by complex molecules is difficult to achieve; however, those predictions
are based on comparisons to experimental data or complex algorithms based on quantitative
structure–activity relationships (QSAR) [32,33]. Additonally, the calculated coefficient for
binding to serum proteins and skin permeability are in the range of 95% of approved drugs,
suggesting a positive interaction with epidermal tissues. The above obervations confirm
that chia seed peptides could contribute in the improvement of the skin health and can be
used as potential functional ingredients for development of cosmeceutical skin products,
as previously demonstrated in vitro [9]. An interesting finding was that the entire subset of
multi-target peptides showed structural similarity to antihypertensive and antiangiogenic
drugs, such as lymecycline, everolimus and lisinopril, among others.

3. Materials and Methods
3.1. Materials

Alcalase (E.C. 3.4.21.62) and flavourzyme (E.C. 232-752-2) were acquired from Sigma
Aldrich (St. Luis, MO, USA). Ultrafiltration units were purchased from Millipore (Bedford,
MA, USA). Chia (Salvia hispanica L.) seeds were obtained from Healthworks (pesticide-free,
Scottsdale, AZ, USA). All chemical reagents used in this study were analytical grade or
HPLC grade.

3.2. Preparation of Chia Seed Peptides

Peptides from chia seed protein were obtained as described in detail by Urbizo-Reyes,
San Martin-González, Garcia-Bravo, López Malo Vigil and Liceaga [7]. Briefly, chia seeds
were devoid of mucilage using a combined treatment of ultrasound and vacuum-assisted
filtration. Afterwards, chia seeds were defatted by a mechanical oil press and the resulting
meal was proteolyzed using sequential enzymatic (alcalase followed by flavourzyme)
microwave-assisted hydrolysis. The subsequent protein hydrolysate had a yield of 78.2%
extracted protein. Resulting chia seed peptides (CSP) were freeze-dried and stored at
−20 ◦C until used.

3.3. Peptidomics Analysis of Low Molecular Weight Peptides by Liquid Chromatography-
Mass Spectrometry

Following proteolysis, low molecular weight peptides were obtained by ultrafiltration
using centrifugal filters of 3 kDa cut-off membrane (regenerated cellulose, Amicon® Ultra-4).
Peptides present in the <3 kDa fraction were identified by liquid chromatography-mass
spectrometry (LC-MS/MS) in the Proteomics Core Facility at the Indiana University School
of Medicine (Indianapolis, Indiana, USA). Briefly, lyophilized samples of the <3 kDa fraction
were resuspended in 0.1% of formic acid and reverse phase LC-MS was performed on the
QE-Plus mass spectrometer. Peptide sequences were obtained from mass spectrometry
data (raw files) using a database of all Salvia spp. proteins in the UniProt database and
were also searched for de novo sequencing of peptides [8,9]. A total of 1954 peptides were
identified (i.e., 1565 peptides using UniProt database and 389 de novo peptides).

3.4. In Silico Analysis of Identified Peptides for their Potential Bioactivities

First, each identified peptide was screened for their bioactive likelihood using the
PeptideRanker bioinformatic tool (http://distilldeep.ucd.ie/PeptideRanker/, accessed
on 6 March 2022), which estimates a bioactivity potential score based on a novel N-to-1
neural network. This server ranked all assessed peptides by giving scores ranging from 0
to 1. Values near 1 indicate peptides with high likelihood to be bioactive. Therefore, if the
probabilities are ≥0.8, the peptide is said to be predicted as bioactive [34].

http://distilldeep.ucd.ie/PeptideRanker/
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Selected peptides were subjected to in silico prediction and physicochemical char-
acterization through different online servers. The predictions were made using the tools
PreAIP (http://kurata14.bio.kyutech.ac.jp/PreAIP/, accessed on 7 March 2022) for their
anti-inflammatory potential, AHTPIN (http://crdd.osdd.net/raghava/ahtpin/, accessed
on 7 March 2022) for their antihypertensive potential, AntiAngioPred (http://webs.iiitd.
edu.in/raghava/antiangiopred/, accessed on 8 March 2022) for their anti-angiogenic po-
tential, HLP (http://crdd.osdd.net/raghava/hlp/, accessed on 8 March 2022) for their
intestinal stability, and PlifePred (https://webs.iiitd.edu.in/raghava/plifepred/, accessed
on 9 March 2022) for their plasma stability. Additionally, some physicochemical properties
(i.e., hydrophobicity, hydropathicity, hydrophilicity, charge, and molecular weight) were
determined using the AHTPIN tool.

