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Abstract: Centipedes are one of the most ancient and successful living venomous animals. They have
evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the
world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function
of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV,
KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism
of neurotoxins acting on ion channels contributes to our understanding of the function of both
channels and centipede venoms. Meanwhile, the novel structure and selective activities give them
the enormous potential to be modified and exploited as research tools and biological drugs. Here, we
review the centipede venom peptides that act on ion channels.

Keywords: centipede; toxin; SsTx; RhTx; ion channel

1. Introduction

Throughout human history, venomous creatures such as snakes, scorpions, centipedes,
caterpillars, and poisonous frogs have existed in the human living environment and civi-
lization. In most ancient cultures, venomous creatures were either deified and associated
with the divine, or vilified as inflictors of pain and distress due to their mysterious and
destructive power. As one of the most ancient and successful venomous predators, cen-
tipede venom is an excellent model for insight into venoms’ functional and molecular
evolution. Centipedes originated around 440 million years ago with almost worldwide
distribution except for Antarctica, and comprise approximately 3300~3500 extant species
that are divided into five categories: Craterostigmomorpha, Geophilomorpha, Lithobiomorpha,
Scutigeromorpha, and Scolopendromorpha, making them one of the oldest and the richest
lineages of living venomous terrestrial predators [1].

For centuries, centipedes have been frequently involved in human accidents [1,2].
Most reported cases of envenomation caused by centipede stings and bites often dis-
played symptoms that include localized pain and necrosis, paresthesia, lethargy, headache,
dizziness, and nausea, and a small percentage of cases showed more grievous symptoms
including anaphylaxis, hemorrhage, and even hematuria [2–5]. The complexity and di-
versity of symptoms of centipede bites indicate that centipede venom possesses a rich
native source with functional diversity. Based on the highly developed technology, it is
verified that centipede venoms are comprised of a variety of bioactive proteins/peptides
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with multiple disulfide bonds, which give excellent chemical, heat, and biological stability
to peptide toxins [6,7]. Among them, centipede peptide toxins are classified into 31 families
phylogenetically and exhibit different biomedical properties pharmacologically, including
ion channel activity, antibacterial activity, platelet aggregation activity, antithrombotic
activity, phospholipase A2 activity, and trypsin-inhibiting activity [7–11].

From the view of survival strategy and clinical features, neurotoxins affecting the
nervous system might play an important role in centipede envenomation [6,8,12–15]. In the
evolution of centipedes, the diversity of neurotoxins in structure and function might be the
result of adaptive traits as a hunting device. On the other hand, in the development of drug
and clinical diagnosis, further insight into the mechanism of neurotoxic manifestations is
required for the development of engineered toxin-based applications. Promoting insight
into compositions and functions of centipede venom, in turn, positively contributes to
discovering novel molecules or new tools for ion channels. Here, we review and sum-
marize the reported centipede peptides acting on ion channels, including voltage-gated
sodium (NaV) channels, voltage-gated potassium (Kv) channels, voltage-gated calcium
(CaV) channels, and transient receptor potential cation channels (TRP).

2. Diversity of Centipede Venoms

For different strategies and purposes, venomous animals have evolved complex venom
systems that have independently evolved more than one hundred times from non-toxic an-
cestral peptides [16]. According to a venomous lineages survey, venom’s primary functions
are promoting feeding, immobilizing, or killing prey, and defending against potential preda-
tors, with offspring and antimicrobial attributes contingently [16]. Rynald et al. showed that
centipede gene families that encode peptides toxins had horizontally transferred between
centipedes, bacteria, and fungi repeatedly throughout their evolution [17]. Furthermore,
five gene families from bacteria and fungi transferred to the centipede, and three protein
families involved in pore-formation and enzymatic action from bacteria turned into viru-
lence factors in centipede venom [17]. These findings suggest that multiple horizontal gene
transfers (HGTs) have contributed to centipede venoms’ recycling of xenogenous proteins
as activity components for predation. Therefore, the research established that the centipede
is the only known venomous creature that contains multiple gene families originating from
horizontal gene transfer to encode peptide toxins.

