
Citation: Tedeschi, P.; Nigro, M.;

Travagli, A.; Catani, M.; Cavazzini,

A.; Merighi, S.; Gessi, S. Therapeutic

Potential of Allicin and Aged Garlic

Extract in Alzheimer’s Disease. Int. J.

Mol. Sci. 2022, 23, 6950. https://

doi.org/10.3390/ijms23136950

Academic Editors: Cristoforo Comi

and Elena Ibáñez

Received: 31 March 2022

Accepted: 21 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Therapeutic Potential of Allicin and Aged Garlic Extract in
Alzheimer’s Disease
Paola Tedeschi 1, Manuela Nigro 2, Alessia Travagli 2, Martina Catani 1, Alberto Cavazzini 1, Stefania Merighi 2,*
and Stefania Gessi 2

1 Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara,
44121 Ferrara, Italy; paola.tedeschi@unife.it (P.T.); martina.catani@unife.it (M.C.);
alberto.cavazzini@unife.it (A.C.)

2 Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
manuela.nigro@unife.it (M.N.); alessia.travagli@edu.unife.it (A.T.); gss@unife.it (S.G.)

* Correspondence: mhs@unife.it; Tel.: +39-0532-455434

Abstract: Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around
the world, and its medical benefits have been well documented. The health benefits of garlic likely
arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts,
especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory,
antioxidant and neuroprotective activities. In light of these effects, garlic and its components have
been examined in experimental models of Alzheimer’s disease (AD), the most common form of
dementia without therapy, and a growing health concern in aging societies. With the aim of offering
an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of
garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered
by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.

Keywords: garlic extracts; Alzheimer’s disease; inflammation; oxidative damage; mechanism of
action; NLRP3 inflammasome

1. Introduction

Botanically, garlic is known as Allium sativum L. (family Liliaceae). The exact origin of
the name is unknown, but a relation to the Latin word Olere meaning “to smell” is often
pointed out. Garlic grows to approximately 30–90 cm in height in well-fertilized, sandy,
and loamy soil during spring and summer [1]. For centuries, common garlic cloves have
been widely used as food, as well as seasoning for food [2]. The potency of garlic (Allium
sativum) has been acknowledged for approximately 5000 years. In ancient times, garlic
was frequently used as a remedy for intestinal disorders, flatulence, worms, respiratory
infections, skin diseases, wounds, symptoms of aging and many other ailments, and
abundant literature supports the health-promoting effects of garlic and its by-products,
which are associated with the bioactive compounds present in their matrix [3–5]. It has
been used to reduce triglycerides and low-density cholesterol in the human body [6,7],
to lower blood pressure [8], for antithrombotic activity [9], and to increase blood insulin
levels [10,11]. In recent years, garlic organosulfur derivatives and garlic supplements have
been shown to negatively affect the growth of tumor cells and the risk of cancer [12–19].
Antimicrobial, antiviral, and fungitoxicity activities against different pathogens have also
been demonstrated [20–24].

Interestingly, the therapeutic potential of garlic extract in treating Alzheimer’s disease
(AD) has been examined in different studies [25]. As a result, the goal of this review was
to examine recent advances in the antioxidant and neuroprotective properties of garlic
extracts and their main components, focusing on allicin and aged garlic extracts (AGEs),
with the goal of reporting what has been learned thus far and identifying a potential role
for these agents in the treatment of people suffering from cognitive diseases, such as AD.
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2. Garlic Bioactive Compounds and Chemistry
2.1. Garlic Proximate Composition

A garlic bulb contains approximately 65–68% water; 28% carbohydrates; 2% protein;
1.2% free amino acids; 1.5% fiber, fatty acids, minerals (high levels of potassium, phos-
phorus, zinc, sulfur, moderate levels of selenium, calcium, magnesium, manganese and
iron, and low levels of sodium), phenolic compounds (gallic acid, rutin, quercetin, ferulic
acid, p-coumaric acid, naringenin, apigenin, isorhamnetin and luteolin), vitamin A, C and
B-complex; and 2.3% organosulfur compounds (Figure 1) [26].

