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Abstract: The term heterotopic ossification (HO) describes bone formation in tissues where bone is
normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells,
probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely
rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex
disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms
through a combination of endochondral and intramembranous ossification, depending on the aeti-
ology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types
and biological pathways have been studied in efforts to find effective therapeutic strategies for the
disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been impli-
cated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to
occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR),
and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has re-
sulted in the emergence of several novel investigational therapeutic avenues, including palovaro-
tene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and
non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate
the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent
advances in emerging molecular therapies to treat and prevent HO that have had early success in
the monogenic disease and are currently being explored in the common complex forms of HO.

Keywords: heterotopic ossification; genetics; bone morphogenetic protein; activin A/ALK2; retinoic
acid receptor; Hoxall+ mesenchymal stromal cells

1. Introduction

Heterotopic ossification (HO) is a disorder characterised by bone development
within tissues where bone does not normally exist. Several presentations of HO have been
described since its early documentation in 1883 by Riedel and its first association with
musculoskeletal trauma in World War One combatants in 1918 [1]. There are two forms
of HO traditionally described: the rare ‘genetic disease’, and the more common acquired,
or ‘post-traumatic’, HO. The monogenic HO diseases, which follow a Mendelian pattern
of inheritance, include fibrodysplasia ossificans progressiva (FOP) and progressive ossific
heteroplasia (POH). FOP is a rare debilitating disease with a prevalence of 1-2 cases per
million persons in which muscle and connective tissues are gradually substituted by bone
that is commonly triggered by minor trauma events [2,3]. POH is an extremely rare dis-
ease affecting less than 60 people worldwide, [4,5] in which ossification develops initially
in the deeper layers of the dermis and subcutaneous fat and spreads to include muscle
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and tendons as the disease progresses. Both diseases are associated with progressive dis-
ability and early death [6]. The term acquired, or “post-traumatic” HO describes extra-
skeletal bone formation that occurs following musculoskeletal or neurological trauma and
burns [7]. Acquired HO occurs in 20-30% of patients with spinal cord injury [8], 10-20%
of patients with closed head injury [8], up to 50% of patients after total hip replacement
[9], and up to 70% of patients following high-energy combat trauma [10].

The present review provides an overview of our current understanding of the mo-
lecular biology of HO initiation and development, including the cellular and genetic ori-
gins of HO. Based on these molecular advances in our understanding of the disease, we
also review the current status of evolving molecular therapies for HO prevention and
treatment. Throughout the article, we use the term HO to describe acquired HO and the
terms FOP and POH to describe the specific monogenic disorders.

2. Overview of Normal Bone Formation

In order to understand the mechanisms of bone formation in HO, a brief review of
normal bone formation is given against which HO development will be compared. Nor-
mal mature bone is formed through one of two mechanisms, termed intramembranous
and endochondral ossification. The progenitor cell for both processes is the mesenchymal
precursor, but the mechanism and site at which ossification occurs differs (reviewed in
[11,12]). In intramembranous ossification, a sheet of mesenchymal connective tissue,
termed the fibrous membrane, forms the template of the future bone. Bones forming
through this mechanism are typically flat, including the cranium, sternum, ribs, and scap-
ula. The mesenchymal precursor cells differentiate into osteoblasts or into supporting
blood vessels. The osteoblasts secrete osteoid, an extracellular matrix comprising collagen
and other organic proteins that entraps the osteoblasts as the osteoid mineralises. Once
entrapped, the osteoblasts trans-differentiate into osteocytes that remain as mechanosens-
ing cells within the bone matrix. Osteoblasts on the surface of the bone transdifferentiate
to form a cellular layer termed the periosteum. The periosteum is responsible for cortical
bone synthesis, and envelopes the cancellous bone that is continuous with the haemato-
poietic red bone marrow. In endochondral ossification, bone formation occurs through an
intermediate, cartilaginous stage that serves as a template for the final bone. The long
bones, including the clavicle, humerus, radius, ulna, metacarpals, phalanges, femur, fib-
ula, tibia, metatarsals, and phalanges form through endochondral ossification. The pro-
cess commences as mesenchymal stem cells condense and differentiate into chondrocytes
to form the cartilage template. This is followed by hypertrophy and subsequent apoptosis
of the central cells, whilst mesenchymal progenitors at the template surface differentiate
into osteoblasts and osteoclasts. The hypertrophic and apoptotic cartilage core is inner-
vated, vascularised, and replaced by bone and bone marrow in the primary ossification
centre. At the developing bone metaphysis, a hypertrophic component of the growing
cartilage is constantly substituted by trabecular bone to mediate longitudinal bone
growth. The non-vascularised cartilage at the ends of the bone is invaded by epiphyseal
vessels to initiate the secondary ossification centre. Between the epiphyseal and metaph-
yseal bone centres reside layers of chondrocytes that form growth plates to further sup-
port longitudinal growth. Longitudinal growth stops as the growth plate is fully resorbed
to leave a single marrow cavity within the long bone.