Most proteins in centipede venoms are homologous with that of other venomous
animals, while some centipede peptides surprisingly bear no or few resemblances to
any other characterized venomous arthropod peptide family [7]. In 2014, we identified
79 unique peptide toxins from the centipede Scolopendra subspinipes mutilans L. Koch by
peptidomics and cDNA library, further strengthening the diversity of centipede venoms [9].
Of these, 29 were identified as neurotoxins targeting Na+, K+ and Ca2+ channels [7,9]. These
peptide toxins were named and divided into 17 families based on sequences and cysteine
arrangement. There were three novel families (SLPTX26-29) that were first discovered
among filtered peptide toxins from centipedes because of the special cysteine partner. Most
mature peptides of centipede toxins contain four or six cysteines in the same arrangement as
other animal toxins, while some centipede toxins show an uncommon number of cysteines;
for instance, U-SLPTX28-Ssm1a with three cysteines, U-SLPTX15-Ssm2a with five cysteines
and U-SLPTX12-Ssm1a with seven cysteines [9]. Interestingly, two previously unknown
novel cysteine frameworks “C-C-C-CCC” in U-SLPTX8-Ssm1a,1b,1c and “C-C-C-C-CC-CC”
in U-SLPTX27-Ssm1a, 2a, 3a were first discovered as an original motif in peptide toxins
that offers qualified support for the diversity of centipede toxin(Table 1) [9].

Furthermore, similar results were also found by Rokyta et al. on Scolopendra viridis [18].
According to proteomic-driven annotation, the final transcripts from multiple individual
units produced 520 unique protein-coding transcripts classified into two types proteomi-
cally: toxins and nontoxins [10,18]. The most dominant toxins in the venom of S. viridis
contain peptides acting on Ca2+ and K+ channels, allergens, metalloproteases, and β pore-
forming toxins [10]. Fourteen members of the Scoloptoxins (SLPTXs) family inhibit either
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potassium or calcium channels. Seven β-PFTx transcripts contain an 18~20 amino acid
signal peptide characterized with a β-complex domain, such as aerolysin toxins. Four
metalloproteases (MPs) of the M12A family involved in modification after translation
mediating activation of other peptide toxins. Two centiCAP2 transcripts and other pro-
teins/peptides including chitinase, venom hyaluronidase (HYAL) and proteins contain an
LDLA (low-density lipoprotein receptor Class A repeat) domain [7,10,18]. S. viridis (FL) has
been compared with previously published S. viridis (MO) in transcriptomes and proteomes,
which unexpectedly exhibit extreme levels of variation of S. viridis [10,18].

In addition, the work of Gunnar S. Nystrom et al. filled a gap in sexually dimorphic
traits in centipede venom that were reported in invertebrate venoms, such as scorpions
and spiders. They identified 47 toxins and 717 nontoxic transcripts by RP-HPLC, venom
proteomes, and venom-gland transcriptomes on both female and male eastern bark cen-
tipedes (Hemiscolopendra marginata) and confirmed it as the first sample of centipede venom
variation based on sex [19]. According to the results of LC-MS/MS confirmation analyses,
there is no striking sex-based difference in the contents of the eight identified members of
the CAP2 and CAP3 in H. marginata [19]. At the same time, a significantly higher GGT (γ-
glutamyl transferase family) proteomic abundance was detected in female H. marginata than
in male venom, which has been reported to enhance platelet aggregation and hemolysis [19].
On the other side, SLPTXs in male venom were expressed distinctly and significantly higher
than the female with a proportion of 4.3% and 26.1% by proteomics [19]. Overall, the iden-
tified ion channel-targeting peptides had the highest expression in the male venom, while
in the female venom were γ-glutamyl transferases and CAPs [19]. Combined with feeding
ecology and behavior information, the differential expression of toxins may contribute to
understanding sex-based transcriptional variation.

Overall, centipede venoms have been intensively studied over the last ten years.
These studies take us a step further in understanding how centipedes evolved various
neurotoxins to target receptors and take advantage of this system to paralyze and kill prey
or defend against predators. Meanwhile, it is important to study the natural effects of
venom components for exploiting them as drugs.