Figure 1. Fresh garlic proximate composition; data are expressed as % w/w.

2.2. Allicin and Organo-Sulfur-Containing Compounds (OSCs)

The numerous biological properties of garlic are mainly attributed to the high con-
tents of bioactive compounds (i.e., organosulfur compounds, phenolic compounds and
fructans) [4]. The most significant components, medicinally, are the OSCs (approximately
3–35 mg/g fresh garlic) [27]. OSCs are generally classified into two groups: oil- and
water-soluble OSCs (Figure 2). Fresh garlic cloves contain mainly alliin (S-allyl L-cysteine
sulfoxide), followed by methiin (S-methylcysteine sulfoxide) and isoalliin, which are formed
from the γ -glutamyl cysteine. When garlic is crushed or chewed or cut, alliinase is released,
and the conversion of alliin into allicin (allyl 2-propenethiosulfinate) is performed [28].
Therefore, allicin is not found in intact cloves of garlic; both alliin and the enzyme are found
in different parts of the bulb or clove [29,30]. Alliin and other cysteine sulfoxides are found
in the mesophyll cell, whereas alliinase is localized to a few vascular bundle sheath cells
around the veins or phloem. This enzyme is approximately 10 times more abundant in the
cloves than in the leaves and represents at least 10% of the total protein in the cloves [31].
The process of allicin production is associated with the defense mechanisms of the plant.
Alliinase and alliin form an enzyme-substrate complex in the presence of water, at an
optimum temperature of 33 ◦C and pH of 6.5. Indeed, the enzyme is sensitive to acids,
suggesting the employment of enteric-coated formulations of garlic supplements [11,31,32].
Allicin (the most abundant thiosulfinate formed via allinase reactions, approximately 70%)
is poorly soluble in water and is responsible for a pungent and unpleasant flavor, but it
is very unstable and easily transformed into a high number of products, classified as oil-
soluble compounds, mainly including dithiins (formed by the dimerization of thioacrolein
created via allicin β-elimination), followed by ajoene, allyl methyl trisulfide (AMTS), diallyl
sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). This breakdown oc-
curs within hours at room temperature and within minutes during cooking [33–36]. When
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garlic is extracted in aqueous solvent, γ-glutamyl -S-alk(en)yl-L-cysteines are converted
into S-allylcysteine (SAC), S-allylmercaptocysteine (SAMC), metabolites allyl mercaptan
(AM) and allyl methyl sulfide (AMS), which are water-soluble organosulfur compounds
that are less odorous and more delicate, and have a less characteristic flavor than oil-soluble
OSCs. However, although water-soluble OSCs make up a small portion of garlic, they may
be considered the main bioactive component in health benefits, such as in cancer prevention
and treating AD, as described below [37,38].

Figure 2. OSCs from garlic. Intact clove garlic contains γ-Glutamyl-S-alk(en)yl-L-cysteines, the
primary sulfur compounds, which with hydrolysis or oxidation can be converted into alkyl (en)yl-
L-cysteine sulfoxide, commonly called Alliin. When garlic is crushed or cut, the vacuolar enzyme
alliinase converts alliin to allicin, poorly soluble in water and responsible for the characteristic
pungent flavor of garlic. Allicin is very unstable and rapidly decomposed to form a variety of
oil-soluble compounds, including diallyl disulfide (DADS), diallyl sulfide (DAS), diallyl trisulfide
(DATS), vinyl dithiin and ajoene, according to different conditions. When garlic is extracted in an
aqueous solvent, γ-glutamyl -S-alk(en)yl-L-cysteines can be converted into water-soluble compounds,
mainly S-allyl-cysteines (SAC) and S-allylmercaptocysteine (SAMC), which are less odorous than the
oil-soluble products but are stable and have important antioxidants and bioactive effects.

