
Citation: Leyane, T.S.; Jere, S.W.;

Houreld, N.N. Oxidative Stress in

Ageing and Chronic Degenerative

Pathologies: Molecular Mechanisms

Involved in Counteracting Oxidative

Stress and Chronic Inflammation. Int.

J. Mol. Sci. 2022, 23, 7273. https://

doi.org/10.3390/ijms23137273

Academic Editor: Cecilia Prata

Received: 8 June 2022

Accepted: 24 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Oxidative Stress in Ageing and Chronic Degenerative
Pathologies: Molecular Mechanisms Involved in Counteracting
Oxidative Stress and Chronic Inflammation
Thobekile S. Leyane, Sandy W. Jere and Nicolette N. Houreld *

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg,
P.O. Box 17011, Doornfontein 2028, South Africa; sadie.leyane@gmail.com (T.S.L.); sandywjere@gmail.com (S.W.J.)
* Correspondence: nhoureld@uj.ac.za; Tel.: +27-11-559-6833

Abstract: Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high
bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation,
glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and
protein destruction, thereby altering the cellular structure and functional outcome. To stabilise
increased ROS production and modulate oxidative stress, the human body produces antioxidants,
“free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence
system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and
nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative
syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed.
However, scientific investigations are required to assess their efficacy. In this review, we summarise
the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing
and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM),
and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat
ageing and chronic degenerative diseases.

Keywords: oxidative stress; reactive oxygen species (ROS); inflammation; Alzheimer’s disease;
Parkinson’s disease; diabetes; chronic kidney disease; antioxidants; stem cell therapy

1. Introduction

Ageing is a progressive and multifaceted physiological process characterised by the
accretion of various degenerations in cellular and molecular structures, leading to deterio-
rated biological events and a gradual decline in the adaptability and resistance to metabolic
stress. With ageing, there is a gradual decline in the body’s physical and mental capability
to operate optimally [1]. The survival aptitude of a population is characterised by the
decline in fertility and the survivorship curve. As this demographical drift continues, the
constitution of the global population is projected to undergo a proportionate deviation
such that the older generation outnumbers the younger generation. According to the World
Health Organisation (WHO), in 2015, the average life expectancy increased to an average of
71.4 years, and from 2015 to 2050, the global population aged 60 years and above is expected
to grow from 12% to 22% [2]. Although the populations’ ageing illuminates a positive
civilization development, the continuation of this trend attributes to the functional deficit
and increased susceptibility to disability and chronic diseases such as, but not limited to,
diabetes, vascular ageing disorders, Alzheimer’s disease (AD), cardiovascular diseases
(CVD), cancer, and muscle dysfunction [3–5].

Globalisation, medical advances, technological developments, urbanisation, migration,
and socioeconomic statuses in the 20th century have greatly influenced the global health
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status. Contrary to this, demographic projections in the 21st century suggest that age-
related diseases pose a fundamental threat to the global health system and the health
status of the elderly. The mechanism of ageing is complex and not fully understood.
However, cumulative oxidative stress and chronic inflammation are the main features that
have been theorised to play an essential role in age progression and chronic degenerative
diseases [6]. Numerous normal cell metabolic processes in the human body (digesting
food, breathing, alcohol and drug metabolism), besides genetic or environmental factors
such as air pollutants, cigarette smoking, toxins, and radiation, generate toxic compounds
called free radicals. Free radicals are oxygen-containing ions, molecules, or atoms with
one or more unpaired electrons in the outermost orbit (valence shell) [7]. These molecular
species are highly reactive, unstable, and capable of existing independently, thus, harmfully
modifying deoxyribonucleic acid (DNA), proteins, and lipids and triggering several types
of human diseases (Figure 1).
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Figure 1. Schematic representation of oxidative stress, a phenomenon elevated with ageing and
degenerative diseases. It involves the accumulation of reactive oxygen and nitrogen species (RONS)
in cells and tissues, harmfully modifying deoxyribonucleic acid (DNA), proteins and lipids and
triggering ageing and chronic degenerative diseases.

Patel [8] defined oxidative stress as “an imbalance between pro-oxidants and antioxi-
dants with concomitant redox circuitry disruption and macromolecular damage.” Oxidative
stress contributes to human skin ageing and dermal impairment and is ordinarily regarded
as a pivotal contributor to the aetiology and pathogenesis of several chronic diseases [3–5].
Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive lipid species
all constitute the reactive species generated by pathological oxidative stress. Reactive
oxygen and reactive nitrogen species (RONS) are comprised of unstable free radicals such
as hydroxyl (OH•), superoxide anions (O2

•−), nitric oxide (NO•) radicals, and non-free
radicals, such as peroxynitrite (ONOO−) and hydrogen peroxide (H2O2). The cell mito-
chondria are responsible for generating the majority of intracellular ROS through oxidative
phosphorylation (OXPHOS) [9]. The two predominant systems in ROS production in-
clude the mitochondrial OXPHOS and the nicotinamide adenine dinucleotide phosphate-
(NADPH−) oxidase (NOX) system. The primary endogenous source of ROS is generated
from the mitochondrial electron transport chain (ETC) during OXPHOS. During this proce-
dure, O2 is degraded to form H2O. Other sources implicated in ROS production include
immune cells (macrophages and neutrophils), which generate ROS based on the NOX2
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isoform as a result of their oxygen-dependent technique to battle against foreign invaders,
and peroxisomes and microsomes, which are the primary source of H2O2 [7]. At low
concentrations, ROS plays a critical role in cellular signalling and regulation of processes
involved in sustaining homeostasis. ROS, generated by specific plasma membrane oxidases
in response to cytokines and growth factors, function as secondary messengers for specific
signalling cascades to trigger physiological changes such as gene expression. Intracellular
ROS concentration plays a vital role in various cellular processes such as cellular apoptosis,
the activation of transcription factors, and the phosphorylation of proteins [10]. Elevated
ROS compromises cellular function and activates mitogen-activated protein kinases (p38)
(p38MAPK) for p16 upregulation, resulting in cell senescence and the advancement of
ageing and chronic degenerative diseases [11]. Elevated ROS formation stimulates aberrant
cellular proliferation, unrestrained cell growth, and apoptosis.

Inflammation signifies the innate immune system’s defensive and adaptative response
against an injury and/or harmful objects (such as bacteria, viruses, and toxins) to re-
establish homeostasis. The inflammatory cascade displays both the advancement and the
evolution of the disease and stimulates disease progression. The apt regulation of the
inflammatory cascade is crucial for avoiding damage to healthy cells. A dysregulated
inflammatory response activates further inflammatory responses, which can cause sepsis
and organ failure. Chronic inflammation can occur due to pro-inflammatory cytokine
secretion, stimulated by senescent cells [12,13]. The phenomenon of low-grade chronic in-
flammation is characteristic of human ageing and is termed “inflammaging”. Consequently,
the inflammatory cascade elevates extracellular ROS concentrations and oxidative stress.
Elevated oxidative stress can result in the breakdown of the extracellular matrix (ECM)
and activation of cell necrosis and apoptosis. The presence of necrotic cells and impaired
ECM emits numerous constituents that over-activate the inflammatory pathway, resulting
in a concatenation of events involving increased production of free radicals and oxidative
stress [14,15].

To counteract or neutralise the effects of free radicals, the human body generates
antioxidants. The stability of free radicals and antioxidants is vital for the appropriate
physiological function of the body. Oxidative stress develops due to low antioxidant levels
and the disruption of the dynamic redox circuitry system, resulting in the accretion of
free radicals in the body. Oxidative stress triggers an adverse chain reaction, resulting
in the alteration of the cell chemical structure, destruction of the cell membrane, block-
age of the cells’ main enzyme actions and energy generation, and prevention of cellular
processes essential to the normal and daily functioning of the body [16]. Antioxidants
significantly delay or prevent cellular damage and provide pivotal protection against oxida-
tive stress. Some of the significant enzymatic antioxidants include superoxide dismutase
(SOD), glutathione peroxidase (GPX), catalase (CAT), and thioredoxin (Trx). SOD catalyses
the conversion of O2

•− to the less reactive H2O2. GPX catalyses the decomposition of H2O2
and lipid hydroperoxide (LOOH), while CAT catalyses the oxidation of H2O2 to H2O and
molecular oxygen (O2), and Trx catalyses the conversion of H2O2 to produce H2O [17]. The
most commonly known non-enzymatic antioxidants are lipophilic, including carotenoids,
ubiquinol and alpha-tocopherol, and hydrophilic vitamin C, bilirubin, uric acid, albumin,
and flavonoids. Elevated RONS and debilitated antioxidant defence systems can advance
the progression of ageing and chronic degenerative diseases (Figure 2).