3. Cellular Origins of HO

In HO development, following the initiating stimulus bone may form within a range
of extraosseous tissues of mesenchymal origin and may involve either of the above mech-
anisms of bone formation. The architectural features of HO resemble normal bone and
include a zonal mineralization pattern, mature cortical bone at the periphery, and a central
marrow component [13]. Chalmers et al. (1975) first proposed the basic common require-
ments for HO formation: osteogenic precursor cells, a permissive environment and an in-



Int. ]. Mol. Sci. 2022, 23, 6983

3 of 21

ducing agent [14]. This model is consistent with HO formation through either the endo-
chondral or intramembranous routes. A summary of current concepts of the cellular ori-
gins of HO is given below and is reviewed further elsewhere [15,16].

3.1. Hematopoietic Cells

In the 1970s, hematopoietic stem cells or other precursors recruited to the lesions
from bone marrow were suggested to contribute to the induction and formation of ectopic
bone in patients with FOP [17]. Lymphocytes taken from FOP patients were subsequently
shown to overexpress Bone Morphogenetic Protein 4 (BMP4), a potent bone-inducing pro-
tein [18]. Olmsted-Davis and colleagues investigated hematopoietic side-population (SP)
cells as possible precursors for HO [19]. These cells were known to possess multi-lineage
potential, with the ability to differentiate into skeletal myocytes [20] and vascular endo-
thelial cells [21]. SP cells were isolated from the bone marrow of C57BL/6 CD45.2 Rosa26
mice and their osteogenic potential was tested by transplantation into C57BL/6 CD45.1
mice. Both osteoblasts and osteocytes from the subsequent newly formed bone stained
positively for markers of donors SP cells indicating osteogenic potential [19]. Dominici
and colleagues demonstrated in Friend leukemia virus B/ NIH Jackson (FVB/NJ) mice that
transplantable fluorescently-labelled marrow cells from the non-adherent population can
produce functional osteoblasts, osteocytes and hematopoietic cells [22]. Kaplan and col-
leagues observed in a patient with FOP that bone marrow transplantation for treating
anaemia was not sufficient to inhibit FOP, but that pharmacological suppression of the
donor’s immune system following transplantation inhibited FOP [23]. In mice, hemato-
poietic cells contributed to the inflammatory and bone marrow-repopulating stages of
BMP4-induced HO by recruiting and activating osteogenic precursors, but they did not
act directly as a cellular precursor of HO [23]. These findings contrast with those of Otsuru
and colleagues who showed a contribution of hematopoietic cells to bone formation in
BMP2-induced intramuscular HO, although only a minority of bone-marrow derived cells
were embedded in the definitive heterotopic bone [24,25]. More recently, analysis of clin-
ical tissue following musculoskeletal injury in humans has demonstrated that circulating
osteogenic progenitor cells of bone marrow origin, characterised by both type 1 collagen
and CD45 immunopositivity, are found in early fibroproliferative and neovascular HO
lesions, supporting the concept that circulating mononuclear progenitors can seed inflam-
matory sites to initiate HO formation [26]. Taken together these studies suggest that haem-
atopoietic cells of bone marrow origin contribute to both FOP and acquired HO develop-
ment most likely through their creation of the necessary pro-osteogenic environment, but
are unlikely to be significant direct osteogenic progenitors.

3.2. Endothelial Cells

Vascular endothelial cells have been suggested as a primary candidate for HO for-
mation due to their multilineage potential via endothelial-mesenchymal transition
(EndMT) and the expression of endothelial markers in FOP lesions [27,28]. During
EndMT, endothelial cells loose cell-cell adhesion and change polarity, reconfiguring into
a spindle-shape, and reducing the expression of endothelial markers whilst increasing
mesenchymal marker expression. Following transition, these cells are highly motile and
invasive and play an important role in both tissue development and disease [29-31]. Med-
ici and colleagues showed in vitro that endothelial cells over-expressing Activin Receptor-
like Kinase 2 (ALK2, also called ACRV1), or treated with the ALK2 ligands TGF-32 or
BMP4, can dedifferentiate into stem cells with the capacity to re-differentiate into cartilage
or bone cells [28]. In vivo data in the neuron-specific enolase-BMP4 (NSE-BMP4) mouse
also show that ectopic cartilage and bone cells express endothelial biomarkers such as
vWE, VE-cadherin, Tiel, and Tie2 after injection of purified BMP [27,28], after transgenic
over-expression of ALK2 [28], or after muscle injury [27]. Tie2 and vWF are also expressed
in chondrogenic and osteogenic lesions from FOP patients, whereas osteoblasts and chon-
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drocytes from normal cartilage or bone do not express these biomarkers [28]. Lineage trac-
ing in Tie2-Cre transgenic mice found that 50% of the cartilage and bone cells in HO le-
sions were of endothelial origin [27,28]. However, CD31+ endothelial cells were shown to
not contribute to heterotopic cartilage or bone formation directly in the mouse following
intramuscular BMP2 injection, but they did participate in lesion angiogenesis [32] and to
HO development following burn/tenotomy injury [33]. The different outcomes in the last
two studies may be attributed to differences in the Cre drivers or in the HO models used
[16]. A further limitation of the lineage trace studies is that the markers expressed by en-
dothelial cells can also be expressed by other cell types. Tie2, which is expressed in endo-
thelial cells to regulate development and maintenance of vasculature [34], is also ex-
pressed in hematopoietic cells [35,36], and by a population of Tie2+ PDGFRa+ Scal+ mul-
tipotent mesenchymal progenitors that was shown to contribute to HO initiation [32]. Fur-
thermore, musculoskeletal injury induces expression of endothelial markers Tie2, CD31
and VE-cadherin in mesenchymal, non-endothelial cells [33]. Taking together, the studies
outlined above suggest that endothelial cells can undergo EndMT to initiate HO but they
are unlikely to be pivotal, as Tie2+, CD31+ or VeCadherin+ progenitors also arise from
other cell types and vary with the HO induction model used. These inconsistencies un-
derscore the idea that the cellular populations contributing to HO development are highly
tissue and context-specific.