2.3. Aged Garlic Extract

There is a well-known and interesting product called aged garlic extract (AGE), which
warrants special attention. AGE preparation is usually produced by storing sliced garlic
cloves in a non-toxic solvent, usually a mixture of water and ethanol (15–20% ethanol
solution in water), which is then aged for more than 20 months at room temperature;
then, the extract is filtered and concentrated. This aging process aims to transform the
odorous and pungent sulfur compounds to odorless ones. This process is characterized by
the transformation of allicin into stable and safe sulfur compounds, in particular, water-
soluble organosulfur compounds, including the two major ones, SAC and SAMC, and
small amounts of oil-soluble allyl sulfides. The composition of AGE garlic extract has many
antioxidants properties and, combined with the high bioavailability of SAC and SAMC
which are rapidly absorbed by the intestinal tract, seems to play an important role in the
biological effects of garlic [13,36,39,40].
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3. Metabolism and Bioavailability

Although there are many studies regarding the sulfur compounds of garlic and its
biological properties, we have little information on the metabolism of garlic and sulfur
compounds and related bioavailability [36,41]. The study of bioaccessibility and also
bioavailability is important to evaluate the health benefits of bioactive compounds [42,43].
Following the chewing and ingestion of garlic, allicin is synthesized and transformed into
its metabolites, which are transported through the stomach, intestine and blood to the
target tissues (organs), while losses are channeled through the breath, urine and stool [44].
Therefore, considering the oil- and water-soluble derivatives of garlic from different studies,
it is interesting to note that allicin, sulfides, ajoene, vinyldithiins and other oil-soluble
OSCs cannot be detected in the blood or urine even after the intake of a large amount
of garlic, while after the intake of fresh garlic SAC and water-soluble compounds can
be detected in the plasma, liver and kidney [45]. The pharmacokinetics of water-soluble
OSCs were found to be different from those of oil-soluble ones. Indeed, SAC was rapidly
absorbed in the gastrointestinal tract and was identified in blood and its concentration,
and other pharmacokinetic parameters were correlated with SAC doses administered to
animals [13,46]. The results from different evaluations on the bioavailability and efficacy of
SAC indicated that water-soluble garlic compounds seem to play an important role in the
biological effects of garlic, in vitro and in vivo.

4. AD

AD represents the most common form of dementia affecting the aging population. It
is a progressive neurodegenerative disease affecting memory whose diagnosis is based
on cognitive impairment evaluation. Etiology is multifactorial, including both genetic
and epigenetic elements. Physical exercise, diet, lifestyle and environmental exposure to
heavy metals are crucial factors in its pathogenesis [47–49]. From a pathological point
of view, AD is characterized by the accumulation of amyloid β-protein (Aβ) plaques
and the deposition of hyperphosphorylated tau proteins in the brain, leading to synaptic
and neuronal loss [50,51]. Aβ peptide, a 40–42 amino acid residue, is derived from a
transmembrane amyloid precursor protein (APP), following cleavage by β- and γ-secretase
(BACE1, PS1, PS2 and nicastrin) [52]. After polymerization, the Aβ oligomeric structures
devolve into a hazardous molecule, which activates microglia and produces reactive oxygen
species (ROS) and inflammatory cytokines, resulting in severe neuronal injury [53,54].
Various amyloid cascade hypothesis-related AD animal models have been developed over
the years in order to identify novel therapeutic medications for AD therapy [55,56]. Indeed,
it has been shown that the intracerebral administrations of Aβ induces neurodegeneration,
as well as deficiencies in learning and memory [55,57]. According to the cholinergic
theory, the primary cause of AD is a decrease in acetylcholine (ACh) contents, which are
enzymatically destroyed by acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).
As a result, these enzymes are important therapeutic strategies for AD. Cholinesterase
inhibitors (ChEIs) block these enzymes, resulting in greater ACh levels and a transient
alleviation in AD symptoms. Therefore, increasing synaptic ACh concentrations with ChEIs,
such as donepezil, rivastigmine and galantamine, is the main current pharmacological
therapy for AD patients [58,59]. Unfortunately, these medications, as well as memantine,
which decreases glutamate excitotoxicity, only provide symptomatic alleviation and do not
slow disease progression; thus, the development of new therapeutic approaches is required.
There is currently no conventional medicine for the treatment of AD that is able to modify
the pathology. Aducanumab, a novel antibody that targets Aβ protein accumulation, has
recently hit the market but its clinical usefulness is still debatable [60–62]. In conclusion, as
AD is a major health problem, new medications to treat it continue to pique attention.