One of the therapeutic remedies for age-related and chronic degenerative diseases is
stem cell intervention. Stem cell transplantations counteract immunosenescence through
replacement, reprogramming, and restoration [18]. Understanding the mechanisms of
oxidative stress concerning chronic inflammation and their role in developing age-related
and chronic degenerative diseases is crucial for the invention of therapeutic methods and
the management of chronic degenerative complications.
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Figure 2. Influence of oxidative stress and the interface of ageing and chronic degenerative diseases.
The accretion of oxidative stress and the defective antioxidant defence system contributes to elevated
membrane alterations, inflammation, cell senescence, and cell apoptosis. This may subsequently
contribute to chronic degenerative diseases.

2. Molecular Connectivity of Oxidative Stress-Induced Diseases

Inflammaging is characterised by chronic, low-grade inflammation and persistent
secretion of proinflammatory cytokines that modify cellular function, even in the absence
of overt infection. Furthermore, it increases the presence of inflammatory cells, such as
neutrophils, monocytes and macrophages, and C-reactive protein (CRP). Ageing alters
the function of the immune system, and in the process of inflammaging, innate immunity
establishes minimal changes in mild hyperactivity of circulating inflammatory factors,
whereas the adaptive immunity shows a decline effect, and with the progression of adap-
tive immunosenescence, anti-inflammatory mechanisms are inadequate and impotent to
avert the improperly active innate immunity. Chronic inflammation is associated with
numerous age-related and chronic degenerative diseases, namely AD, PD, CVD, dementia,
osteoporosis, diabetes, and cancer [19,20].

2.1. Oxidative Stress and Erythrocytes

Human erythrocytes or red blood cells (RBCs) have an average lifespan of 120 days
in vivo. Hematopoietic stem cells undergo differentiation in the bone marrow to gen-
erate nucleate erythrocytes. To generate mature, non-nucleate, disc-shaped, biconcave
erythrocytes, ribosomes and organelles such as the endoplasmic reticulum (ER) undergo
degradation in reticulocytes, and the plasma membrane is remodelled [21]. The primary
function of haemoglobin (Hb), a conjugate protein found in high concentrations in erythro-
cytes, is the transportation of respiratory gases between tissues. Hb also plays an essential
role as a source of O2

•− generation in erythrocytes. Interfaces between oxygenated Hb
and heme iron results in an electron transfer [22]. Hb auto-oxidises during this exchange,
resulting in methemoglobinemia (MetHb) and O2

•− generation [22].
Mature erythrocytes preserve a range of proteins, carbohydrates, enzymes, anions,

lipids, and cations, and all of these must be balanced for implicit metabolism and cellular
function. A key consequence of erythrocyte component imbalance is a decreased ability to
cope with oxidative stress. This can lead to degenerative changes in Hb, enzymes, and cell
membranes, essential for optimal erythrocyte function [23].
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Erythrocytes are essential in various metabolic and physiologic activities. As oxygen
transporters, erythrocytes are one of the first cells to undergo distress due to exposure
to a wide array of adverse environments. Erythrocytes are constantly exposed to high
oxygen tension resulting in irreversible damage caused by oxidative stress, which lowers
antioxidant capacity, causing erythrocytes to be damaged by haemolysis and removed from
circulation [24]. Furthermore, erythrocytes cannot restore degenerative components since
they lack intracellular organelles resulting in limited metabolism. According to Abdallah
et al. [25], the polyunsaturated fatty acids (PUFAs) profile of the erythrocytes’ plasma
membrane and the unremitting exposure to circulating ROS renders erythrocytes highly
susceptible to oxidative damage. Thus, elevated oxidative stress shortens the survival
of circulating erythrocytes [26]. Under pathological conditions, such as CVDs, diabetes,
and ageing, there is an elevation in the frequency of oxidative damage to erythrocytes.
Celedón and colleagues [27] demonstrated that biochemical modifications resulting from
acute hypobaric hypoxia make erythrocytes susceptible to oxidative stress. During the
natural lifespan of erythrocytes, there are numerous changes in size and lipid and protein
content in the plasma membrane, such as shrinkage in erythrocyte volume, with an increase
in cell density and a decline in Hb content [28]. These changes are consistent with the
expulsion of plasma membrane components, such as phospholipids, cholesterol, and
integral proteins, including band-3 proteins (B3p) and glycophorin, resulting in a decline
in the cell’s surface area [29]. B3p are polytopic membrane proteins, which function as
facilitators in the cellular exchange of bicarbonate (HCO3−) with chloride ions (Cl−) in the
plasma, referred to as the “chloride shift” [30]. Therefore, increased oxidative stress alters
erythrocyte morphology, elevating susceptibility to the mechanic and osmotic shock and
modifying the anion exchange process mediated by B3p [31].

2.2. ROS and Ageing

Ageing is the progressive or sequential loss of the tissue and organ anatomical and
structural function, which may result in general debility and death. Although ageing is not
an explicit disease entity, it is associated with a myriad of chronic disorders. The ‘free radical
theory of ageing’ is based on the hypothesis that ROS is the cause of structural damage
and functional losses due to the accumulation of oxidative damage to cell constituents and
connective tissues [32]. The ageing process can occur as a result of intrinsic factors (genetics)
or extrinsic factors (improper diet, smoking, lack of physical activity, substance abuse,
and untreated inflammatory conditions). Literature shows that numerous deleterious
mechanisms, including mitochondrial dysfunction, the accumulation of oxidative damage,
genomic instability, loss of proteostasis, stem cell exhaustion, and cellular senescence, are
correlated with ageing [33]. Presently, the free radical theory and the mitochondrial theory
are two acknowledged theories on the mechanism of ageing. The ageing mechanism is
based on the hypothesis that elevated concentrations of intracellular free radicals induce
mitochondrial dysfunction and modify cellular structural function and regeneration. The
mitochondria and the NOX system are the prime players involved in excessively generating
cellular oxidative stress. Egea et al. [34], Park et al. [35], and Zhang et al. [36] demonstrated
that chronic degenerative diseases exhibited increased expression and/or activity of NOX.
There has been speculation that elevated RONS concentrations and oxidative stress induce
cellular senescence, which is characterised by the cessation of cellular proliferation in
normal and pathophysiological processes. Moreover, senescence-associated secretory
phenotype (SASP) is provoked by multiple stimuli, such as the secretion of degenerative
matrix metalloproteases (MMPs), insoluble extracellular matrix (ECM) components, and
soluble chemokines, cytokines, and growth factors [37].

2.3. Neurodegenerative Diseases
2.3.1. Alzheimer’s Disease (AD)

AD is one of the most typical neurodegenerative diseases that affect individuals with
advanced age. It is illustrated by the continuous loss of neuronal function and cognitive
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impairment, deposition of Tau proteins forming neurofibrillary tangles (NFT), and the
formation of amyloid-beta (Aβ) plaques. Under normal physiological concentrations, Aβ

modulates neural growth and repair and plays an essential role as a natural antioxidant [38].
The evolution and advancement of AD are thought to be induced by oxidative imbalance.
According to Menzies et al. [39], impaired neuronal mitochondrial metabolism decreases
adenosine triphosphate (ATP) generation, elevates O2 free radicals, and increases the gener-
ation of extracellular Aβ and the phosphorylation of intracellular Tau proteins. The precise
mechanisms underlying the imbalanced redox state in AD remain unknown; however,
excessive oxidative stress was discovered in the infancy of AD, preceding the accumulation
of marked Aβ [40].

The accumulation of Aβ and the hyperphosphorylation of Tau proteins elevates ROS
generation by stimulating the c-Jun N-terminal kinase (JNK)/p38 MAPK signalling cas-
cades. Studies conducted by Caspersen et al. [41], and Manczak et al. [42], found that
brain mitochondria of transgenic mice, AD patients, and neuroblastoma cells expressing
human mutant amyloid precursor protein (APP) contained Aβ deposits due to deficient
antioxidants. This process exacerbates mitochondrial ROS generation and induces mi-
tochondrial dysfunction. It is considered that the presence of Aβ deposits may have
destructive effects on mitochondrial metabolism, leading to mitochondrial dysfunction and
neuronal death. Additionally, in the ER, the aggregation of Aβ leads to an imbalance in
calcium (Ca2+) homeostasis [20]. The orifice of mitochondrial permeability transition pores,
N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and mitochondrial-generated ROS
induce the accumulation of mitochondrial Ca2+ [43]. Cellular Ca2+ overload under patho-
logical conditions is primarily associated with oxidative stress, and mitochondrial Ca2+

uptake may initiate neurotic states and cell death. In combination with NO•, the uptake of
mitochondrial Ca2+ can spark the mitochondrial membrane’s disintegration and hasten
cell death.