Table 1. Centipede toxins acting on ion channels.

Peptide Toxin Organism Number of
Residues PDB Ion Channels Activity

µ-SLPTX-Ssm6a
(µ-SLPTX3-Ssm6a) Scolopendra mutilans 46 2MUN\2MZ4 NaV1.7, IC50 of 25 nM

µ-SLPTX-Ssm1a Scolopendra subspinipes 32 - TTX-S NaV channel, IC50 of 9 nM
ω-SLPTX-Ssm1a Scolopendra subspinipes 83 - activator of Cav channels in DRG
ω-SLPTX-Ssm2a Scolopendra subspinipes 54 - CaV channels in DRG, IC50 of 1590 nM

SsmTx-I [20] Scolopendra subspinipes mutilans 36
K+ channels in DRG, IC50 of 200 nM;

KV2.1, IC50 of 41.7 nM;
No effect on other K+ channels

SsTx Scolopendra mutilans 53 5X0S KV1.3, IC50 of 5.26 µM

SsdTx1-3 Scolopendra subspinipes dehaani. 53 blocking hKir6.2 with a Kd of
278\260\281 nM

SpTx1 Scolopendra subspinipes dehaani. 54 Inhibiting hKir6.2 with a Kd of 8.5 nM

SsTx-4 S.subspinipes mutilans 53

Kir6.2, IC50 of 42.5 nM at 140 mV and
75.4 nM at 40 mV;

Kir1.1, IC50 of 89.2 nM at 140 mV and
209.7 nM at 40 mV;

Kir4.1, 360.1 nM at 140 mV and 6.2 µM
at 40 mV

RhTx Scolopendra mutilans 27 2MVA TRPV1, EC50 of 521.5 nM
RhTx2 Scolopendra mutilans 31 3J5P\3J5Q TRPV1, EC50 of 38.35 µM
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3. Centipede Venom Components Acting on NaV Channel

Pain, the most classic symptom of centipede bites, is a crucial adaptive reaction that
helps limit the degree of exposure to potential hazards or threatening events. Thus, through
the study of nociception with centipedes, it is possible to develop the next generation of
analgesics. NaV channels are vital transmembrane proteins mainly expressed in excitable
cells that mediate rapid depolarization and participate in nociceptor responses accord-
ingly [21]. Compared with only one subtype of NaV channel in insects, humans express
nine different NaV channel subtypes, registered as NaV1.1 to NaV1.9 [22,23]. Therein, the
NaV1.7 channel (Figure 1A,B) was reported as a promising analgesic target. We purified
and identified µ-SLPTX-Ssm6a (Figure 1C), a unique peptide with 46 residues, from the
venom of the Chinese red-headed centipede Scolopendra subspinipes [8], which was reported
to strongly and selectively inhibit NaV1.7 with an IC50 of 25 nM and act as a more effective
analgesic than morphine in rodent pain models without side effects [8]. The specificity on
NaV1.7 gives µ-SLPTX-Ssm6a therapeutic potential. At the same time, the unique 3D-fold
of one α-helical, two to three β-strands, and the disulfide linkage pattern give Ssm6a a high
level of resistance to proteases and thermal stability for long-term analgesic efficacy [8].
Furthermore, µ-SLPTX-Ssm1a selectively inhibited TTX-S NaV channel currents in rat
DRGs with an IC50 of ~9 nM with no visible effect on TTX-R NaV currents [8]. From the
biological point of view, centipedes are likely to paralyze rapidly and ultimately kill insect
prey by a rapid blockage of insect NaV channels, similar to blocks on human NaV1.7 within
seconds.
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Figure 1. Ribbon diagram of human NaV1.7 atomic model (PDB id: 5EK0) with each of the four
subunits color-coded, showing views from the bottom (A) and side (B). The voltage-sensing domain is
labeled with a dashed box. The membrane-spanning helices and different subunits of NaV1.7 channel
are indicated. (C): µ-SLPTX-Ssm6a from the Chinese red-headed centipede Scolopendra subspinipes.
PDB id: 2MUN.