5. Neuroinflammation

Neuroinflammation is implicated in the pathogenesis of neurodegenerative disorders,
such as AD [63]. Microglia are immune cells in the brain that react to tissue injury and
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healing, and their activation contributes to neuroinflammation and neurodegenerative
disorders [64–66].

Activated microglia spread and replicate, generating pro-inflammatory cytokines
including interleukin 1 (IL-1)β and tumor necrosis factor (TNF)α, as well as oxygen and
nitrogen radical species, L-glutamate and prostaglandin E2 [67,68]. In addition, other less
recognized neurotoxic molecules released by microglia include Aβ, cathepsin B and D,
C-X-C motif chemokine ligand (CXCL)10 and CXCL12 (5–67), high mobility group box,
lymphotoxin-α, matrix metalloproteinase (MMP)-2 and MMP-9, platelet-activating factor
and prolyl endopeptidase, resulting in neuron death or impairment [69].

Multiple signaling pathways responsible for neuroinflammation have been described [70].
Following the identification of invading pathogens and/or tissue damage by pattern recogni-
tion receptors (PRR), innate immune activation in the CNS can be initiated through a variety
of routes. Considerable emphasis has been placed on a two-signal theory controlled by
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-containing protein
(nucleotide-binding oligomerization domain-containing protein (NOD)-like receptors (NLRs),
the latter forming the inflammasome essential for pro-IL-1 and pro-IL-18 digestion [71]. Sev-
eral TLRs have been shown to interact with pathogen-associated molecular patterns (PAMPs)
expressed on broad microbial subclasses, as well as with endogenous molecules, identified
as danger-associated molecular patterns (DAMPs), increasing during cell damage [72]. Sig-
nal 1 can be triggered by TLR, through the TLR ligand, and the subsequent recruitment of
Myeloid Differentiating factor 88 (MyD88) or via the TNF-α receptor, resulting in the NF-κB-
dependent transcriptional activation of pro-IL-1 and pro-IL-18 (Figure 3). TLRs and TNF-α are
membrane-spanning receptors, but NLRs are intracellular detectors that oligomerize to gener-
ate the inflammasome, a multi-protein complex that requires caspase-1 to convert pro-IL-1 and
pro-IL-18 to their mature forms. The NOD signaling, accompanied by proteolytic cleavage via
inflammasome activation, is essential for this process and represents signal 2, which can be
stimulated by a variety of chemicals, comprising different pore-forming toxins, Aβ, ATP, K+

outflow, silica and uric acid crystals [73–76] (Figure 3). NLRP3 is the best-described inflamma-
some of the 22 NLR genes found in humans, and the observation that multiple structurally
diverse stimuli are capable of triggering NLRP3 inflammasome activity has led to the notion
that NLRP3 detects a general “danger” signal caused by lysosomal dysfunction [76,77]. Other
NLRs, on the contrary, react to a more limited stimulus repertoire. IL-1 and IL-18 have been
linked to the pathogenesis of a variety of neurodegenerative illnesses, including AD, as well
as a number of CNS pathologies.

Alternatively, TLR can interact with MyD88, triggering NF-κB stimulation, thus pro-
voking the secretion of TNF-α and IL-6 [68,78–80].

Other signaling pathways linked to neuroinflammation involve cyclooxygenase
1 (COX1) and 2 (COX-II) activation and the related production of prostaglandins by means
of ROS activation, with COX I being generally considered as the housekeeping enzyme
and COX II being the enzyme responsible for triggering neuroinflammation [81,82].