3.3. Fibro-Adipogenic Cells

Fibro-adipogenic precursors (FAPs) are a population of PDGFRa+ SCA1+ multipo-
tent cells located within, but not exclusive to, skeletal muscle [32,37,38]. FAPs are found
near vascular elements, but are unlike pericytes in that they do not share a basal lamina
with the endothelium and are NG2- [32,38]. Muscle resident FAPs support muscle regen-
eration but lack myogenic potential [29,37,38]. FAPs were first discovered due to their
fibrogenic and adipogenic capacities [37,38]. They were later shown to possess osteogenic
potential when stimulated with BMP in culture and in vivo [32]. Wosczyna and colleagues
observed that Tie2-Cre lineage labelled FAPs made up ~50% of heterotopic bone and car-
tilage in the mouse [32]. These cells have been proposed to play a major role in human
FOP [39,40]. Several studies in the mouse show that progenitors of intramuscular and in-
tratendinous HO are frequently PDGFRa+ and positive for cartilage and bone formation
markers [38,39,41-44]. Using a mouse FOP model in which ACVR1 (that encodes ALK2)
was genetically manipulated, Dey and colleagues showed that FAP-like cells can be di-
vided into two lineages, Scx+ tendon-derived progenitors and a muscle-resident intersti-
tial Mx1+ population [39]. The Scx+ progenitors mediated endochondral HO without ex-
ogenous injury, whilst the Mx1+ population mediated injury-dependent HO. PDGFRa+
cells made up a minor subgroup of Mx1+ and Scx+ lineages; however, constitutive activa-
tion of ACVRI signalling demonstrated that PDGFRa+ subsets had an enhanced osteo-
genic and chondrogenic potential compared to unfractionated Scx+ or Mx1+ cells. Eisner
and colleagues demonstrated that tissue resident FAPs in skeletal muscle are the primary
source of osteogenic cells in the murine BMP2-Matrigel model of post-traumatic HO [44].
In the same study using Notexin to induce muscle damage, they demonstrated that FAPs
contribute to the formation of mature bone without the addition of exogenous BMP2.
Moreover, when FAPs were cleared by macrophages at day 3—4 after injury, osteogenic
genes were downregulated. Taken together, these findings suggest that FAPs can contrib-
ute to most HO presentations due to their broad distribution across tissue types and their
documented presence in HO and that cells of hematopoietic origin play a role in stimulat-
ing their osteogenic potential.

3.4. Myosatellite Cells

Myosatellite cells are myogenic muscle-resident stem cells that are pivotal in skeletal
muscle regeneration [45]. They are located between the myofibre sarcolemma and basal
lamina, and give rise to myodifferentiated cells following muscle injury [46]. They were
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initially considered a primary precursor for muscle HO due to their osteogenic potential
in culture in response to BMPs in the C2C12 murine myoblast model [47] and in human
myogenic progenitor cells [48]. However, lineage and transplantation studies indicate that
they contribute minimally to BMP-induced HO in vivo [27,32,49,50]. Further, targeted ex-
pression of constitutively-activated ACVR1/ALK2 (caACVR1) [39,51] and ACVRI (R206H)
[40] in myosatellite cells is insufficient to induce HO. Although Lees-Shephard and Gold-
hamer [16] have proposed that myosatellite cells do not contribute to HO initiation, sev-
eral lines of in vivo data do support their role in its pathogenesis. BMP signalling is a
primary mechanism leading to the formation of acquired and genetic HO and has also
been associated with the physiological regulation of skeletal muscle mass [52]. When
transplanted into the quadriceps of nude mice, skeletal muscle myoblasts have been
shown to promote osteogenic differentiation [53]. Muscle-derived stem cells express
BMP4 and differentiate into bone [54]. BMPs at the location of muscle injury inhibit myo-
genesis and promote osteogenesis of myoblasts, both in vitro [47] and in vivo [32]. Further,
serum taken from animals following a burn injury increases the osteogenic capacity of
myosatellite cells, suggesting a role in burn-induced HO [55]. Taken together, these find-
ings indicate that the muscle tissue provides a permissive environment for HO and that
following musculoskeletal trauma BMPs can modulate endogenous muscle progenitors
to form heterotopic bone.