The interaction between the metal ions and the Aβ plaques is believed to be involved
in the generation of H2O2. Riederer et al. [44] reported elevated concentrations of metal
ions such as zinc, iron, and copper in Aβ plaques. According to Wang et al. [40] and
Zhao and Zhao [45], Aβ-induced oxidative damage elevates the formation of by-products
associated with DNA/RNA, lipid, and protein oxidation. With the progression of AD, there
is a decline in the deposition of Aβ due to ROS-induced oxidative imbalance. Furthermore,
there is a decline in antioxidant enzymes, such as SOD and CAT, as well as vitamin E and C.
Individuals with AD demonstrate a decline in the actions of pivotal oxidative enzymes such
as cytochrome oxidase and pyruvate dehydrogenase and α-ketoglutarate dehydrogenase
complexes [40].

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway has an enormous influ-
ence on AD, and is an evolving therapeutic target of AD. It is an essential redox-regulated
transcription factor that is critical in regulating oxidative stress-related genes. According
to Bahn and Jo [46], neurodegenerative disorders such as AD contain impaired function
and altered localisation of Nrf2. Nrf2 functions as an upregulator of antioxidative de-
fence, impeding inflammatory responses and preserving proteostasis. In physiological
conditions, kelch ECH associating protein 1 (KEAP1), a constituent of the cullin3-based E3
ligase complex, cloisters Nrf2 in the cytoplasm. This results in the poly-ubiquitination of
Nrf2 and successive Nrf2 degradation by the ubiquitin-proteasome cascade [47]. On the
contrary, the KEAP1/Nrf2 interface is interrupted by Nrf2 and ROS activators reacting with
KEAP1 cysteine residues [47]. This results in the alterations of KEAP1 cysteine residues
and subsequent deterioration of the KEAP1 ubiquitin ligase activity [48]. The accumulation
of Nrf2 in the nucleus follows after Nrf2 degradation undergoes suppression and is sta-
bilised. This leads to an interface between Nrf2 and binding elements, which spearheads
detoxification and antioxidant gene transcription [49]. Therefore, the KEAP1-Nrf2 cas-
cade regulates detoxification and antioxidant genes responsible for the fortification of cells
from electrophilic and oxidative stress. A study conducted by Kubben et al. [50] demon-
strated that suppression of the Nrf2 signalling cascade promotes the premature ageing
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phenotype of Hutchinson–Gilford progeria syndrome (HGPS). They further determined
that reactivation of the Nrf2 signalling cascade leads to a decline in ROS generation and
repairs cellular HGPS deficiencies. Furthermore, Uruno and colleagues [48] determined
that the induction of Nrf2 in AppNLGF model mice enhanced antioxidative properties in the
brain, thus improving pathological neuroinflammatory responses. Their study suggested
the kEAP1-Nrf2 regulatory cascade as a potential therapeutic target for advancing drugs
affecting neurocognitive pathologies, including AD.

2.3.2. Parkinson’s Disease (PD)

PD is a progressive neurodegenerative disease caused by the degeneration of dopamin-
ergic neurons and an abnormal increase of α-synuclein (α-syn) within the substantia nigra
(SN; darker appearing areas in the brain as a result of high levels of melanin in dopamin-
ergic neurons). It is believed that the involvement of dopamine (DA), Ca2+, iron, neu-
roinflammation, and mitochondria critically contribute to increased oxidative stress and
neurodegeneration. Disrupted redox potential in neurons obstructs several biological
progressions resulting in cellular death, and ROS generation plays a significant role in the
progression of PD [20]. In PD, the discovery of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), was initially linked to mitochondrial dysfunction and loss of
SN [51]. PD is typified by the loss of dopaminergic neurons. Bindoff et al. [52] reported
that the SN of individuals with PD displayed reduced complex I of the mitochondrial
ETC and ubiquinone, leading to neurodegeneration. In addition, MPTP, paraquat, and
rotenone elevate ROS production, thus causing the progressive loss of dopaminergic neu-
rons. 1-methyl-4-phenylpyridinium (MPP+), a toxic MPTP metabolite, is formed when
MPTP crosses the blood–brain barrier and is metabolised by astrocytes [53]. The accumula-
tion of MPP+ constrains the function of complex I, disrupting electron translocation via
the mitochondrial ETC. This leads to a reduction in the production of ATP and elevated
generation of ROS, initiating Parkinsonism.

Tyrosine hydroxylase (TH) is an enzyme involved in converting the amino acid ty-
rosine to DA, a neuromodulatory molecule formed by dopaminergic neurons, essential
for motor activity. Oxidative stress is speculated to be involved in the degeneration of
dopaminergic neurons. In PD, l-3,4-dihydroxyphenylalanine (L-DOPA), as a precursor to
DA, is involved in the synthesis of DA in the presence of DOPA decarboxylase (DDC) [54].
Following its synthesis, DA is transferred to a stable environment and stored in synaptic
vesicles within the cytoplasm and is dependent on the uptake of DA by the vesicular
monoamine transporter 2 (VMAT2). TH, DDC, and VMAT2 form a complex that averts
DA from being released into the cytosol, thus facilitating its storage within the synaptic
vesicles [54]. Damaged neurons have an excess quantity of cytosolic DA due to the reup-
take of impaired DA in the extracellular space of the synaptic vesicle, which undergoes
auto-oxidation or enzymatic metabolism by monoamine oxidase (MAO), yielding H2O2
as a by-product [55]. DA quinones (DAQ) or semiquinones are vastly reactive oxidized
DA and are generated due to O2

•− radical reduction during DA oxidation [56]. DAQ
promotes neuronal degeneration and induces modification of PD-related proteins, namely:
α-syn, SOD-2, parkin, ubiquitin C-terminal hydrolase L1 (UCH-L1), and DJ-1 [57]. In
addition, DAQ is responsible for mitochondrial dysfunction and inactivation of the TH
enzyme and the DA transporter (DAT). The formation of neuromelanin occurs due to the
oxidation of DAQ to aminochrome, generating O2

•− radicals and degradation of cellular
NOX. Neuromelanin, a catecholamine-based polymer pigment, aggregates in the human
brain’s SN pars compacta (SNpc) [58]. The gradual loss of DA neurons in the SNpc and the
intracellular sedimentation of misfolded α-syn are associated with the pathogenesis of PD.

The inflammatory response of the nervous system, neuroinflammation, restores and
protects the anatomical structure and function of the central nervous system (CNS) against
traumatic insults and damage, toxic metabolites, autoimmunity, and infectious agents. It
is characterised by the activation of microglia [59]. Microglia are innate immune cells of
the brain that play a pivotal role in immune defence and modulating brain development.
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Microglial activation releases numerous neurotoxicants such as proinflammatory cytokines,
such as interferon gamma (IFN-γ), IL-1β, IL-2, IL-6, and tumour necrosis factor-alpha
(TNF-α), and mediators of inflammation, namely COX-2 and inducible nitric oxide syn-
thase (iNOS) [60]. The continuous release of inflammatory mediators and proinflammatory
cytokines induces NO• and O2

•−, contributing to oxidative stress and RNS in the CNS.
Consequently, this process may lead to the development of chronic inflammation. Accord-
ing to Calabrese et al. [61] and Pal et al. [62], PD patients display many activated microglia
and elevated concentrations of neuroinflammatory markers, including IFN-γ, IL-1β, IL-6,
and TNF-α. Managing microglia activation may be essential in reducing high levels of ROS
production and PD pathogenesis.

2.4. Cardiovascular Diseases (CVDs)

CVDs are a leading cause of global mortality and morbidity and are a principal
contributor to disability in the elderly. Hypertension and hypercholesterolemia have been
implicated as the main risk factors that augment ROS production and the development of
oxidative stress [63]. Oxidative stress plays a vital role in the evolution and advancement
of CVDs, including altering gene expression. Studies conducted by Bulua et al. [64] and
Zhou et al. [65] indicate the pivotal role played by oxidative stress in facilitating cytokine
generation and secretion and interconnecting ROS with vascular endothelial activation,
dysfunction, and inflammation. Vascular endothelium is primarily responsible for the
generation of NO•, which is critical in the modulation of blood pressure and vascular tone
and optimal performance of the heart and vascular system. Essentially, NO• is a crucial
molecule required in numerous cell processes, including maintaining vascular homeostasis
in endothelial cells.

As a result of ROS’ dual faceted mechanism in cardiovascular pathophysiology, at
low concentrations, it bestows a remarkable contribution to the benefit of the cardio-
vascular system, such as endogenous cardiovascular protective, pro-angiogenesis, and
anti-atherosclerotic effects. High concentrations of ROS induce a variety of disorders by
stimulating endothelium-derived contracting factors (EDCFs) and creating atherosclerosis,
and the reduction of NO• bioavailability marks the inception of endothelial dysfunc-
tion [66]. The formation of ONOO− occurs when O2

•− reacts with NO•, and the successive
generation of ONOO− induces endothelial cell dysfunction and death. According to
Elahi et al. [67], elevated ROS concentrations regulate the activity of transcription factors,
namely, activator protein 1 (AP-1), nuclear factor-kappa B (NF-κB), and the peroxisome
proliferators-activated receptor (PPAR) family.