The PI3K/AKT pathway, including the mammalian target of rapamycin (mTOR),
is another important signaling route mediating microglia damage [83,84]. Its activation
regulates NF-κB activity in neuroinflammation [85,86]. Furthermore, mitogen-activated
protein kinase (MAPK) family kinases, comprising p38 MAPK and stress-activated protein
kinases/Jun amino-terminal kinases (SAPK/JNK), play a role in microglia activation,
promoting the secretion of proinflammatory cytokines [87].
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Figure 3. The ways through which the NLRP3 inflammasome is activated: The activation of the
NLRP3 inflammasome is a complicated regulatory mechanism that requires two triggering steps:
priming and activation. TLR4 or TNF-α receptor agonists cause the priming phase (signal 1), which
then activates the NF-B pathway by boosting the production of pro-IL-18 and pro-IL-1. The NLRP3
inflammasome is then stimulated (activation step) by numerous triggering events, such as Aβ, ATP,
ROS, bacteria, fungi and viruses (signal 2). Then, caspase-1 can induce maturation of IL-18 and IL-1.

6. Garlic Bioactive Compounds as Neuroprotective Agents against AD
6.1. Allicin

Recently, the healthy properties of allicin have been widely characterized in terms
of neuroprotection for AD therapy [11,88]. A comparison between raw and steamed
garlic has been performed in terms of anti-inflammatory activities in LPS-stimulated BV2
microglial cells. It was found that only raw garlic, in which the generation of allicin was
preserved, was able to reduce proinflammatory cytokines such as IL-1
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, TNF-α, MCP-1,
NO and NF-kB [89]. In particular, an antineuroinflammatory effect was obtained through
concentrations of 200 and 400 µM of DATS and DADS, respectively, derived from allicin.
Interestingly, the neuroprotective activity of allicin has been investigated in an animal
model of AD expressing human double mutant APP and PS1 genes. Allicin induced an
improvement in memory by affecting the APP metabolism, with a decrease in Aβ peptide
expression, mediated through PS1, PS2, BACE1 and nicastrin reduction. Allicin lowered
the elevated levels of oxidative stress (JNK/c-jun-dependent), which are strictly connected
to AD pathology, thus reducing mitochondrial dysfunction [90] (Table 1).

Interestingly, it has been reported that JNK/c-jun is associated with APP, Aβ and cog-
nitive decline, suggesting that its blocking may be relevant in the pathogenesis and therapy
of AD [40,97,98]. Accordingly, in a previous study, allicin therapy effectively improved
age-induced cognitive impairment by increasing the Nrf2 antioxidant signaling pathways,
thus protecting the hippocampus against free radical-induced damage [91]. Similarly, in
the context of neuroinflammation in depressive-like animal models, allicin reduced mi-
croglia activation, and inflammatory cytokines and ROS increased in the hippocampus,
while it stimulated SOD activity and Nrf2 signaling. Interestingly, allicin inhibited an
overstimulated NLRP3 inflammasome, including a reduction in its components, such as
ACS, caspase-1 and IL-1β [92]. Accordingly, in another brain damage-like acute TSCI, caus-
ing glial reactivity and neuroinflammation, allicin prevented neuronal injury by limiting
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oxidative stress, inflammatory response and neuron apoptosis. These events are mediated
through Nrf2 pathway activation [93].

Table 1. Summary of experimental details, including model, chemical concentration and main results
of in vitro and in vivo studies of allicin and AD pathology.