3.5. Other Cell Types

Through in vivo models, several other progenitor cell types have also been identified,
including pericytes, tendon and ligament progenitors, and transient brown adipocyte-like
cells (Table 1). Although these cell types are associated with HO initiation, their precise
contributions remain unclear. More recently, using a burn/tenotomy injury in Hoxal1l-
CreER™; ROSA-LSL-TdTomato mice, Pagani and colleagues have traced the cell fate of
MSCs in HO development using single-cell sequencing [56]. They found that MSCs of the
Hoxal1 lineage differentiate through both the endochondral and osteogenic route into HO
bone in the mouse forelimb following burn/tenotomy injury. During HO progression, the
Hoxall-lineage cells expressed transcriptional profiles characteristic of both osteogenesis
and chondrogenesis. Previous studies have shown that Hoxal1+ multipotent stromal cells
are self-renewing and persistent throughout the life of mice, and that Hoxall contributes
to bone formation, maintenance and repair [57-59].

Table 1. Overview of cell types investigated for their contribution to heterotopic ossification.

Cell Type

Location Description Key Papers

Hematopoietic cells

Bone marrow

Contribute to. inﬂ.ammation.and marrow-repopulating [19,23,25,60]
stages. Contribution to HO is unclear.

Contribute to HO through EndMT route, but may be

Endothelial cells Blood an.d overestimated due to lack of surface marker endothelial ~ [28,35]
lymphatic vessels o
cell-specificity.
Muscle and related
FAPs so'ft tissues; ' Support muscle regeneration. Contribute to a high [32,43,61]
widely spread in  percentage of HO.
other tissues
BMP2-i HO. tribution 1 t
Myosatellite cells Muscle . mduc.ed O. Contribution low based on mos [32,48]
lineage studies.
. Vascular basement BMP-induced HO but assessment of contribution unclear
Pericytes . . [50,62-64]
membrane due to high degree of heterogeneity.
Hoxall+ Tendon, muscle andContribute to skeletal repair, express chondrogenic and
Mesenchymal stromal ’ patt, exp & [56-59]

cells

skeletal tissue osteogenic transcription profile following injury.
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Tendon and
ligament progenitor
cells

Tendon

Ligament

Account for 25 and 40% of heterotopic bone and cartilage,
respectively, after bone/tendonectomy based on Scx-Cre  [39,43,65]
labelling. Molecularly heterogeneous.

Sensory neurons

Dermis, epidermis, cells. May explain how HO occurs following traumatic
and muscle spindle brain injury. Mice lacking sensory neurons cells do not

Mediate HO formation via substance P and calcitonin
gene-related peptide. BMP2 may induce neurogenic
inflammation to remodel nerve and release HO precursor

[66-69]

develop HO. Tie2+ endoneurial progenitors the major HO
cell contributors in a mice model; however, Tie2 marker is
also expressed in endothelial and mesenchymal cells.

Transient brown
adipocyte-like cells

Specialized pool of brown adipocytes that contribute to

Adipose HO. Associated to deposition of cartilage. Detected in [70,71]

human traumatic injury-induced HO.

Due to the heterogenic nature of HO aetiology, several cell types contribute depend-
ing on the site and initiating factors. This raises the issue of which cell and experimental
model is most appropriate for investigating the function of HO susceptibility genes in
culture and/or in vivo. A conclusive answer to this question remains elusive, nevertheless,
the role of specific genes may be best examined by investigating how they affect the sig-
nalling response of precursor cells to promote bone formation and/or maintenance using
an experimental model most appropriate to the type of HO investigated.

4. Signalling Pathways in HO
4.1. BMP Signalling

BMPs are a family of signalling molecules that belong to the Transforming Growth
Factor-f3 (TGF-B) superfamily of proteins. Discovered by Urist in 1965 [72], they play a
crucial role in bone formation and repair, and in HO development [73]. During normal
bone development and physiological homeostasis, BMP ligands bind to a heterotetram-
eric complex of two BMPRI and two BMPRII transmembrane serine/threonine kinase re-
ceptors to initiate chondrogenesis and osteogenesis. The BMPs that initiate signalling
through this mechanism and the osteogenic processes that they initiate are summarised
in Table 2.