One of the initial causal events of atherogenesis or other CVDs associated with en-
dothelial dysfunction is low-density lipoprotein (LDL) oxidation within the vessel wall [68].
Atherosclerosis, at locations of disrupted flow patterns, is initiated when oxidised low-
density lipoprotein (oxLDL) is transferred to the tunica media from the vessel lumen.
Oxidised phospholipids, produced in proinflammatory tissues such as atherosclerotic
abrasions through receptor-independent or receptor-mediated signalling reactions, elevate
proinflammatory gene activity and growth factors, signal monocytes, stimulate endothe-
lial cells, produce endothelium adhesion molecules expression, and possess endothelium
cytotoxic effects [69]. Dose-dependent elevations in ROS generation cause oxLDL to trans-
figure the intracellular redox state of a cell by binding to the endothelial lectin-like oxLDL
receptor-1 (LOX-1) [70]. Paik and colleagues [71] conducted a study on 2944 healthy women
aged between 30 and 79 years to explicate the effect of age on the atherogenicity of inflam-
matory markers and LDL. The results highlighted elevated oxLDL levels in the plasma
after 50 years. Cominacini et al. [72] stated that the upregulation of ICAM-1 and VCAM-1
is activated by oxLDL. This action is further magnified by cytokines such as vascular
endothelial growth factor (VEGF), TNF-α, angiotensin II (Ang II), and interleukins, which
stimulate vascular NOX to excessively generate ROS. Results from a study conducted by
Touyz and Schiffrin [73] suggested that Ang II-elevated NOX-ROS production in smooth
muscle cells and induced vascular remodelling in hypertension. In another study, Touyz
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and Schiffrin [74] demonstrated that the action induced by Ang II on the Ang II type 1 (AT1)
receptor activates protein kinase C (PKC). PKC activation is responsible for the inception
of ROS generation, which leads to Src kinase and cellular Src tyrosine kinase stimulation.
Additionally, oxLDL contributes to NF-κB activity primarily observed in atherosclerosis.
The ROS/p38MAPK/NF-κB pathway is employed by oxLDL to stimulate the expression of
cell adhesion molecules (CAMs) and monocyte-endothelial adhesion [75]. Under abnormal
physiological conditions, all the layers of the blood vessel wall can generate ROS, most
of which are resultant of NOX enzymes. As a result of elevated ROS concentrations, NO•

bioavailability is reduced, leading to a decline in endothelium-dependent relaxation. In-
triguingly, a study conducted by Stielow and colleagues [76] displayed that the novel NOX
inhibitor VAS2870 inhibits oxLDL-mediated O2

•− formation from human endothelial cells.

2.5. Diabetes

One of the reasons for the increased rate of DM in the aged population is increased
insulin resistance with age due to sarcopenia, obesity, and lessened physical activity besides
general health status, including the presence of frailty and comorbidity. Diabetes develops
when blood glucose is overly high (hyperglycaemia). Chronic hyperglycaemia is linked
to the progression of DM complications due to altered signalling pathways, oxidative
stress, advanced glycation end products (AGEs), and the secretion of the proinflammatory
cytokines and cellular apoptosis. Furthermore, hyperglycaemia triggers the formation of
diacylglycerol (DAG) and, through the activation of the PKC pathway and NOX, advances
the production of ROS and oxidative stress. For type II diabetes, the reduction of glucose
absorption into adipose and muscle tissue induces chronic hyperglycaemia. As a result,
tissue damage and abnormal physiological conditions (involving atherosclerosis, heart
disease, and retinopathy) ensue [77]. Primarily, diabetic patients develop microvascular
and macrovascular complications, which form part of the principal sources of disability
and mortality. In type II diabetes, it is suggested that exposure of the pancreatic β cells to
ROS and oxidative stress leads to the development of defective β cells, which are unable to
produce and/or release sufficient insulin [18]. RONS exhibit a bidirectional modulation
in insulin signalling. It is now crescively evident that RONS acts as inhibitors of the
insulin signalling pathway, rendering them putative mediators in the evolution of insulin
resistance. However, RONS acts as a facilitator of this pathway, ensuring that the cellular
and physiological effects of insulin are exerted. Elevated oxidative stress can be directly
induced by glucose oscillations, which are fundamental in altering the primary culprit of
diabetes [78,79].

There are four fundamental theories highlighting the role of hyperglycaemia as the
causative agent in diabetic complications: (i) activation of PKC isoforms, (ii) elevated
hexosamine cascade flux, (iii) elevated polyol cascade formation, and (iv) elevated for-
mation and glycation of proteins [80]. The interaction between AGEs and receptors for
advanced glycation end-products (RAGEs) induces post-receptor signalling and promotes
ROS production [77]. In addition, AGEs activate the transcription regulator, NF-kB, which
stimulates the transcription of ICAM-1 and VCAM-1, and induces sorbitol, PKC and ROS
generation. This demonstrates a hyperglycaemia-mediated mechanism of excessive O2

•−

generation by the mitochondrial ETC. Furthermore, mitochondrial dysfunction reduces
ATP production capability, which stimulates the NOX complex, Ca2+ signalling, and β cell
glucose-stimulated insulin secretion (GSIS) [81]. Additionally, O2

•− generation can also
be attributed to an increase in glycolytic flux, which endorses oxidative phosphorylation
and ATP generation. Essentially, the pentose phosphate cascade regulates the inceptive
adaptive response, in which glucose carbon diverges excessive glycolysis and oxidative
phosphorylation by converting excess glucose to a pentose [82]. However, this process can
also lead to elevated O2

•− synthesis and NOX activity.
NOX is activated in response to elevated levels of AGEs and glucose autoxidation.

Pérez-Matute et al. [77] suggested that NOXs role in stimulating basal ROS generation
upregulates antioxidant enzyme defences. NOX acts as a double-edged sword, where pro-



Int. J. Mol. Sci. 2022, 23, 7273 10 of 28

tracted NOX activations lead to defective antioxidant defences, mitochondrial dysfunction,
endothelial NO synthase (eNOS) uncoupling, and induction of oxidative stress. In response
to hyperglycaemia, insulin is released into the blood circulation by pancreatic β cells, and
its anabolic effect on target tissues is influenced by its transmembrane receptor, insulin
receptor (IR) [82]. This interaction promotes the phosphorylation of insulin receptor sub-
strate (IRS) proteins, autophosphorylation of IR, and triggers signalling pathways, such as
protein kinase B (Akt) and phosphatidylinositol-3-kinase (PI3K). In addition, intracellular
insulin elevation occurs due to increased cellular O-GlcNAcylation, which simultaneously
maintains glucose-stimulated insulin secretion in β-cells [83]. This is partly because in-
creased O-GlcNAcylation elevates histone H3 transcriptional activation markers, leading
to increased mRNA expression of the insulin (Ins1/2) gene [83]. It has been suggested that
O-GlcNAcylation mainly regulates cellular processes, such as transcription, translation,
and signal transduction cascades, in response to stress and nutrients [84,85]. Furthermore,
O-linked β-N-acetylglucosamine (O-GlcNAc) is a potent post-translational modification
on a myriad of proteins directly at or located proximal to serine or threonine residues [86].
O-GlcNAc alters the IRS proteins at specific sites, leading to elevated GlcNAcylation of IRS
proteins, which decreases its binding to PI3K p85 regulatory subunit, thus resulting in O-
GlcNAc’s downregulation of insulin signalling [87]. A study conducted by Yoon et al. [88]
determined that O-GlcNAcase (OGA), a beta-exo-N-acetylhexosaminidase responsible for
elevating O-GlcNAc concentrations in cells, and inhibition by PUGNAc ((phenylcarbamoyl)
oxime analogue of GlcNAc; molecular weight, 353.3) significantly reduced ROS generation
and oxidative-induced loss of mitochondrial membrane potential. According to Henrik-
sen et al. [89], Akt plays a vital role as a regulator of lipid and glucose metabolism and
modulates vesicle translocation of glucose transporter 4 (GLUT-4) in insulin-responsive
tissues. While NOX can be transiently activated with increased ROS generation, it can also
be triggered by the redox-sensitive KEAP1-Nrf2 and receptor tyrosine kinase signalling
cascades [90].

2.6. Chronic Kidney Disease (CKD)

CKD is common in the elderly, mainly due to the increasing prevalence of diabetes,
hypertension, and CVD. CKD is characterised by a gradual decline in kidney function
or a glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 for the course of 3 months or
more, irrespective of the underlying conditions [91]. Potential complications from CKD
include CVD, acute kidney injury, anaemia, kidney disease progression, mineral and bone
disorders, and cognitive decline.