References Experimental Model Chemicals
Concentration Results

[90] APP/PS1 double
transgenic mice

10 mg/kg/day allicin via
intragastric administration

on alternate days for
3 months

- Improves cognition
- Reduces Aβ expression in the brain
- Decreases oxidative stress and improves

mitochondrial dysfunction by JNK/c-jun

[91] 3- and 20-month-old
C57BL/6 mice

Diet supplemented with
180 mg/kg/day of allicin
for 8 consecutive weeks

- Improves age-induced cognitive impairment by
increasing the nuclear factor (erythroid-derived
2)-like 2 (Nrf2) transcription factor

- Recognizes the human Antioxidant Response
Element binding site within glutamylcysteine
synthetase, and NADPH:quinone oxidoreductase
1 and defends the cell against free radical-induced
damage

[92]

8-week-old male
C57BL/6 J mice
(depressive-like

model)

2, 10, 50 mg/kg allicin
once day via

intraperitoneal injection

- Decreases ROS production and microglial
activation

- Upregulates superoxide dismutase (SOD) and
Nrf2/HO-1 pathways

- Attenuates neuronal apoptosis
- Inhibits NLRP3 inflammasome hyperactivity, ACS,

caspase-1, and IL-1β proteins

[93]
Rats with acute

traumatic spinal cord
injury (TSCI)

2, 10, 50 mg/kg
intraperitoneal injection of

allicin for 21 days

- Induces neuroprotection through antiapoptotic,
anti-inflammatory and antioxidant effects

[94]

Adult male rats
72 h of lateral

ventricular infusion of
tunicamycin (TM), an
endoplasmic reticulum

stress stimulator
(cognitive deficit

induction)

Diet supplemented with
180 mg/kg/d of allicin for

16 weeks

- Decreases tau phosphorylation and Aβ42 deposit
in the hippocampus, oxidative stress

- Increases pERK and Nrf2 expression in the
hippocampi

[95]

AD mouse model via
injection of Aß(1–42)
(1 µL = 4 µg) into the
bilateral hippocampi

Allicin via intraperitoneal
injection for 14 days

180 mg/kg/day)

- Prevents learning and memory impairment
- Increases SOD and decreases ROS

[96] Male Wistar rats

Allicin via intraperitoneal
injection (10 and

20 mg/kg) 7 days before
metals (aluminum

chloride, 200 mg/kg p.o;
copper sulfate, 0.5 mg/kg

p.o.) administration for
28 days

- Exhibits neuroprotective effect through
antioxidant, anti-inflammatory, neurotransmitter
restoration; attenuation of neuroinflammation; and
β-amyloid-induced neurotoxicity

The inhibiting action of allicin (IC50 = 62 µM) on enzymes that break down acetyl-
choline, especially AChE and BChE (from bovine erythrocytes), may also play a role in the
favorable effect on cognition [99]. In addition, allicin improved cognition and decreased
tau phosphorylation and Aβ42 deposit in the hippocampus through the pERK/Nrf2 an-
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tioxidative signaling pathway in a model of endoplasmic reticulum stress-related cognitive
deficits, obtained through treating rats with TM [94]. Similarly, allicin had a favorable
effect on cognition, learning and memory impairment in an AD mouse model. These
benefits may be due to an elevation in SOD and a decrease in malondialdehyde activities.
Expressions of Aβ and p38 MAPK were also reduced by allicin in these AD mice [95].
Recently, allicin had a protective effect when administered in rats treated with aluminum
chloride and copper sulfate as animal models of AD. Specifically, allicin attenuated Aβ

plaque formation, oxidative stress, neuroinflammation and cholinergic neuron damage, de-
creasing the symptoms typical of AD [96]. In conclusion, by engaging numerous molecular
and signaling transduction pathways, allicin may be a candidate molecule for combating
neuroinflammation (Figure 4) [88].

Figure 4. The main events induced by allicin to provide protection in AD.

6.2. AGE

There is a large body of evidence dating back to the 1990s that reports on the favorable
benefits of AGE on memory and neuroprotection (Figure 5) [25,100–102].

Figure 5. The main events induced by AGE to provide protection in AD.
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In particular, in spontaneous senescent mice, the impairment of learning and memory,
as well as brain atrophy, was reduced by AGE [103,104] (Table 2).

Table 2. Summary of experimental details, including model, chemical concentration and main results,
of in vitro and in vivo studies of AGE and AD pathology.