Table 2. Overview of BMPs and their role in major cellular process and heterotopic ossification.

Signalling

F i Key P
Protein unction ey Papers

BMP1 Bone formation and homeostasis. [74]

Induces bone and cartilage development.
BMP?2 Induces EndMT transiti.on. Also.involve.d .in [75-78]
hedgehog pathway, cardiac cell differentiation,
embryonic development.

Bone and cartilage development; antagonizes

BMP3 other BMPs in osteo-differentiation. [79]
Potently induces chondro- and osteogenic
BMP4 differentiation; induces EndMT transition. Also [80-83]

involved in embryonic development,
adipogenesis, neurogenesis.

Bone and cartilage development; may play a
BMP5 role in some cancer types; expressed in the [84-86]
visual apparatus.
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Osteogenic differentiation; closely related to

BMP6 BMP5 and BMP7; regulates iron metabolism [87-89]
Bone homeostasis; induces osteoblast
BMP7 differefltiation tk.lrough SMA}D canonical [90-92]
pathway; involved in embryonic development,
adipogenesis.
BMPS Expresse.d in developing skeletor’l; [93-96]
osteogenesis and germ cell generation.
Induces chondro- and osteogenesis; cannot be
BMP9/GDF2  blocked by BMP3 unlike most BMPs; involved [97-99]
in lymphatic development.
Involved in the trabeculation oof the heart and
BMP10 regulates monocyte recruitment to the vascular [100-102]
endothelium.
BMP11/GDFI1 Augments bone formation; induces embryonic [103,104]
development.
Inhibits endochondral bone growth; induces
BMP12/GDF7 tenogenic differentiation; regulates bone [105]
structure
BMP13/GDF6 Establishes the Poundaries betweﬁ?n skeletal
elements during development; induces [105,106]
/CDMP2 D -
tenogenic differentiation
BMP14/GDF5 Regulates skeletal development and joint [106-108]
/CDMP1 formation; promotes fracture healing.
BMP15 Involved in fertilization and ovulation [109,110]

Four type I BMP receptors (ALK1, ALK2 (also termed ACVR1), ALK3 and ALK®6)
bind BMP ligands. Three receptors (BMPR2, ALK4 and ALK?) serve as type Il BMP re-
ceptors. ALK4 and ALK7 (also termed ActR-IIA and ActR-1IB), also act as receptors for

activins, whilst BMPR2 only binds BMPs (Figure 1).
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ACTIVIN A

BMP2

ActR-11A
ActR-1IB

BMPRII

p

; §,P38_ g5 ERK1/25) INK <
SMAD4 - - - SMAD2/3 SMAD4

a @ b
. o’ &

canonical
pathway

p - N

T ACTIVIN A
BMP pathway
Canonical

pathway

/ Target genes

Figure 1. BMP receptor activation and downstream signalling and its antagonism through the Ac-
tivin A pathway. In the canonical pathway, SMAD1/5/8 is activated and interacts with SMAD4 to
promote expression of target genes that induce bone formation. In the non-canonical SMAD path-
way, p38 MAPK, ERK1/2 and/or JNK are activated to promote the expression of osteogenic target
genes. BMP signalling is antagonised by the binding of Activin A to its receptor complex to initiate
SMAD?2/3 signalling that acts to suppress BMP target gene transcriptional activation.

Downstream signalling following BMP receptor activation occurs through 2 distinct
pathways: 1. SMAD canonical pathways, in which SMAD 1/5/8 proteins are phosphory-
lated to promote expression of chondro- or osteogenic genes [111]; 2. Non-canonical
SMAD pathways where p38 MAPK, ERK or JNK are activated [112-115]. Under normal
physiological conditions, these chondro- and osteogenic signalling pathways are antago-
nised by Activin A (another TGF-f superfamily member) binding to a heterotetrameric
receptor complex comprising two ActR BMPRII receptors and two BMPRI receptors to
initiate SMAD2/3 phosphorylation and downstream signalling as a negative feedback
mechanism for gene transcriptional activation that is initiated by BMP signalling [116].
These pathways should not be viewed as independent, as crosstalk between them occurs
[117-120]. BMP2 is overexpressed in clinically evolving HO tissue after trauma [121,122].
Augmented BMP signalling also occurs following trauma-induced HO development in
animal models whilst BMP antagonism reduces HO severity [123,124]. Experimental
models of HO therefore commonly use exogenous BMP2 [27,68] or overexpression of
BMP4 [125], or recombinant BMP2 (thBMP2) [27,126] as the HO initiator. BMP signalling
is also a key feature of the heritable forms of the disease [127]. In FOP, a mutation in
ACVRI1 that encodes the BMP type 1 receptor ALK2, causes its constitutive activation, in-
itiating downstream BMP signalling regardless of BMP ligand binding [124].
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4.2. mTOR Signalling