For the great selectivity and attractive bioactivity of µ-SLPTX-Ssm6a, Chuan Wang
et al. developed a new protein scaffold fusion method to purify Ssm6a and maintain
the selectivity and potency at the same time. With a protein scaffold transformed from
human protein, they designed, expressed, and purified the fusion protein SP-TOX. Similar
to Ssm6a, SP-TOX inhibited TTX-S current by 93.6% with little effect on TTX-R current
at 1 µM [24]. On formalin-induced inflammatory pain, SP-TOX significantly relieved the
inflammatory pain in a Phase II study with a concentration as low as 0.02 nM, which is
30~50% more potent than morphine at 0.035 nM and 0.35 nM [24].
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4. Centipede Venom Components Acting on Cav Channel

The voltage-gated calcium channel (CaV) is composed of α1 subunit-containing pore-
forming and voltage-sensing domains, and several α2δ, β, and γ regulatory subunit iso-
forms [25]. According to the voltage ranges required for activation, Cav superfamily 3
T-type (CaV3.1–3.3) channels are denoted as low-threshold channels, while superfamilies 1
and 2 are high-threshold channels, including L-type (CaV1.1/4), N-type (CaV2.2), P/Q-type
(CaV2.1), and R-type (CaV2.3) channels [25]. The N-type CaV2.2 (Figure 2A) is mainly
expressed at the nerve terminal throughout the CNS (central nervous system) and PNS (pe-
ripheral nervous system), wherein a common pathway downstream from various receptors
mediates pain responses; thus, inhibition of CaV2.2 might mediate analgesia [26]. Mean-
while, CaV2.2 knock-out mice showed high resistance to neuropathic pain and insensitivity
to visceral pain induced by formalin, with normal CNS and physical performance [27,28].
Using peptidomics, transcriptome analysis and electrophysiological assays, 26 peptides
in ten neurotoxin-like groups were identified from the venom of Scolopendra subspinipes
mutilans [7]. Interestingly, two of them showed activity at CaV channels. ω-SLPTX-Ssm1a
(Figure 2C), an 83 residue peptide with 7 cysteines, activates both vertebrate and inverte-
brate Cav channels as Ca2+ currents in rat DRGs with the application ofω-SLPTX-Ssm1a
showed an increase of 70, and 120% at 1 and 10 µM, respectively [7], whileω-SLPTX-Ssm2a
(Figure 2B) with 54 residues inhibits CaV channels expressed in DRG with an IC50 of
1.6 µM [7]. According to the result of BLAST, ω-SLPTX-Ssm2a shares similar disulfide
frameworks with several lycotoxins identified in the araneomorph spider Lycosa singoriensis,
while the N- and C-termini of them are profoundly distinct [7]. Except forω-SLPTX-Ssm2a,
the venom peptides from Scolopendra subspinipes mutilans L. Koch show no similarity to any
identified protein families from any venomous creature [7].
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Figure 2. Structures of N-type voltage-gated calcium channels (Cav2.2) and centipede venoms.
Ribbon diagram of the Cav2.2 atomic model (PDB id: TMIY) showing views from the bottom (A) and
side (B). The voltage-sensing domain is labeled with the dashed box. The membrane-spanning helices
of the Cav2.2 channel are indicated. (C): k-Ssm1a from Scolopendra subspinipes. PDB id: 2M35.