References Experimental Model Chemicals
Concentration Results

[104]
Senescence-

Accelerated Mice
(SAM)

Diet containing 2% (w/w) AGE

- Provides antiaging effect, increases the
survival ratio and ameliorates the memory
acquisition deficit and the memory retention
impairment

[105]

Neuronal PC12 cells
treated with NGF for

4 days and injured
with Aβ 95 nM

Cell growth medium containing
0.01% AGE

- Protects neuronal PC12 cells against Aβ

toxicity

[106]
Undifferentiated PC12

cells injured with
Aβ25-35 40 µM

AGE (1–8 mg/mL)
SAC (1–4 mg/mL)

- Reduces ROS and apoptosis

[107]
Hippocampal slice

culture injured with
Aβ25–35 25 µM

SAC (10–100 µM) - Protects from cell death induced by Aβ25–35

[108]

Neuronal PC12 cells
treated with NGF for
12 days and APP-Tg

mice

0.3% or 1.0% AGE in PC12 cells
diet 2% AGE in mice

- Protects from ROS-mediated damage

[109]

NGF-treated neuronal
PC12 cells injured with

Aβ25-35 80 µM
ICR mice administered
Aβ25-35 via intracere-

broventricular
injection

AGE 25–200 µg/mL in PC12 cells
Freeze-dried ethyl acetate fraction
from AGE at concentrations of 5,

10 and 20 mg/kg in mice

- Decreases in vitro ROS accumulation
- Improves cognitive impairment against

Aβ-induced neuronal deficit

[110]

rat hippocampal
neurons

injured with Aβ25–35
5 µM or TM
(10 µg/mL)

SAC (1 µM)
- Decreases neuronal cell death, ROS and

caspase 12 induced by Aβ25–35 or TM

[111]

rat hippocampal
neurons

injured with Aβ25–35
25 µM or TM

(20–80 µg/mL)

SAC (100 µM)

- Blocks Aβ potentiation of TM neurotoxicity
- Reverses the increase in calpain activity and

the active forms of caspase-12 and caspase-3
induced by Aβ + TM

[112] Tg2576 mice AGE (40 mg/kg/d/4 wks)
- Increases sAPPalpha
- Decreases Aβ40 and Aβ42 deposition

[113] Tg2576 mice AGE 2%, 20 mg SAC/kg and
20 mg DADS/kg

- Decreases cerebral plaque, inflammation and
TAU-GSK3
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Table 2. Cont.

References Experimental Model Chemicals
Concentration Results

[115]
C57BL/6 mice treated

with D-galactose
(AD-like model)

SAC (1 g/L into drinking water
for 7 weeks)

- Decreases the production of Aβ and
suppresses the expression of APP and BACE1

- Retaines PKC activity, and the expression of
PKC-α and PKC-γ

- Decreases ROS and protein carbonyl levels and
restores brain GPX, SOD and catalase activities

- Lowers aldose reductase (AR) activity, AR
expression, and carboxymethyllysine and
pentosidine levels

[116]

Intracerebroventricular
infusion of

streptozotocin (STZ)
(model of memory

impairment in mice)

SAC (30 mg/kg i.p. for 15 days)
- Prevents increased latency and path length

and attenuates oxidative stress induced by STZ

[117] LPS-treated rats
(167 µg/kg for 7 days)

SAC (25, 50, 100 mg/kg/day p.o.
for 7 days)

- Increases cognition, learning and memory
reduced by LPS; increases SOD and GSH

- Reduces acetylcholinesterase activity NF-κB,
TLR4, GFAP and IL-1β, and increases Nrf2

[118]

Rats injured with
Aβ1–42 1 µg/µL in-

tracerebroventricular
infusion

AGE (125, 250 and 500 mg/kg p.o.
for 65 days)

- Ameliorates working and reference memory
by raising glutamate vesicular transporter 1
protein and glutamate decarboxylase levels

- Restores cholinergic neuron density reduced
by Aβ1–42

[119]

Rats injured with
Aβ1–42 1 µg/µL in-

tracerebroventricular
infusion

AGE (125, 250 and 500 mg/kg
body weight, p.o., daily for

56 days)

- Improves short-term recognition memory in
cognitively impaired rats

- Reduces microglial activation and IL-1β

[120]

Scopolamine-treated
mice (2 mg/kg)

injected 30 min before
the tests.

