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Abstract: The impact of endocrine-disrupting chemicals on the development and involution of
the immune system is a possible reason for the increased incidence of disorders associated with
inappropriate immune function. The thymus is a lymphoid and also an endocrine organ, and,
accordingly, its development and functioning may be impaired by endocrine disruptors. The aim was
to evaluate age-related thymus involution in mature rats exposed to the endocrine disruptor DDT
during prenatal and postnatal ontogeny. Methodology included in vivo experiment on male Wistar
rats exposed to low doses of DDT during prenatal and postnatal development and morphological
assessment of thymic involution, including the immunohistochemical detection of proliferating
thymocytes. The study was carried out at the early stage of involution. Results: DDT-exposed
rats exhibited a normal anatomy, and the relative weight of the thymus was within the control
ranges. Histological and immunohistochemical examinations revealed increased cellularity of the
cortex and the medulla, higher content of lymphoblasts, and more intensive proliferation rate of
thymocytes compared to the control. Evaluation of thymic epithelial cells revealed a higher rate of
thymic corpuscles formation. Conclusion: The data obtained indicate that endocrine disrupter DDT
disturbs postnatal development of the thymus. Low-dose exposure to DDT during ontogeny does not
suppress growth rate but violates the developmental program of the thymus by slowing down the
onset of age-related involution and maintaining high cell proliferation rate. It may result in excessive
formation of thymus-dependent areas in peripheral lymphoid organs and altered immune response.

Keywords: thymus; endocrine-disrupting chemicals; involution; lymphocytes; DDT

1. Introduction

The thymus is a primary lymphoid organ, which is essential for formation of adap-
tive immune response. It ensures differentiation of T cell and their migration to T-
dependent areas of peripheral lymphoid organs such as lymph nodes, tonsils, spleen,
Peyer’s patches [1,2]. The immune system of the mammals is known to deteriorate with
advancing age. Among the organs of immune defense, the thymus is the first to undergo
age-dependent decline [3]. Involution of thymus function has been shown to impair T
cell-mediated immunity and maintenance of tolerance to self-antigens [4,5].

Diseases associated with inappropriate immune response are on the increase over the
last few decades [6,7]. There is a growing body of evidence that anthropogenic factors
contribute to an increased rate of allergic diseases, autoimmune disorders, and inadequate
response to viral and bacterial infections [8–10]. Endocrine-disrupting chemicals represent
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the largest part of anthropogenic and environmental hazards, which affects immunity of
both adults and infants [11–14]. It is widely accepted that the thymus comprises immune
and endocrine function [15,16]. Thus, the thymus may be affected by endocrine disrupters
directly. Moreover, the thymus is known to be highly sensitive to glucocorticoid and sex-
steroid hormones [3,17,18]; it allows endocrine disrupters to compromise thymic function
indirectly through hormonal misbalance.

The investigations have showed that most known endocrine-disrupting chemicals
penetrate the placental barrier [19–21]. Some of them exert a dismorphogenic effect on de-
veloping fetal organs [22]. After birth, endocrine disruption may also negatively influence
the program of postnatal development [11]. In our previous investigations, we revealed
some changes in the thymus morphology of newly born rats, exposed in utero to low
doses of dichlorodiphenyltrichloroethane (DDT) [23]. DDT is one of the most wide-spread
endocrine-disrupting chemicals on the planet [24]. It persists in water and soil for at least
seven decades, and is found in 99.9% of neonate, infant, and adult blood samples [25]. This
suggests different deviations in the pre- and postnatal development of the endocrine system
and the immune system. DDT has been shown to interfere with sex-steroid production and
earlier onset of puberty, which is crucial for thymic involution [26,27]. Thymic involution
is characterized by a loss of weight, reduction in the cortex/medulla ratio, decreased cortex
cellularity, depletion of subcapsular lymphoblasts, and replacement of epithelial stroma
by connective and adipose tissue [28,29]. The hormones of the pituitary–gonadal axis are
known to regulate all the above-mentioned processes [30,31]. Since DDT is a recognized
antagonist of androgen receptors [32], it may prevent androgen binding and signaling by
thymic cells and possibly alter postnatal development and involution. DDT also has been
found to interfere with transcriptional regulation of endocrine glands development by
affection of Wnt, Oct4, and Sonic Hedgehog signaling [33–35]. It suggests that DDT may
also compromise thymus function by disruption of postnatal morphogenesis. Since thymus
involution is an evolutionarily conservative process in mammals, its onset is associated
with the implementation of the morphogenetic program of the organ, and not only with
hormonal control of aging. This allows us to hypothesize that endocrine disruptors can
fundamentally change the process of involution as a part of developmental program both
by accelerating and slowing down. The disruption of the immune system development by
low-dose exposure to DDT is still obscure and requires thorough investigations. The aim of
the present study was to evaluate age-related changes in the thymus of post-pubertal rats
exposed to DDT during prenatal and postnatal development.