The kidney is one of the most energy-demanding body organs, with the energy
required to maintain renal tubular transport by secreting and reabsorbing substances. Liter-
ature indicates that high intracellular levels of ROS play a vital role in the development of
CKD. In the kidney, cellular mitochondria and NADPH oxidases are the leading causes of
ROS production. However, in normal circumstances, the renal antioxidant system, includ-
ing CAT, GPX, and SOD, corrects any ROS-facilitated injury. Renal injury is characterised
by the excessive production of mitochondrial ROS [92]. Specific biomolecules undergo
oxidation when there is an imbalance in the redox systems, resulting in anatomical and
structural modifications of these molecules. This process occurs in the mitochondria and is
orchestrated by mitochondrial cytochrome oxidase enzymes such as cytochrome P450. Su
et al. [93] and Zhu et al. [94] conducted studies on aldosterone-infused mouse models, and
their findings suggested that mitochondrial dysfunction precedes proteinuria and podocyte
effacement. ROS, generated as a by-product during this process, facilitates atherosclerosis
pathogenesis in CKD and the development of renal injury.

Ratliff and colleagues [95] suggested that the downregulation of SOD and the overex-
pression of NOX in CKD indicates a correlation between the accumulation of O2

•− and
oxidative stress in renal failure. In addition, ONOO− is generated when NO• reacts with
O2
•− and gives rise to nitrosative stress, a NO-mediated nitrosylation of redox-sensitive thi-

ols. ONOO− induces oxidative damage and alters cellular signalling cascades by oxidising
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DNA, lipids, and proteins, inciting cellular injury, necrosis, and apoptosis. Furthermore,
myeloperoxidase (MPO) metabolises Cl− and H2O2 to hypochlorous acid (HOCl), thereby
contributing to chlorinated stress [96]. Liu and colleagues [97] and Malle et al. [98] reported
on the elevation in HOCl-mediated protein oxidation in kidney tissues of individuals with
CKD. Additionally, studies conducted by Nicholls et al. [99] and Xu et al. [100] demon-
strated that MPO-mediated HOCl uncouples and impedes eNOS and impairs high-density
lipoproteins (HDL) in atherosclerotic lesions. Carbonyl stress is induced due to the ele-
vated generation of AGEs in renal dysfunction, which further stimulates inflammation in
CKD [96]. Moreover, leukocyte recruitment and activation and the generation of AGEs,
oxLDL, and advanced protein oxidation products are induced by oxidative stress [101].
The activation of immune cells, such as neutrophils and macrophages, and resident cells,
prolongs the oxidative state due to the production of RONS. The excessive generation of mi-
tochondrial ROS promotes CKD-mediated chronic micro-inflammation by stimulating the
NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in patients
with uraemia [102].

Factors such as angiotensin II decreased NO• generation, and hypertension further
promotes the surge of ROS generation in CKD. Studies conducted by An et al. [103],
Cho et al. [104], and Quiroz et al. [105] demonstrate the impact of ROS generation in the
advancement of CKD, in which antioxidants such as omega-3 fatty acids, niacin, and
melatonin, mitigate kidney injury.

3. Stem Cell Interventions

In ageing, stem cells become defunct and are associated with the deterioration of phys-
ical and mental capabilities [106]. In recent years, stem cell applications utilised human
neural stem cells (hNSCs) to replace damaged neutral structures (Table 1). The rationale
therapy in NSC applications involves replacing lost neurons, regulating disordered neuro-
transmission, and restoring functional activity. NSCs are a group of ectodermal progenitor
cells with the capability to self-renew and differentiate into specialised neutral subtypes,
including glial cells and neurons [107,108]. Consequently, NSCs display an inherent mech-
anism to rescue dysfunctional neural pathways and are an appealing, universal source for
grafting and the advancement of restorative cell therapies.

Moreover, NSC therapy plays a critical role in replacing DA-producing neurons
in PD, and in support of this, Trounson et al. [109] highlighted numerous clinical and
preclinical trials. A study conducted by Zuo and colleagues [110] to assess the potential
effects of hNSCs on PD found that hNSCs effectively restored and enhanced the functional
defects in intrastriatal 6-hydroxydopamine-induced (6-OHDA) Parkinsonian mice. In
another study, Lévesque et al. [111] demonstrated that autologous NSCs produced motor
improvement and elevated DA uptake. Limitations observed with NSC therapy in treating
CNS pathologies include deficient functional recovery due to the implanted NSCs’ inability
to connect with existing neurons. Additionally, failure of the intravenously injected NSCs to
travel through the lungs results in a small quantity of NSCs accessing their target regions in
the brain [112]. Mesenchymal stem cells (MSCs) from juvenile animals play a pivotal role in
the phenomenon of stem cell exhaustion and offer an excellent promise for delaying chronic
degenerative pathologies. Essentially, MSC therapy has arisen as a potential contender
for treating CNS pathologies. Literature indicates that stem cells regulate physiological
homeostatic control [33,113].
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Table 1. NSC studies in chronic degenerative diseases.

Cell Line Studied Model Tested Parameters Observations Ref.

Alzheimer’s
disease

NSCs
Aged triple

transgenic mice
(3xTg-AD)

Cognitive function
and behavioural tests.

Migration and
differentiation of
engrafted cells.

Differentiation of NSC into astrocytes,
neurons, and oligodendrocytes.

NSC liberates spatial learning and memory
deficits.

Improved cognitive function, mediated by
elevated BDNF, and elevated hippocampal

synaptic density.

[114]

NSCs Sprague-Dawley
rats

Spatial cognitive
capability.

Neuronal migration,
differentiation, and

survival of engrafted
cells.

NSCs differentiation into neurons and glial
cells.

Significant increase in cholinergic neurons
of NSCs-transplanted group.

Significant statistical improvement in the
spatial cognitive capability of

NSCs-transplanted group.

[115]

NSCs
Rats with

fimbria-fornix
lesions

Neuronal
differentiation and

survival in the
hippocampus and

basal forebrain.
Functional effects.

Cells differentiated into neurons and glial
cells.

Differentiated cells acquired neuron-like
features, as well as neurofilament subunit

expression.
Enhanced survival of NSC.

Increase in cholinergic neuronal phenotype,
with enhanced expression of the p75
neurotrophin receptor and choline

acetyltransferase.

[116]

NSCs Sprague-Dawley
rats

Neuronal
differentiation and

survival.
Memory and learning

abilities.

Cells differentiated into neurons and glial
cells.

Significant increase in the expression of p75
neurotrophin receptor.

BDNF improved the treatment effects
NSCs transplanted group.

[117]

Parkinson’s
disease

NSCs

6-OHDA-
lesioned

Sprague-Dawley
rats

Behavioural
benefits/testing.

Protection against
dopaminergic

exhaustion.

Significantly improved parkinsonian
symptoms.

Preservation of TH.
NSC transplantation exerted

neuroprotective properties against
dopaminergic exhaustion as a result of

neuronal differentiation and the secretion
of tropic factors.

[118]

NSCs 6-OHDA-
lesioned rats

Cell survival and
migration to Striatum.

Neuronal
differentiation.

Improved cellular migration over the
striatum.

Expression of DA-synthesising enzymes,
TH, and L-amino decarboxylase.

[119]

ESCs

6-OHDA-
lesioned

Sprague-Dawley
rats

Cellular proliferation
and differentiation.

Functional recovery.

Proliferation of ESCs into fully
differentiated DA neurons.

Persistent behavioural restoration of
DA-induced motor asymmetry.

[120]

Diabetes NSCs Sprague-Dawley
rats with DR

BDNF and Thy-1
expressions.

DR progression.

NSC transplantation reduced retinal
vascular dysfunction.

Significant increase in BDNF and Thy-1
expressions.

Elevated number of surviving RGCs.
Significantly diminished DR progression.

[121]
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Table 1. Cont.

Cell Line Studied Model Tested Parameters Observations Ref.

Hypoxic-
ischaemic

injury

NSCs
Sprague-Dawley

rats with
neonatal HI

Motor behavioural
tests.

Axonal sprouting,
neuronal

differentiation, and
microglia response.

Enhanced motor function recovery.
NSCs grafts demonstrated good survival

and differentiation and modified microglial
response.

Enhanced axonal sprouting.
Upregulation of neurogenesis,

neurotrophic and gliogenesis genes.

[122]

NSCs Sprague-Dawley
rats

VEGF protein
expression and

neuronal apoptosis.

Diminished neuronal apoptosis.
Elevated angiogenesis. [123]

NSCs Sprague-Dawley
rats

Neurological
outcomes.

Enhanced sensorimotor function.
Diminished brain tissue loss.
Inflammation suppression.