The mammalian target of rapamycin (mTOR) signalling pathway is involved in sev-
eral cellular processes, including chondrogenesis, osteogenesis and skeletal development
[128,129]. The FOP activating mutation in ACVRI has been shown to increase mTOR sig-
nalling [130]. Conversely, rapamycin suppresses bone formation in experimental models
for FOP [41,130], trauma-induced HO [41,131], and in leptin-induced osteogenesis in both
in vitro and in vivo models [132] through inhibition of mTOR complexes mTORC1 and
mTORC2 [133] (Figure 2). Rapamycin is currently being studied in a phase 2 clinical trial
(UMIN000028429) of the disease. BMP2 also promotes osteogenesis through an mTORC1-
dependent mechanism [134], whilst mTORC2 modulates osteogenesis in response to a
range of mechanical or chemical cues [128,135,136].

mTORC2
mTORC1 e

Figure 2. mTOR signalling pathway. Rapamycin inhibits mMTORC1 and mTORC2, which in turn
modulate several downstream osteogenic pathways. Acute rapamycin treatment inhibits mTORC1
whilst repeated dosing of rapamycin also inhibits mTORC2. Both mTORC1 and mTORC?2 are acti-
vated by Wnt and IGF. mTORC1 is also activated by BMP2 and mTORC2 is also activated by me-
chanical and chemical signals to promote osteogenesis.

4.3. Other Signalling Pathways

Hypoxia-inducible factors (HIFs) activate genes that mediate adaptive responses to
reduced oxygen tension [137,138]. HIFs augment HO formation [41] and couple bone and
vascular growth during development [138]. Retinoic acid receptor (RAR) signalling is me-
diated by retinoids (metabolic derivatives of vitamin A), which are potent morphogens
that promote both chondro- and osteogenesis to shape skeletal development [139]. In ret-
inoic acid (RA) mediated gene activation, RA binds to a heterodimer complex comprising
RAR and the retinoid X receptor (RAR-RXR). RAR-RXR then activates gene transcription
by binding to DNA motifs termed RA-response elements (RARE) located within enhancer
regions of RA target genes [140]. In the absence of RA, unliganded RAR-RXR recruits his-
tone deacetylases and nuclear corepressors to inhibit transcriptional activation at the
RARE [140,141]. Chondrogenesis requires the absence of RA signalling, in which the re-
pressor function of unliganded RAR-RXR on RAREs dominates [141,142], whilst active
RA signalling prevents the chondrogenic differentiation of precursor cells [143]. Crosstalk
between the HIF and RAR signalling systems is well documented, but how they co-oper-
ate to modulate bone formation is still incompletely understood [144-148]. Due to the
pleiotropic function of these pathways, it is anticipated that any therapeutic application
to inhibit HO may have off-target effects, as these pathways also dynamically regulate
several other critical cellular processes [149].
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5. Therapeutic Strategies for HO

Treatment strategies for acquired HO to date have included the use of anti-inflam-
matory agents, bisphosphonates, local radiation therapy, and surgical resection. System-
atic reviews have shown that patients treated with either selective or non-selective non-
steroidal anti-inflammatory drugs (NSAIDs) showed a significant decrease in post-trau-
matic HO formation when compared with placebo [150-152], but were associated with a
higher rate of drug discontinuation due to gastrointestinal side effects. Low-dose local
radiation therapy also decreases the incidence of HO after surgery [153,154], but carries
the risk of irradiation-induced malignancy [155] and side-effects such as delayed wound-
healing, progressive soft-tissue contracture, non-union, and inhibited ingrowth of cement-
less hip implants [156,157]. The treatment of mature HO after trauma involves surgical
resection, although complete excision may not be feasible and recurrence is common [158-
160]). Simple bisphosphonates, such as etidronate, have also been studied as a prophylac-
tic intervention in HO, as they delay matrix mineralisation. However, bisphosphonates
do not inhibit bone matrix synthesis, and mineralisation recommences after drug discon-
tinuation [161,162]. None of these strategies specifically target molecular pathways in-
volved in HO pathogenesis. However, as our understanding of these cells and pathways
evolves, molecular mechanism-specific investigative therapeutic approaches are begin-
ning to emerge, as outlined below).