5. Centipede Venom Components Acting on the KV Channel

Potassium (K+) channels are known to be the most varied channels. According to
the structure of α-subunits, potassium channels are further divided into four categories:
voltage-gated potassium (Kv) channels, calcium-activated potassium (KCa) channels, in-
wardly rectifying potassium (Kir) channels, and two-pore potassium (K2P) channels [29–32].
KV channels selectively mediate the potassium transmembrane transportation induced
by voltage or other physiological mediators. They are found in almost all cell types and
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involved in various vital activities, including the release of neurotransmitters and hormones
and controlling membrane properties [30]. For example, ATP-sensitive K+ (KATP) channels
are expressed in pancreatic β cells that secrete insulin and is regarded as the regulator
between the level of blood glucose and insulin secretion [33]. The KV1.3 channel is highly
expressed in immune cells and is considered an alternative target in treating AID (autoim-
mune disease) [34,35]. In 2018, we first identified Ssm Spooky Toxin (SsTx)(Figure 3C)
from Scolopendra mutilans, which exhibited lethal toxicity in hematological and respiratory
systems by potently inhibiting KCNQ (voltage-gated potassium channel family 7) channels
(Figure 3A,B) [6,36]. Furthermore, SsTx also inhibits cytokine generation by specifically
acting on the KV1.3 channel in T cells [6]. Therefore, it is considered a crucial virulence
factor in red-headed centipedes’ defense and predation due to its efficient disruption of
cardiovascular, respiratory, muscular, and nervous systems. Interestingly, SsTx also exhib-
ited potent inhibitory activity on the KV1.3 channel with an IC50 of 5.26 µM, which would
amplify the disruptive effect of blocking KCNQ channels [6]. Mechanically, we found that
residue K11\R12 (Figure 3C) in SsTx targeting the outer pore region and the selectivity filter
of KV1.3 and KV7.4 provides the key sites that bind the toxin exclusively to channels [6].
Besides the great potential of being developed and utilized, SsTx is also an interesting
toxin component to understand how a single toxin develops different intraspecific and
interspecific antagonistic interactions. We found that centipedes deterred conspecifics
with short-period, reversible, and not fatal envenomation by inhibiting the Shal (centipede
KV channel subtypes) channel [37]. The Shal channel, consisting of six transmembrane
helices and a pore domain, is expressed in the DUM (dorsal unpaired median) neurons and
heart tube, playing an essential role in the centipede’s circulatory system. SsTx specifically
inhibits currents from the Shal channel with an IC50 from 0.1 to 0.3 M [37]. With thermody-
namic mutant cycle analysis and molecular docking, pore-blocking inhibition is the effect
of salt bridge bonding between E351 on Shal and K17 (Figure 3C) on SsTx [37]. Based
on an acknowledged view that most neurotoxins are ineffective on their own receptors,
paralysis caused by SsTx from conspecifics provided an example to understand intraspecific
deterrence.
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Figure 3. The cryo-electron microscopy (cryo-EM) structure of human KCNQ4 and SsTx. Ribbon
diagram of KCNQ4 atomic model (PDB id: 7VNP) with each of the four identical subunits color-
coded, showing views from the bottom (A) and side (B). The key residues for the interaction with
SsTx are labeled. The membrane-spanning helices and different subunits of KCNQ4 channel are
indicated. (C): SsTx from Scolopendra morsitans. PDB id: 5X0S.

Further, a similar family of peptides that inhibit hKATP were identified from the venom
of Scolopendra subspinipes dehaani. Functionally, four of these proteins (SsdTx1-3 and SsTx)
inhibit hKATP channels by blocking hKir6.2 with a Kd of <300 nM [38]. In addition, SsTx-4
also showed inhibitory activities on Kir1.1 and Kir4.1 channels, while other Kirs were
insensitive to SsTx-4 application [39]. SsTx-4 is a peptide with 53 residues containing four
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cysteines, which shows high homology to SsTx and SsdTx1-3. Therefore, it is reasonable
that nSsTx-4 (natively purified from the venom) was found to inhibit the Kir6.2 currents
with an IC50 of 42.5 nM at 140 mV [39]. Meanwhile, SsTx-4 also inhibited the currents of
Kir1.1 and Kir4.1 with an IC50 of 89 nM and 360 nM at 140 mV, respectively. This work
confirmed that SsTx-4 is the first known peptide toxin antagonistic to the Kir4.1 channel [39].
To confirm the activity and molecular mechanisms of SsTx-4, they expressed it with an
added glycine residue at the N terminus that was proven not to affect its activity [39]. They
found that both nSsTx-4 and rSsTx-4 (recombinantly expressed toxin) reduced inward
currents more potently than outward currents, especially for Kir4.1. Further, the M137
residue at the Kir channel’s M1-M2 domain might be the key molecule in the Kir6.2 channel
for interacting with SsTx-4 [39]. On the other hand, the K13 and F14 in the p-p segment
of SsTx-4 were identified as the critical residues involved in binding to the Kir6.2 channel,
for mutations of these sites profoundly impaired the toxin’s effectiveness [39]. At the
same time, these two residues are also critical sites in SsTx-4 for binding to the Kir1.1.
Furthermore, it is interesting that K11 is merely functional for SsTx-4 targeting Kir1.1, and
F43 is the key residue on the toxin only against Kir6.2 but not for Kir1.1. Meanwhile, F44A
mutation induced an approximate impairment of SsTx’s affinity for both channels [39]. The
binding with Kir4.1, K13, F43, and F44 in SsTx-4 were confirmed as the determinants for
mutations of these impaired toxin affinities and increased IC50 of Kir4.1 [39]. These works
on SsTx contribute to our understanding of the function and molecular mechanisms of
centipede venom and promote the development and application of peptide toxins.