[124]

NSCs, neural stem cells; BDNF, brain-derived neurotrophic factor; TH, tyrosine hydroxylase; 6-OHDA, 6-
hydroxydopamine; Thy-1, thymocyte differentiation antigen 1; RGCs, retinal ganglion cells; DR, diabetic retinopa-
thy; DA, dopamine; ESCs, embryonic stem cells; HI, hypoxic-ischaemia.

MSCs can be acquired from the adipose tissue, bone marrow, foetal liver, muscle,
umbilical cord, and lungs. Clinical and preclinical investigations conducted by Chen
et al. [125], Hayashi et al. [126], Nöth et al. [127], Richardson and Hoyland [128], and
Tzaribachev et al. [129] suggest that MSCs play a pivotal role in wound repair, including
growth and replacement of damaged cells. The expression of chemokine receptors in
injured tissue attracts MSCs toward inflammatory regions. MSC therapy is recommended
as a potential contender for treating neurodegenerative diseases. Implantation of MSCs
in the damaged tissue regions induces therapeutic effects through various mechanisms
(Table 2), such as differentiation, anti-inflammatory and immunomodulatory effects [130],
neurogenesis induction, and astroglial stimulation [131], a decline in oxidative stress and
apoptosis [132], increased axon growth [133], and neurotrophic factor secretion [134]. A
study conducted by Kim and colleagues [135] demonstrated that MSCs secreted ICAM-1,
reducing Aβ plaques in 10-month-old transgenic mouse models of AD. In another study,
Park et al. [136] examined the ameliorative effects of MSCs on neurogenesis in PD models.
They reported that human MSCs significantly elevated neurogenesis in the subventricular
zone of PD animal models, which led to the differentiation of neural precursor cells into
dopaminergic cell groups in the substantia nigra in PD. Despite all of these findings, Peng
and colleagues [137] suggested the need for additional data to validate the efficiency of MSC
therapy in the treatment of neurodegenerative diseases. Additionally, limitations of MSC
therapy include an inefficiency of distribution and survival rates in implanted modalities.

Table 2. MSC studies in chronic degenerative diseases.

Cell Line Studied Model Tested Parameters Observations Ref.

Alzheimer’s
disease

hMSC

Hippocampal
neurons from
18-day-old rat

embryos,
incubated with

hMSC-EVs

Oxidative stress.
Neuroprotective

action.
ROS generation in
cultures exposed to

AβOs.

hMSC-EVs attenuated AβOs induced
robust oxidative stress.

Significant elevation of ROS concentrations
due to AβOs exposure.
Carry active catalase.

Block synapse damage.

[138]

hUMSCs Male APP/PS1
mice

Spatial probe tests
Aβ accumulation

assay.

Decrease Aβ generation, oxidative stress
and inflammation.

Improved memory and cognitive deficits.
[139]
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Table 2. Cont.

Cell Line Studied Model Tested Parameters Observations Ref.

Alzheimer’s
disease

hUCB-
MSCs

Hippocampus of
10-month-old

transgenic
mouse model.

Cytokine array
examination.

Increased release of sICAM-1.
Elevated NEP expressions.

Decrease in Aβ24 plaques in the
hippocampus due to hUCB-MSC migration

towards Aβ deposits.

[135]

hucMSC
AβPP/PS1
transgenic

mouse

Behaviour test
ELISA for the
detection of

inflammatory
cytokines.

Alleviate neuroinflammation and Aβ

deposition.
Repair cognitive dysfunctions.

[140]

BM-MSCs APP/PS1 mice

Cognitive behaviours.
Electrophysiological

tests.
iNOS mRNA and

protein levels.

Improve cognitive behaviour.
Decrease synaptic impairment and LTP.

Alleviate iNOS expression.
[141]

Parkinson’s
disease

BM-MSCs
Sprague-Dawley
rats, 6 weeks of

age

Cell survival,
migration, and

differentiation of
transplanted MSCs.

Behavioural
observations of
PD-model rats.

Expression of TH in
the SN and the

striatum.

BM-MSC transplanted into the lesioned
SN, survived, and migrated to other parts

of the lesioned brain.
Significant improvement in abnormal

behaviour following the administration of
BM-MSCs.

Increase in TH-positive cells in the SN.
Increase in the optical density of

TH-positive fibres in the striatum.

[142]

BM-MSCs Hemiparkinsonian
rats

Expression of TH in
SN and striatum.
Differentiation of

MSCs.
Analysis of NAA, Cho,
and Cr concentrations.

Statistical differences were observed
between TH-positive cells in SN and

TH-positive terminals in striatum.
MSC differentiation into MAP-2-positive

neurons.
Significant increase in NAA/Cr ratio of
6-OHDA-injected side of the striatum.
Significant decrease in Cho/Cr ratio of
6-OHDA-injected side of the striatum.

[143]

BM-MSCs Sprague-Dawley
rats

In vivo microdialysis
Behavioural

tests—intensity of
rotational behaviour
and neurochemical

recovery in 6-OHDA
lesioned rats.

Group III demonstrated a significant
increase in membrane DA transporter and

vesicular monoamine transporter-2
compared to group I.

Adult MSC reduces behavioural effects
induced by 6-OHDA lesions and partially
reinstates the vesicular striatal pool and the

dopaminergic markers of DA.

[144]

CVD

BM-MSCs

Sprague-Dawley
rats induced

with myocardial
infarction

Collagen content.
Vascular density.

The combination VEGF/BM-MSCs
transplant therapy demonstrated a

decrease in collagen content (33%) and a
significant elevation in vascular density

(80%).
BM-MSC transplantation stimulated

vascular repair.

[145]

BM-MSCs
60 patients with
ischaemic heart

failure

BM-MSCs therapy in
patients with severe

ischaemic heart failure
-a randomised

placebo-controlled
trial (MSC-HF trial).

Enhanced myocardial function in patients
with severe ischaemic heart failure. [146]
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Table 2. Cont.

Cell Line Studied Model Tested Parameters Observations Ref.

CVD MSCs

22 patients with
non-ischaemic

cardiomyopathy
with left

ventricular
ejection fraction

Efficiency and safety
of intravenous

allogenic MSCs (phase
IIa randomised trial).

Immunomodulatory effects.
Enhanced functional capacity.

MSC therapy was safe.
[147]

Diabetes

BM-MSCs Diabetic Wistar
rats

Wound contraction
rate.

Cellular proliferation.
Angiogenesis during

wound healing.

Significant reduction in wound sizes,
suggesting that BM-MSCs accelerated

delayed wound healing
BM-MSC transplantation augments cellular
proliferation, angiogenesis, and thickens

granulation by elevating VEGF expression
in delayed wound healing.

[148]

BM-MSCs Type II diabetic
mice

Blood flow recovery
and vasculogenesis.
MSC adhesion and

migration.

MSCs prestimulated with EGF
re-established blood flow recovery and

vasculogenesis by promoting
neovascularisation by regulating the eNOS,
VEGF-A, VEGF/VEGF receptor cascade,

and HIF.

[149]

BM-MSCs Diabetic rabbit
ear ulcer model

Wound closure and
angiogenesis.

Allogeneic BM-MSCs improved wound
healing by promoting angiogenesis. [150]

BM-MSCs Sprague-Dawley
rats

EGF, IGF-1, MMP-2,
and pFAK in human

keratinocytes.

Improve the keratinocytes by
re-established pFAK concentrations and

elevating EGF, IGF-1, MMP-2 expressions.
Thus reducing the extent of wound healing

in DFU on the planar skin of rats.

[151]

Kidney
injury

BM-MSCs Mice
Renal function.

Cellular proliferation
and differentiation.

MSC differentiated into adipocytes.
Improved renal function by abrogating

tubular damage.
Elevated numbers of Ki-67-positive cells,
suggesting definite proliferation of MSC,

repopulating the injured renal tubule.

[152]

BMSCs Adult female
mice

Cisplatin-induced
injury.

Cellular proliferation,
migration, and

apoptosis.

Decreased severity of cisplatin-induced
ARF.

Reduced tubular cell apoptosis and
augmented tubular cell proliferation.

Stimulated proliferation and migration of
kidney-derived epithelial cells and
elevating cellular survival, thereby

restricting renal injury.

[153]

BM-MSCs Wistar rats
Cr, FENa, urea, and

cytokines.
Cellular proliferation.

Diminished Cr, FENa, urea, apoptosis, and
necrosis elevations.