5.1. Palovarotene and Other RAR Agonists

The observation that RA signalling suppresses chondrogenesis has stimulated its in-
vestigation as a therapeutic target for HO. Synthetic retinoid agonists selective for nuclear
RARa or RARY have been tested in mouse models of injury-induced intramuscular HO,
implantation of rhBMP-2 and constitutive activation of mutant Acvrl (Q207D) [51,163].
Whilst RA agonists targeting both RARa and RARYy inhibited endochondral HO, those
targetting RARy were most effective as RARY is more strongly and selectively expressed
in chondrogenic cells than other RAR members [164,165]. Chakkalakal and colleagues
showed that palovarotene prevented HO, restored long bone growth, and preserved
growth plate function in transgenic mice carrying the human ACVRI1 (R206H) mutation
for classic FOP [166]. In juvenile FOP mice, palovarotene reduced HO both in vitro and in
vivo, but resulted in aggressive synovial joint overgrowth and long bone growth plate
ablation [167]. In a rat model of post-traumatic HO (in which rats were subjected to blast
overpressure via a shock tube resulting in femur fracture, soft tissue crush injury, and
amputation through the zone of injury [168]), Palovarotene treatment suppressed the sys-
temic and local inflammatory response, decreased osteogenic progenitor colonies by 98%
in both in vitro and in vivo, and decreased the expression of osteo-and chondrogenic
genes, including BMP4 [168]. In another trauma-induced model, rats were subjected to
blast-related limb injury, femoral fracture, quadriceps crush injury, amputation and infec-
tion with methicillin-resistant Staphylococcus aureus (MRSA) [169]. Palovarotene treat-
ment decreased HO by 50-60%, however 63% of rats treated with palovarotene and inoc-
ulated with MRSA experienced delayed healing or dehiscence compared to 25% of MRSA
rats in the placebo arm of the study. Palovarotene is currently the subject of several clinical
trials of efficacy and safety for the prevention of new HO lesions in both children and
adults with FOP (www.clinicaltrials.gov; accessed on 5 May 2022 NCT02190747,
NCT03312634, NCT02979769, NCT02521792, NCT05027802). However, whether
Palovarotene or other RAR agonists represent a viable approach for treating acquired HO
in humans remains unstudied.

5.2. Targeting ACVR1/ALK?2 and Other Related Signalling Pathways

Under physiological conditions in normal tissues, the ligand Activin A interacts with
ALK?2 to mediate SMAD2/3 phosphorylation to regulate cell proliferation, apoptosis, and
differentiation (Figure 1) [170-174]. In ALK2R206H+ FOP cells (that carry the common
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ACVRI mutation) ALK2 is activated constitutively in the absence of BMPs, enhancing
both canonical and non-canonical BMP signalling pathways [175-179] to augment chon-
drogenesis [39,179-183]. Although the ACVRI mutation is not implicated in other forms
of HO, ALK2 signalling has been explored as an investigational target due to its BMP
agonism [184]. Table 3 provides a summary of molecular targets and investigational ther-
apeutic strategies explored to date in HO prevention and treatment.

Table 3. Summary of investigational therapeutic strategies for the inhibition of heterotopic ossifica-
tion, based on ALK2 signalling and other pathways. FOP = fibrodysplasia Ossificans Progressiva,
tHO = acquired post-traumatic Heterotopic Ossification.

Typeof HO  Type of

Pathways Molecule Molecule Description and Function Key Papers

Anti-activin-A human monoclonal antibody in phase 2
REGN2477  clinical trial for FOP (LUMINA-1 study, NCT03188666).

Antibody (Garetosmab) Blocks signalling of activin A, AB, and AC. Inhibits HO in [175,185-187]
animal model of FOP.
Identified in screening of 1040 FDA-approved drugs for
Perhexiline suppression of the Id1 promoter activated by mutant
FOP Antibody maleate (Pex) ACVRI1/ALK2 in mouse C2C12 myoblasts. Pex reduced  [188,189]
HO volume in BMP-induced mouse model, but failed to
inhibit HO in an open-label clinical trial in FOP.
Regulates osteogenic differentiation via AMPK, and
. . RUNX2/CBFAL in vitro and in vivo. Prevents traumatic
tHO Antibody Metformin HO in mouse by decreasing ALK2 and AMPK regulation [190-1921]
of Smad?2.
Identified in screen of 1040 FDA-approved drugs for
FOP Alpha-2 Fendiline suppression of the Id1 promoter activated by mutant [188]
blocker hydrochloride ACVR1/ALK2. Mice administered with fendiline showed
a slight reduction in HO.
Identified by chemical library screen for small molecules
that dorsalise zebrafish embryos. Selectively inhibited
FOP Sméll I.n(.>1ecule Dorsomorphin ALK2 to b.lock BMI.’-r.nediated SMAD1/5/8 [176,193]
inhibitor phosphorylation. Preclinical use precluded by the
inhibition of other ALKs (ALK3 and ALK6) and other
kinases.
An optimised version of dorsomorphin with greater
Small molecule potency and selectivity. Inhibits transcriptional activity of
FOP, tHO inhibitor LDN-193189 ALK2, ALKS3, and constitutively active ALK2 mutant [124]
proteins.
Derivative of dorsomorphin with increased selectivity for
ALK2. LDN-212854 and LDN-193189 reduce osteogenic
FOP, tHO Sm:jﬂl 1.nc.>1ecule LDN-212854 differen.tiation of tissue-reside.nt MP.Cs frF)m injured tissue [194,195]
inhibitor following burn or tenotomy insult in animal model. In a
blast-induced rat tHO model, LDN193189 and
LDN212854 effective at limiting tHO.
Other
Small molecule . Currently undergoing investigation, including K02288,
FOPAHO i ipitor  dorsomerphin DMH-L, MLg347,g LDN 214117 and VUAG5350. [196-138)
derivatives
Small- Saracatinib Identified by screening compounds in an ALK2-mutated
FOP molecule (AZD-0530) chondrogenic ATDCS cell line. Inhibited both BMP and [199-202]
inhibitor TGEF-{ signalling in vivo. Currently undergoing phase 2
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clinical trial for FOP (NCT04307953). Well tolerated and
potently inhibits the development of HO in inducible
ALKQ207D transgenic and ACVR1R206H knock-in
mouse.