6. Centipede Venom Components Acting on TRP and Other Channels

TRPV1 is a well-studied channel known as an autologous and environmental noxious
stimuli receptor, for instance, high temperature above 40 ◦C, pH below 6.0, peptide toxins,
and the most classic, capsaicin, the hot chemical in chili [40,41]. As revealed by cryo-electron
microscopy and study of structural and physiological function, it is known that the TRPV1
(Figure 4A,B) receptor consists of four isologous subunits, and that every subunit contains
six transmembrane helixes [42]. Structurally, the pore-forming loop between helixes 5
and 6, also called the pore helix, together with the N- and C-termini, forms a functional
channel pore allowing the transmembrane transport of cations [42]. Moreover, 112 sites
along the sequence have been successively found to functionally respond to various kinds
of activators, inhibitors, and pore blockers [43]. Functionally, taking advantage of two
invaluable ligand tools, the plant toxins capsaicin and resiniferatoxin (RTX), a potent
phytotoxin activator discovered from the plants Euphorbia resinifera and Einhorbia poissonii,
researchers have achieved the first cloning and characterization of TRPV1, which brought
insight into the function of TRPV1 in itch, cancer, and weight loss [44]. According to
research on LUAD (lung adenocarcinoma) patients, TRPV1 expression is notably up-
regulated in the tumor tissues, which indicates that TRPV1 might be an alternative novel
target for LUAD treatment [45].

We identified RhTx (Figure 4C), a peptide toxin with 27 amino acids, from the venom
of the Chinese red-headed centipede and confirmed it as a selective TRPV1 activator with
comparable efficacy to capsaicin and no activity on Kv2.1 and other TRPV channels [15].
Furthermore, we found that there are three key residues in TRPV1 D602 located in the
filter, Y632, and T634 (Figure 4A,B) in the pore domain, respectively, that interact with four
charged residues (D20, K21, Q22, and E27) and R15 (Figure 4C) in RhTx by electrostatic
interactions [15]. Interestingly, RhTx activity was positively correlated with temperature
in functional examinations, as rising temperatures profoundly intensify the toxin activity
and even deactivate it completely at 10 ◦C [15]. In addition, RhTx can desensitize TRPV1′s
activation by heat alone, while not affecting activation by capsaicin [15]. These findings
imply that natural toxins are an ample and valuable source of tools for understanding
the difference between heat-driven and ligand-driven TRPV1 activation and regulation
mechanisms.
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Figure 4. The cryo-electron microscopy structure of TRPV1 and RhTx. Ribbon diagram of TRPV1
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membrane-spanning helices and different subunits of the TRPV1 channel are indicated. (C): RhTx
from Scolopendra subspinipes. PDB id: 2MVA.