2. Results
2.1. Thymus Morphology

The thymus of the DDT-exposed matured rats had typical anatomy and histology
with distinct cortex and medulla (Figure 1A,B). The relative thymus weight did not differ
from the control (Figure 1C). Histological examination revealed some signs of early thymic
age-related involution in the control rats, such as less dense cellularity of the cortex and
more prominent stromal elements, focal lymphocyte death and tangible bodies in the
cortex, and rare thymic corpuscles. The rats developmentally exposed to low doses of DDT
exhibited milder age-related changes. In DDT-exposed rats, histomorphometry revealed
a significantly higher cortex/medulla ratio and increased cellularity of the cortex and
medulla (Figure 1D–F).

Besides higher lymphocyte density, the medulla demonstrated altered thymic epithe-
lial cell turnover. The number of thymic corpuscles in 1 mm2 of medulla was double that
in the control (Figure 2C). The stages of thymic corpuscles’ development also differed. In
the intact rats, more than half of the corpuscles were in the second stage of development
(Figure 2A,D). In the DDT-exposed rats, thymic corpuscles in the first stage of development
prevailed (Figure 2B,D).
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Figure 1. Morphology of the thymus of prenatally and postnatally exposed to DDT and intact
adult rats aged 10 weeks. Histology of the thymus of the control (A) and DDT-exposed (B) rats.
Magnification 50, scale bar 200 µm. Relative thymus weight (C), cortex/medulla ratio (D), lymphocyte
density of the cortex (E) and the medulla (F). Data are shown as mean ± S.E.M.; p < 0.05 compared to
the control (*).

Figure 2. Characterization of thymic corpuscles in prenatally and postnatally exposed to DDT and
intact adult rats aged 10 weeks. Structure of thymic corpuscles in the control (A) and DDT-exposed
(B) rats. Magnification 400. Number of thymic corpuscles in 1 µm2 of the medulla (C). Data presents
as mean ± S.E.M. Stages of thymic corpuscles development (D). p < 0.05 compared to the control (*).
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2.2. Proliferation of Thymic Lymphocytes

Immunohistochemical evaluation revealed significant changes in proliferation rate of
thymocytes in all assessed compartments. As shown in Figure 3A,C, a compact layer of
subcapsular lymphoblasts in the control rats was narrowed and focally disintegrated. In
the exposed rats, subcapsular lymphoblasts represented a denser integral layer, which was
40% wider than in the control group (Figure 3B,C). In addition to the subcapsular region,
the inner cortex also displayed mitotically active lymphocytes, but they were diffusely
located in the cortex. The percentage of Ki-67-positive lymphocytes in 1 mm2 of the cortex
in the DDT-exposed rats was significantly higher than in the control (Figure 3D).

Figure 3. Immunohistochemical evaluation of Ki-67-positive cortical lymphocytes in prenatally
and postnatally exposed to DDT and intact adult rats aged 10 weeks. Distribution of proliferating
thymocytes in the control (A) and DDT-exposed (B) rats. C—capsule, SL—subcapsular lymphoblasts.
Magnification 400, scale bar 20 µm. Width of subcapsular layer of mitotically active lymphoblasts (C),
percentage of Ki-67-positive thymocytes in the cortex (D). Data presents as mean ± S.E.M. p < 0.05
compared to the control (*).

Immunohistochemical detection also revealed Ki-67-positive thymocytes in the medulla.
In the control rats, proliferating lymphocytes were scattered in the medulla (Figure 4A).
Their percentage was twice less than in the cortex. Unlike the control, the DDT-exposed
rats showed a 1.5-times higher percentage of dividing lymphocytes (Figure 4C). They also
were diffusely distributed in the medulla (Figure 4B).
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Figure 4. Immunohistochemical evaluation of Ki-67-positive medullary lymphocytes in prenatally
and postnatally exposed to DDT and intact adult rats aged 10 weeks. Distribution of proliferating
thymocytes in the control (A) and DDT-exposed (B) rats. Magnification 400, scale bar 20 µm. Percent-
age of Ki-67-positive thymocytes in the cortex (C). Data presents as mean ± S.E.M. p < 0.05 compared
to the control (*).