FOP

Small-
molecule
inhibitor

Identified by screening compounds in an ALK2-mutated
PD 161570 chondrogenic ATDCS cell line. Inhibits both BMP and [199]
TGEF-f signalling in vivo.

FOP

Small-
molecule
inhibitor

Identified by screening compounds in an ALK2-mutated
TAK 165 chondrogenic ATDCS cell line. Indirectly modulates [199]
mTOR signalling in vivo.

FOP

Ligand traps

ACVRI1-Fc fusion proteins comprising the extracellular
domain of human WT ACVR1 and the Fc portion of
human immunoglobulin y1. Inhibits dysregulated BMP  [203-205]
signalling caused by FOP mutant ACVR1 and abrogates
chondro-osseous differentiation in vitro.

SActR-ITA-Fc and
sActR-1IB-Fc

FOP

Platelet
inhibitor

Identified in screening of 1280 FDA-approved compounds
for suppression of ACVR1 gene expression. Showed the
Dipyridamole highest inhibitory effect on SMAD signalling,
chondrogenic and osteogenic differentiation in vitro.
Reduced HO in BMP-induced model in mice.

[206,207]

FOP, tHO Nucleotides

Altered expression of miRNA detected in HO. mir148b
and mir365 down-regulate ACVR1/Alk-2 expression,
whereas mir26a showed a positive effect on its mRNA.
Inhibition of miRNAs, miR-146b-5p and -424 suppresses
osteocyte maturation. Manipulating miR-574-3p levels
both in vitro and in vivo inhibits chondrogenesis. miR-630
downregulated in early HO and used to distinguish HO
from other processes in tHO. miR-17-5p upregulated in
ankylosing spondylitis (AS) patients versus non-AS
individuals. Knockdown and overexpression of miR-17-
5p in fibroblasts derived from AS patients modulates
osteogenesis.

microRNAs [208-214]

FOP, tHO Nucleotides

AON binds to specific exons in the primary mRNA
transcript to prevent splicing and enable the skipping of
specific exons. AONs designed to knockdown ALK2
expression in mice impair ALK2 signalling in both C2C12
end endothelial cells. However, AON affects both wild-
type and mutated allele.

Antisense
oligonucleotide
(AON)

[215-217]

FOP, tHO Nucleotides

Allele-specific siRNA (ASP-RNAi) duplexes tested for
specific inhibition of mutant c.617A allele in mesenchymal
progenitor cells from FOP patients. ASP-RNAi decreased
BMP signalling to control cell levels.

RNA
interference
(RNAI)

[218,219]

tHO

Nucleotides

Several IncRNAs regulate bone formation.
Downregulation of MANCR inhibits osteoinduction in
vitro. In a mouse in vivo tHO model, Brd4-Mancr
signalling attenuated HO.

LncRNAs [220-222]

6. Conclusions

In summary, heterotopic ossification may arise from both rare, heritable and com-
mon complex diseases. The downstream molecular pathways that underpin these hetero-
geneous aetiologies are broadly similar in both patterns of disease, although the diseases
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differ in extent and severity. Whether genetic or acquired, initiation of a new HO lesion
involves tissue injury that results in a signal to initiate endochondral or intra-membranous
ossification. The dominant cell types in HO include are FAPs, endothelial cells, hemato-
poietic cells, tendon and ligament progenitor cells, pericytes and Hoxall+ mesenchymal
stromal cells. The dominant pathways in HO include BMP, mTOR and RAR signalling.
Several therapeutic strategies have been developed to target these signalling pathways.
RAR agonists have been shown to be effective in preventing HO in pre-clinical models.
Although the RAR agonist Palovarotene is undergoing clinical trials for FOP, further pre-
clinical animal studies will be required to investigate its efficacy and safety for the post-
traumatic HO indication. Several strategies have been developed to target ACVR1/ALK2
with REGN2477, metformin and dorsomorphin derivatives being a few prospects for clin-
ical therapeutic applications. These future studies would benefit from translational exper-
imental approaches that incorporate clinically relevant animal models in parallel with
clinical investigations, population epidemiology studies and relevant molecular medicine
techniques.
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