Furthermore, in 2020, we once more identified a peptide that is identical to RhTx
except for four additional residues (NSKY) at the N terminus, hence named RhTx2 [46].
Analogously, RhTx2 strongly activates TRPV1 from the extracellular side, which cannot
be competitively blocked by capsazepine like RhTx. However, the binding affinity of
RhTx2 to TRPV1 is much lower than RhTx, with an EC50 of 38.35 ± 4.61 µM, which is
nearly 100 times that of RhTx [46]. Furthermore, RhTx2 was found to induce significantly
faster desensitization and relatively slow recovery on TRPV1 upon prolonged applica-
tion [46]. With single-channel recordings, both the open probability and the single-channel
conductance were reduced considerably during RhTx2-induced desensitization of TRPV1
current. According to the docking simulation results, RhTx2 might hinder the process of ion
permeation by binding to a central position above the selectivity filter of the channel [46].
With RhTx and RhTx2, we were able to get insight into the functional, structural, and
biophysical properties of TRPV1, which contribute to understanding TRPV1 regulation as
an ion channel and a receptor in the pain pathway.

Despite the P2X receptor having been verified to be involved in a broad range of
physical performance disturbances, including hypertension, bladder incontinence, chronic
cough, inflammatory and immune disorders, megrim, pain, IBS (irritable bowel syndrome),
epilepsy, atherosclerosis, depressive disorder, diabetes mellitus, and cancer, purinergic
receptors have been seldom considered and involved in the development of exploiting
novel molecules, or new tools from animal toxins that modulate ion channels [47–55].
Up to now, the only reported toxin that potently and selectively targets P2X3 came from
the venom of a wolf spider by Grishin et al. in 2009 [56]. To further promote the quick
identification of natural toxins and facilitate purine-target drug development, Leanne
Stokes et al. developed quantitative high-throughput fluorescent-based screen (HTS) cell-
based assays that afford a sensitive and specific method to identify and purify novel P2X
inhibitors from crude venoms. Based on HTS, they screened and validated 180 crude
venoms from arachnids, centipedes, hymenopterans, and cone snails analytically and
pharmacologically, which has contributed a lot to the early phases of the drug discovery
process [57]. During the cell-based HTS, most of the validated components that inhibit
hP2X4 were derived from spider venoms [57]. However, centipede venoms and purinergic
receptors remain a potential source of drugs and targets of diseases.
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7. Conclusions

Humans have strugglingly and progressively coexisted with venomous creatures
for centuries. With technology development, people have intensively studied some well-
known venomous animals, such as snakes, spiders, and frogs [58]. However, despite being
frequently involved in human accidents and used in traditional medicines, centipedes and
their venoms have not been fully recognized for a considerable time and there is a lack of
in-depth understanding of their biochemical and pharmacological properties. With the
increasing need for adequate pain control and novel drug discovery, people have turned
their attention to centipede venoms and ion channels. Using a cDNA library, bioinformatic
analyses like proteomics and transcriptomics and electrophysiological assays have been
applied to the study of centipedes and venoms of several varietals across the world have
been high-throughput screened, analyzed, and validated over the last ten years, both
structurally and pharmacologically [9–11,17,18]. Consistent with the diverse symptoms of
centipede bites and the most typical intense local pain, many new components and peptides
with unique structures and original sequences have been identified, which represent
multitudinous physiological activities and targets including the KV channel, NaV channel,
CaV channel, and other channels [6–8,15,38]. As mentioned above, there is an interesting
variety of centipedes. The venom peptide from Scolopendra subspinipes mutilans L. Koch
exhibits no similarity to any known peptide toxin families from any venomous animal [7].
Three of them, µ-SLPTX-Ssm6a, µ-SLPTX-Ssm1a, and ω-SLPTX-Ssm2a, are potent and
selective inhibitors targeting NaV1.7, TTX-S NaV channel, and CaV channels respectively [7].
Ssm Spooky Toxin (SsTx) inhibits both KCNQ and KV1.3 channels, which are considered to
mutually intensify the inhibitory effect [6]. Furthermore, two of them,ω-SLPTX-Ssm1a and
RhTx, are selective activators of the Cav channel and TRPV1 [7,15]. Interestingly, the activity
of RhTx exhibits a positive correlation with temperature and specific desensitization to
TRPV1′s activation by heat [15]. All of these complicated structures and functions indicate
that centipede peptide toxins with high potency and specificity have the potential to
be novel research tools for ion channels and sources of biopharmaceutical candidates.
With the development and application of technologies, more centipedes and their peptide
toxins are expected to be identified by transcriptomics and proteomics and validated by
electrophysiology in further study.
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