3.5. Construction of Human Molecular Targets and Identified Peptides

For this analysis, the peptides identified in the previous step and some human targets
were constructed. The three-dimensional structures of identified peptides sequences were
modeled using the OPLS-AA forcefield with an alpha helix template (Maestro Suite v
2.12). The resulting structures were minimized using a conjugated gradient and Steep-
est Descent algorithms with the biomolecular simulation program, Amber20 package
(https://ambermd.org/, accessed on 3 March 2022). The target crystallographic struc-
tures were Human Angiotensin Converting Enzymes, ACE-1 (PDB code: 1O8A), Vascular
Endothelial Growth Factor, VEGF (PDB code: 2VPF), and Glucocorticoid and Mineralocor-
ticoid Nuclear Receptors (PDB code: 1P93 and 2AA2, respectively). Modeling of missing
or incomplete residues and disulfide bonds were carried out with Maestro Suite v 2.12,
(Schrödinger, LLC, New York, NY, USA) using OPLS-AA force field to guide the structure
completion. The tritiable residue protonation was calculated using the PROPKA web-server
at pH 7 (e.g., histidine was protonated on the delta/epsilon nitrogen) depending on the
polar environment.

All targets were prepared in octahedral water boxes 15 Å buffered with TIP3P explicit
water molecules and neutralized with Na+ or Cl- ions using Tleap routine from AmberTools
20. The systems were neutralized with a salt solution of 0.15 M NaCl. The resulting systems
comprised between 100,000–172,000 atoms.

3.6. Molecular Dynamics and Ensemble Docking Calculations

All Molecular Dynamics calculations were carried out in Amber20 using the amberff14
and GAFF force fields with PMEMD.cuda software. Initial MD stages (minimization and
thermalization) were performed at 1 atm of pressure and 298 ◦K. The minimization con-
sisted of 5000 steps using the steepest-descendent method, followed by 10,000 with the
conjugate gradient method. Covalent bonds between hydrogen and heavy atoms were
constrained using the SHAKE algorithm. Initial simulations steps applied an NVT ensem-
ble, coupled with a Langevin thermostat, to reach and maintain a constant temperature
(298 ◦K). Linear increases in the temperature from 0 to 298 ◦K, in intervals of 50 ◦K, were
applied along 5,000,000 steps. The atoms were restricted in protein alpha carbons atoms
with 5 Kcal/mol/A3 and 2.5 Kcal/mol/A3. An isothermal-semi isobaric ensemble (NPT)
simulation, using the Berendsen barostat, was coupled to maintain 1 atm of pressure keep-
ing restrains. Afterwards, restrains were reduced by 2 Kcal/mol/A3 units for proteins
250,000 steps until restriction disappeared. The systems continued for 10 ns more in simula-
tion in the anisotropic ensemble at 1 atm, keeping track of Cα root-mean-square deviation
(RMSD), potential energy and system density as markers of stable behavior. Long-range
electrostatic interactions were calculated, periodic boundary conditions, and particle mesh
Ewald (PME) methods using a 12 Å cutoff and force switch on a 10 Å radius. Time steps of
2.0 fs were set for production simulations. Production calculations were performed along
300 ns for each target using Gaussian Accelerated Molecular Dynamics (GaMD) to enhance
conformational sampling. After each GaMD production, the carbon alpha root mean square

http://kurata14.bio.kyutech.ac.jp/PreAIP/
http://crdd.osdd.net/raghava/ahtpin/
http://webs.iiitd.edu.in/raghava/antiangiopred/
http://webs.iiitd.edu.in/raghava/antiangiopred/
http://crdd.osdd.net/raghava/hlp/
https://webs.iiitd.edu.in/raghava/plifepred/
https://ambermd.org/
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deviation (A) was calculated and projected onto first two principal components using
Bio3D package for selection of three representative conformations for ensemble docking.

Binding modes and score calculations (Autodock Vina scoring function) were per-
formed with Smina v 1.0 package for Ensemble docking—Virtual screening. All representa-
tive conformation for each previously selected target was used for docking calculations.
The search parameters were 0.375 Å mesh step, 64 as exhaustiveness value, and a max-
imum value of 25,000,000 evaluations. The octahedral search space dimensions for all
targets were set to 25 × 25 × 40 Å centered on each identified active site or interaction
regions, as described for ACE enzymes. All scores were approximated using consensus
scoring approximation.

4. Conclusions

In this work, we presented a pipeline based on in silico analysis upon a set of chia
seed peptides identified using a peptidomics and bioinformatics approach that sought
to screen potential bioactivities and correlate them with pharmacological (drug) targets.
Structural analysis and physicochemical prediction of descriptors allowed us to select
probable molecular targets and virtually screen their intermolecular interactions through
molecular dynamics simulations and ensemble docking. With this approach, we were
able to identify 10 multifunctional chia seed peptides (NNVFYPF, FNIVFPG, SRPWPIDY,
QLQRWFR, GSRFDWTR, DFKF, DLRF, FKAF, FRSF, QFRF) with low binding free energy
(ca. −5 Kcal mol−1) and stable intermolecular interactions during formation of a ligand-
receptor complex. Furthermore, this information corroborates the high in vitro biological
activity previously reported for chia seed peptides and foresees sequences found in the
peptide fractions that can provide multifunctional bioactivities towards human protein
receptors involved in chronic diseases such as hypertension and inflammation. However,
further research will be required to test the specified peptide sequences using in vivo
models. Nevertheless, this study provides promising use of bioinformatics and in silico
analyses to establish ligand-receptor interactions from new functional ingredients and
emerging protein sources.
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