Elevated cellular proliferation.
[154]

hMSCs, human mesenchymal stem cells; hMSC-EVs, human mesenchymal stem cells-extracellular vesicles; AβOs,
amyloid beta oligomers; sICAM-1, soluble intracellular adhesion molecule-1; HUCB-MSCs, human umbilical cord
blood stem cells; Aβ, amyloid-β; hUCMSCs, human umbilical cord mesenchymal stem cells; iNOS, inducible nitric
oxide synthase; LTP, long-term potential; HIF, hypoxia inducible factor; VEGF, vascular endothelial growth factor;
eNOS, endothelial nitric oxide synthase; EGF, epidermal growth factor; IGF-1, insulin-like growth factor; MMP-2,
matrix metalloproteinase-2; pFAK, phosphorylated focal adhesion kinase; DFU, diabetic foot ulcers; BM-MSCS,
bone marrow mesenchymal stem cells; TH, tyrosine hydroxylase; SN, substantia nigra; NAA, N-acetylaspartate;
CHO, choline; CR, creatine; 6-OHDA, 6-hydroxydopamine; DA, dopamine ARF, acute renal failure; BMSC, bone
marrow-derived stromal cells.

4. Antioxidant Defences

Antioxidants suppress oxidative stress-associated destruction by disintegrating radical
chain reactions [155]. By freely accepting and/or donating electrons, antioxidants can
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counteract free radicals by eradicating the free radicals’ unpaired state. This section
illustrates antioxidants’ crucial roles in counteracting oxidative stress-induced age-related
and degenerative pathologies.

4.1. Glutathione

Glutathione is a vital antioxidant present in all cells. It helps protect healthy cells by
averting ROS-induced cell damage. Glutathione plays a role in antioxidant defence and elec-
trophilic xenobiotics detoxification through enzymatic reactions involving GPX, glutathione
reductase, and glutathione-S transferase [156]. These three groups of enzymes comprise
the glutathione cycle, which helps repair ROS-induced cell damage and protect against the
excessive production of ROS. Additionally, glutathione modulates redox-induced signal
transduction and metabolism of oestrogens, prostaglandin, and leukotriene. Modifica-
tions in glutathione concentrations contribute to the dysregulation of deoxyribonucleotide
synthesis, cellular proliferation, apoptosis, and immune response [157].

Glutathione serves as an electron donor, reducing cytoplasmic and protein disulphide
bonds to cysteines. In this process, glutathione is oxidised to form GPX or glutathione
reductase that, through the NADPH-dependent process, can accomplish glutathione regen-
eration from glutathione disulphide [158].

A deficiency in glutathione homeostasis leads to increased oxidative stress and the
development of neurogenerative diseases such as PD, dementia, and AD. In patients with
PD, glutathione is decreased by 40–50%, and, depending on the gravity of the disease, the
decrease occurs mainly within the brain and the SN. Mischley et al. [159] elucidated that the
elevation of ROS production and a decline in glutathione concentration within the midbrain
is associated with PD. Chinta and Andersen [160] showed that prolonged glutathione
depletion is due to the dithiothreitol- (DTT-) reversible phenomenon entailing cysteine
residues, which leads to impairment of mitochondrial complex I subunits which affects
its enzymatic activity. In the view that mitochondrial dysfunction impedes dopaminergic
neurons, the restoration of glutathione to normal concentrations could provide therapeutic
benefits in PD. Furthermore, a reduction in glutathione concentrations in individuals with
AD is correlated with the repression of glutathione homeostasis.

Diabetes modifies GPX and glutathione reductase activity. In a study conducted
by Martina and colleagues [161], it was suggested that glutathione administration in
individuals with type II diabetes enhanced platelet constitutive NOS (cNOS) activity and
concurrently decreased plasminogen activator inhibitor-1 (Pal-1). Pal-1 stimulates the
dissolution of fibrinolysis, which fundamentally leads to fibrin degradation. Martina and
colleagues [161] further suggested that a reduction in glutathione may play a pivotal role
in elevated mortality due to CVD in individuals with type II diabetes. Shimizu et al. [162]
assessed the correlation between CVD and plasma total glutathione among 134 CVD
cases and 435 healthy control subjects. Their data demonstrated a decline in total plasmic
glutathione in CVD patients, which is prominent in patients with cerebral haemorrhage
and lacunar infarction when compared to their healthy counterparts. This phenomenon
suggests that a decline in total plasmic glutathione concentrations is a risk factor for CVD.
In a prospective study, Espinola-Klein and colleagues [163] investigated the correlation
between GPX-1 activity with atherosclerosis. The findings suggested that GPX-1 activity is
associated inversely with CVD risk; that is, an elevation in atherosclerotic vascular beds is
accompanied by a decline in GPX-1.

4.2. Polyphenols

Polyphenols are specialised metabolites naturally produced by plants and are included
in various supplements. These metabolites also occur in large amounts in dietary foods,
including fruits, tea, vegetables, and spices. Polyphenols defend against the dissemination
of pathogens and ultraviolet damage. Polyphenols are prominent for their health bene-
fits, such as anti-inflammatory, antioxidant, free radical scavengers, and anti-carcinogenic
flair [164]. Polyphenols’ limitations are that smidgen concentrations make it to the tar-
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get organs due to deficient absorption and/or substantial metabolism of the compounds
by phase I or II enzymatic reactions [165,166]. Additionally, the ability of phenolic com-
pounds to sustain various modifications before reaching the target organs may crucially
influence their aptness properties. Furthermore, polyphenols have been demonstrated to
diminish iron-induced DNA destruction by reacting with iron to form a polyphenol-iron
complex [167]. Recently, plant polyphenols have created the allure to mitigate oxidative
stress as aetiological mechanisms in chronic degenerative diseases, such as CVDs, AD,
cancer, and cerebrovascular disease. Additionally, one of the biological effects of dietary
polyphenols includes the modulation of gene expression in vascular endothelial cells. Some
of the most prevalent classes of polyphenols include flavonoids, stilbenes, phenolic acids,
curcuminoids, coumarins, tannins, and lignans. Notably, curcumin has acquired recogni-
tion for nutraceutical applications. Curcumin has potent activity as scavengers for ROS
such as O2

•−, OH•, H2O2, lipid peroxidases, and numerous RNS [168]. Curcumin also
plays a critical role in elevating cellular glutathione concentrations.

4.2.1. Flavonoids

Flavonoids are known for their beneficial effects on both humans and animals. Flavonoids
can modulate enzymatic functions and are a principal component in pharmaceutical, nu-
traceutical, and medicinal applications due to their antioxidative, anti-inflammatory, anti-
carcinogenic, and antimutagenic properties [169]. The antioxidant properties of flavonoids
include repressing ROS production by inhibiting numerous enzymes and chelating trace
elements involved in redox reactions [170,171]. Moreover, flavonoids influence free metal
ion levels that encourage ROS generation in the cell by reacting with H2O2 and forming
highly reactive OH• in a chain of Fenton reactions. Besides their inhibitory effect on nu-
merous enzymes such as COX, xanthine oxidase (XO), PI3K, and lipoxygenase, flavonoids
upregulate the antioxidant defence system by scavenging ROS [172,173].

Flavonoids directly scavenge free radicals, thereby preventing free-radical-induced
injury. Free radicals oxidise flavonoids, thus stabilising the radicals. Flavonoids react
with free radicals’ reactive components, thereby stabilising ROS. Due to the shallow redox
potential of the OH• groups of flavonoids, highly reactive ROS such as O2

•−, alkoxyl,
OH•, and peroxyl radicals, are reduced by the hydrogen atom transfer (HAT) mecha-
nism. A study conducted by Hanasaki and colleagues [174] reported on the capabilities of
15 flavonoids to scavenge O2

•− and OH•. Their findings demonstrated that flavonoids
such as (−)-epicatechin, (+)-catechin, rutin, and 7,8-dihydroxy flavone are powerful OH•

scavengers. Except for monohydroxyl flavones, the flavonoids demonstrated inhibitory
effects toward O2

•− production in the hypoxanthine-xanthine oxidase system. This could
be attributed to the suppression of XO activity.