AGE (25 or 50 mg/kg p.o.)

- Protects against scopolamine-induced
cognitive impairment by decreasing oxidative
damage and regulating cholinergic function

- Increases levels of glutathione, glutathione
peroxidase and glutathione reductase, and
inhibits lipid peroxidation

- Attenuates cholinergic degradation by
inhibiting acetylcholinesterase activity and
increasing choline acetyltransferase activity

In addition, in an in vitro cell model of AD represented by Aβ-injured PC12 cells,
AGE and one of its major constituents, SAC, reduced ROS production, caspase-3 activation,
DNA fragmentation and PARP cleavage, thus protecting against Aβ-induced apopto-
sis [105,106,109,121–123]. In addition, SAC was protective and reduced cell death in organ-
otypic hippocampal slice culture injured with Aβ [107]. AGE and SAC protected neuronal
cells from ROS-mediated damage and preserved the levels of the synaptosomal-associated
protein of 25kDa (SNAP25) in the presynaptic neuron [108]. Furthermore, SAC reduced neu-
ronal cell death induced by TM, alone and in combination with Aβ, by blocking calpain-,
caspase 12- and caspase 3-dependent pathways [110,111]. Accordingly, AGE was able to
improve the cognitive functions in both transgenic and Aβ-treated mice. AGE decreased
Aβ deposition, thus hampering hippocampal-dependent memory damage [112–114]. Fur-
ther studies indicate that SAC protects against oxidative damage by restoring the levels
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of antioxidative enzymes in AD animal models obtained through different approaches,
such as D-galactose and STZ mice treatment [115,116]. AGE could alleviate LPS-dependent
cognitive deficits via a reduction in oxidative stress, neuroinflammation, astrogliosis, and
acetylcholinesterase activity [117]. In addition, AGE can ameliorate working and reference
memory, by raising glutamate vesicular transporter 1 protein and glutamate decarboxylase
levels and hamper the degeneration of cholinergic neurons [118]. The possible pathway re-
sponsible for these protective effects of AGE is related to a reduction in microglia activation
in the cerebral cortex and hippocampus of Aβ-induced and transgenic AD animal models,
with the consequent inhibition of IL-1β and inflammation [112,119,124]. In addition, AGE
impaired cognitive damage induced by scopolamine via a reduction in oxidative stress and
AchE activity in mice [120].

Other molecules in AGE, on the other hand, might play a role in neuroinflammation,
and the mechanism by which AGE modulates neuroinflammation requires further research.

7. Conclusions

Finding a viable molecule for the pharmacological therapy of AD has been one of the
most difficult issues in medical research. As most medications aimed at various targets
have failed to offer a medical solution, natural products or nutraceutical components, such
as garlic, arise as potential protective treatment options. Given that AD is a multifactorial
illness, garlic extracts provide the benefit of a multitarget strategy, targeting different
biochemical locations in the human brain, as opposed to an individual action, as with
most medications used to treat AD. The data given in this review highlight the beneficial
antioxidant and neuroprotective anti-inflammatory properties of allicin and AGE contained
in garlic extracts. However, these studies are derived from cellular or mouse models, while
clinical trials concerning these compounds and AD are not present, suggesting that this
evidence should be confirmed in human studies before the beneficial effects of compounds
contained in garlic might be translated into therapy. Finally, the importance of the NLRP3
inflammasome pathway in neuroinflammation and neurodegenerative diseases, such as
AD, has been established [125], and very recent data on its modulation via allicin have
been reported, whereas no evidence has been shown for AGE, implying the need for
further characterization.
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