Quercetin (3,3′,4′,5,7-pentahydroxylflavone) is a natural bioactive plant flavonoid
found in a variety of derived foods and cultivated plants, including broccoli, black tea,
nuts, and grapes, where it forms a quercetin derivative, quercetin glycosides, by amalga-
mating with residual sugars [175]. In healthy individuals, the ideal absorption of quercetin
glycoside ranges from 3–17%, amounting to a dose of 100 mg. Guo and colleagues [176]
suggested that the co-ingestion of fatty acids elevates the bioavailability of quercetin.
Quercetins can stabilise and chelate iron and exudes antioxidant properties, which are
ascribed to the existence and location of OH• in its chemical constituents. This renders
quercetin a free radical scavenger capable of defending against free radical damage. Ac-
cording to Benedetti et al. [177], quercetin modulates the transcription factor AP-1. AP-1
modulates gene expression of various cellular processes such as cell growth and stress.
Additionally, quercetin has been reported to activate and induce Sirtuin-1 (SIRT1) activity,
associated with mitochondrial formation [178]. Apigenin [179], isorhamnetin [180], and
naringin [181] are flavonoids that utilise the blockade of the NF-κB cascade to decrease the
generation of inflammatory mediators.
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4.2.2. Curcumin

Curcumin, also referred to as diferuloylmethane, is a bright yellow polyphenol, the
bioactive substance in the rhizome of Curcuma longa (turmeric) [182]. Some of the multiple
health benefits of curcumin include antioxidant, anti-inflammatory, and pain relief and its
therapeutic effect on metabolic disorders. The benefits of curcumin as a RONS scavenger are
attributed to its chemical structure. Curcumin contains three chemical units in its structure.
There are two aromatic ring structures comprising o-methoxy phenolic groups, connected
by an α,β-unsaturated β diketone seven-carbon linker [183]. Curcumin is one of the crucial
anti-ageing factors. Among the numerous signalling molecules targeted by curcumin is
phosphorylase kinase (PhK), which activates and stimulates IFN-γ and NF-κB-dependent
signalling cascades and photocarcinogenesis [184]. Anti-carcinogenic properties of cur-
cumin are mainly regulated by the PI3K/Akt/mTOR signalling cascade. In vitro, curcumin
has demonstrated neuroprotective properties by averting Aβ protein plaque aggregation.
Additionally, curcumin has been observed to hinder NF-κB activation and inflammatory
effects. Curcumin regulates SOD, GSH, and CAT activities and prevents ROS-producing
enzymes, including xanthine hydrogenase/oxidase and lipoxygenase/cyclooxygenase.

4.2.3. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a naturally occurring polyphenol compound
found in food sources such as seeds, red wine, skins of grapes, peanuts, cranberries, mulber-
ries, and blueberries. As a result of its high metabolism, resveratrol leads to the generation
of glucuronides and conjugated sulphates [185]. Some of the functional properties of resver-
atrol include inducing the upregulation of SOD, GPX, and CAT, averting oxidative DNA
damage, and scavenging OH•. According to Losso et al. [186], resveratrol regulates ROS
generation by activating the AMP-activated protein kinase/SIRT1/proliferator-activated re-
ceptor gamma coactivator 1-alpha (AMPK/SIRT1/PGC-1α) signalling cascade to eradicate
intracellular dose-dependent downregulation of protein kinase C-beta (PKC-β), TGF-β1,
and VEGF. Resveratrol has demonstrated anti-inflammatory, anti-carcinogenic, neuropro-
tective, anti-thrombotic, and cytoprotective properties, and its consumption remarkably
elevates SOD and Nrf2 expressions. According to Gliemann et al. [187], resveratrol sup-
presses NOX-mediated production of ROS mainly through the downregulation of oxidase
expression and activity. Resveratrol reduces the generation of mitochondrial O2

•−, and
upregulates the tetrahy-drobiopterin-synthesising enzyme GTP cyclohydrolase I, leading
to the prevention of O2

•− production from disjoined eNOS.

4.3. The Antioxidants
4.3.1. Carotenoids

Carotenoids, a broad class of tetraterpenes, are responsible for plant pigmentation.
These compounds can be classified into two categories based on their chemical constituents,
namely, carotenes and xanthophylls. Carotenes, hydrocarbon-only carotenoids, consist
of -carotene, β-carotene, and lycopene. Xanthophylls consist of keto/oxo groups (echi-
nenone and canthaxanthin), oxygen substituents (lutein and zeaxanthin), aldehyde groups
(β-citraurin), and epoxide groups (violaxanthin, antheraxanthin, and neoxanthin) [188].
Due to the presence of a polyene constituting an electron-rich conjugated system, carotenoids
function as an efficient ROS scavenger. Carotenoids are prominent for their health benefits,
such as regulating the immune system, cellular signalling cascades, cellular differentiation,
and apoptosis, promoting adhesion molecules and growth factors, and exerting antioxidant
properties [189,190]. Due to the highly lipophilic molecules present in carotenoids, they
can defend cellular membranes from oxidative stress.

According to Mohammadzadeh Honarvar et al. [191], carotenoids counteract oxidative
stress-induced degenerative disorders such as AD and dementia. Carotenoids suppress
proinflammatory cytokines, inhibit oxidative stress, and stimulate the production of Aβ

peptides, thus impeding the development of diseases. Following consumption, β-carotene
is converted to retinol, a readily absorbable form of vitamin A. The beneficial effects of
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β-carotene include the protective effects against ROS and anti-carcinogenic properties
and positively influencing the immune response. On the contrary, Bjelakovic and col-
leagues [192] indicated that β-carotene elevates CVD and rheumatoid-related mortality
rates. Krishnaraj and colleagues [193] reported that β-carotenes bind to AD-related recep-
tors, including the histone deacetylase and P53 kinase receptor, thus exerting antagonistic
effects on AD.

4.3.2. Coenzyme 10

Ubiquinone (2,3-dimethoxy-5-methyl-6-polyisoprene parabenzoquinone) or coenzyme
10 is an isoprenoid antioxidant which plays a pivotal role in the ETC. Primary and sec-
ondary coenzyme 10 deficiency is correlated with numerous pathological processes such
as CVDs, mitochondrial diseases, type II diabetes, cancer, and fibromyalgia [194]. The
onset of coenzyme 10 synthesis begins when the isoprenoid building blocks, dimethylallyl
pyrophosphate and isopentenyl pyrophosphate, are oligomerised. These building blocks
are derived from the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase and the
mevalonate cascade [7]. The emerging decaprenyl diphosphate undergoes an amalgama-
tion with a tyrosine derivative, resulting in the formation of the active form of the coenzyme.
The active form of coenzyme 10, quinol, regenerates oxidised antioxidants such as vitamins
E and C and functions as an ROS scavenger. Additionally, NADPH-dependent systems can
reduce the quinone form back to its original form [7].

4.3.3. Vitamins
Vitamin C

Vitamin C, also referred to as L-ascorbic acid, is a potent water-soluble vitamin ingested
by humans for survival. Vitamin C is a co-factor in pivotal metabolic responses such as
collagen synthesis, neuroprotection, iron absorption, and regulating haematopoietic and
leukocyte function [195,196]. Furthermore, vitamin C is capable of stabilising and chelating
iron. Vitamin C is a free radical scavenger capable of quenching ROS such as O2

•−,
OH•, H2O2, HClO, and organic peroxides. Brewer [197] reported that vitamin C impedes
oxidation at high concentrations (>1000 mg/kg) by scavenging oxygen. Additionally,
vitamin C employs direct or cooperative regeneration of oxidised vitamin E, carotenoids,
and GSH to quench ROS.

Vitamin E

Vitamin E is a fat-soluble vitamin found naturally in food. Eight forms of vitamin E
have been identified, namely α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol,
based on the hydroxyl and methyl exchange in their phenolic rings. However, α-tocopherol
carries the most significant antioxidant properties. Furthermore, α-tocopherol donates
a hydrogen atom to numerous ROS, such as O2

•− and peroxyl radicals. It has been pro-
posed that tocopherols and tocotrienols possess anti-neuroinflammatory and constructive
oxidative damage properties. This may suggest that the neuroinflammatory activity of
vitamin E includes the stimulation of AD-correlated enzymes such as NOX, COX-2, and
5-lipoxygenase (5-LOX) [198].

5. Conclusions

Ageing is a multifactorial phenomenon that negatively influences human health,
causing a gradual decline in the body’s normal functionality. With a growing median
age in the population, global healthcare systems aim to find answers to alleviating the
symptoms, slowing down the progression, and precluding or even treating age-related
pathologies. Oxidative stress is characterised by an imbalance in antioxidants and free
radicals, contributing to the pathophysiology of numerous human diseases. Oxidative
stress facilitates vital pathologies through highly regulated redox-sensitive signalling cas-
cades. While findings from animal and cellular models, coupled with genetic insights, have
advanced our knowledge of the molecular mechanisms by which antioxidants attenuate the
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detrimental effects of ROS, our comprehension is still far from complete. A more detailed
evaluation of signalling cascades that lead to chronic degenerative pathologies, suggesting
potential intervention targets, is warranted. Over the last few years, there has been growing
evidence to suggest that excessive ROS production, such as O2

•–, H2O2, and OH• radicals,
hinder cell growth and induce senescence and programmed cell death. The literature high-
lighted in the review demonstrates a causative role of oxidative stress in the pathogenesis
of CVD, AD, PK, diabetes, and CKD. However, existing antioxidant-based therapies are
not target-directed and therefore lack the specificity to promote the reparative response
for dysfunctional organelles, cells, and tissue. More compelling clinical translations of
antioxidants, such as the efficient concentrations at the target site of oxidative stress, need
to be addressed for it to succeed as an effective therapeutic strategy.
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