3. Discussion

Thymus histophysiology comprises an influx of lymphoid progenitors to the subcap-
sular region, where they actively proliferate concomitant differentiation of lymphoblasts
to mature T cells in the inner cortex, and their emigration from the thymus. Thymus
involution is characterized by progressive loss of weight and depletion of cortex due to
diminished influx of progenitor cells from the bone marrow, and a reduction in cell prolif-
eration and differentiation [28,29]. In rats, involution of the thymus begins from the age
of six weeks [36]. In the present study, we examined 10-week-old rats and found early
age-related changes in the thymus of the control group. Immunohistochemical evaluation
of cell proliferation revealed depletion of subcapsular layer and low mitotic activity of
cortical and medullary lymphocytes indicative of extinction of thymopoiesis. DDT-exposed
rats exhibited similar thymus size and no differences in the rate of cortex and medulla
development. This clearly demonstrates that the endocrine disrupter did not attenuate
thymus growth. Higher cellularity of the cortex and medulla reflect more active T cell
production. A wider layer of lymphoblasts under the capsule and a higher percentage of
dividing lymphocytes in the inner cortex provide evidence that thymopoiesis in prenatally
and postnatally DDT-exposed rats does not start regressing after puberty. T cell production
in the thymus is controlled by so-called thymic crosstalk, which includes initiation of
progenitor cell proliferation, differentiation, and migration by thymic epithelial cells as well
as induction of thymic epithelial cell differentiation and function by thymocytes [37,38].
In the present investigation, we observed a higher number of thymic corpuscles in the
DDT-exposed rats. Moreover, most corpuscles were in the initial stage of development
indicative of their enhanced formation. The possible role of thymic corpuscles in T cell
development is still an open question [39–41], but developmental investigations of the rat
thymus show that thymic corpuscles appear when thymopoiesis is already established, and
their number decreases with age concomitantly with the regression of T cell output [42].
In our investigation, we revealed more intensive lymphocyte production and thymic ep-
ithelial cell cycling. Thus, it appears that the thymus of rats developmentally exposed
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to the endocrine disruptor DDT was more juvenile compared to the age control. In our
previous research, we investigated the development of the proliferative response of thymic
lymphocytes to T-cell mitogen Concanavalin A in rats with the same regimen of prenatal
and postnatal exposure to DDT and found that the response in prepubertal and pubertal
rats was adequate to age control, but after puberty—at the age of 10 weeks—it showed a
significant decrease [43]. An insufficient proliferation response to mitogen is known to indi-
cate functional immaturity of lymphocytes typical for the neonatal period of ontogeny [44].
Additionally, low proliferative response is observed in old age and associated with cell
senescence and reduced immune cell renewal [45,46]. The results of the present study shed
light on the cause of the insufficient proliferative response of lymphocytes. Functional insuf-
ficiency of thymic lymphocytes most likely results from higher content of low-differentiated
proliferating cells incapable of blast transformation. Our findings provide evidence that
developmental exposure to DDT disrupts postnatal growth of the thymus and functional
maturation of thymic lymphocytes. Thus, the well-developed, functionally active appear-
ance of the thymus cannot be considered a marker of sufficient T cell function in a case
of development under persistent exposure to endocrine-disrupting chemicals. DDT has
been found to disrupt postnatal development of the male reproductive system and the
adrenal glands [35,47–50]. Our results show that DDT has a dysmorphorogenetic effect on
the central organs of immunity along with the endocrine glands.

4. Materials and Methods
4.1. Animals

Female and male Wistar rats were obtained from Scientific Center of Biomedical
Technologies of Federal Medical and Biological Agency of Russia. The rats were housed
at +22–23 ◦C and given a pelleted standard chow ad libitum. The investigation was
performed in accordance with the handling standards and rules of laboratory animals as
consistent with “International Guidelines for Biomedical Researches with Animals” (1985),
laboratory routine standards in the Russian Federation (Order of Ministry of Healthcare
of the Russian Federation dated 19 June 2003 No.267) and “Animal Cruelty Protection
Act” dated 1 December 1999, regulations of experimental animal operation approved by
Order of Ministry of Healthcare of USSR No.577 dated 12 August 1977. Animal procedures
were approved by the ethics committee of the Research Institute of Human Morphology
(protocol N 28(4), 28 October 2021).

4.2. Experimental Design

The female rats weighed 180–220 g and received a solution of o,p-DDT 20 µg/L
(“Sigma-Aldrich”, St. Louis, MO, USA) ad libitum instead of tap water since mating
during pregnancy and lactation. After weaning, the progeny of the rat dams received the
same solution of o,p-DDT during postnatal development. The progeny of intact female
rats were used as a control. Only male offspring were enrolled in the experiment (10
DDT-exposed and 10 control rats). The rats were sacrificed by zoletil overdosage in the
post-pubertal period at the age of 10 weeks. The average daily intake of DDT after weaning
was 2.90 ± 0.12 µg/kg bw, which corresponded to DDT consumption by humans with food
products with consideration for differences in DDT metabolism in rats and humans [51].
The absence of DDT, its metabolites, and related organochlorine compounds in tap water
and chow was confirmed by gas chromatography in Moscow Federal Budgetary Institution
of Public Health.

4.3. Thymus Morphology

The thymus was weighed immediately after removal and then fixed in Bouen solution.
After standard histological processing, the tissue samples were embedded in paraffin.
Histological sections of the thymus were stained with hematoxylin and eosin. Histological
examination was performed with “Leica DM2500” light microscope (Leica Microsystems
Gmbh, Wetzlar, Germany).
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Computer histomorphometry of light microscope images was carried out using “Im-
ageScope” software (Leica Microsystems Gmbh, Wetzlar, Germany). The surface area of
the cortex and medulla, the number of lymphocytes in 1µm2 of the cortex and the medulla,
and the number of thymic corpuscles in 1 µm2 of the medulla were measured. The stages
of thymic corpuscles development were assessed according to the following classification:
1st stage—convergence of several epithelial reticular cells with higher oxyphilic cytoplasm;
2nd stage—concentric arrangement of epithelial reticular cells and accumulation of amor-
phous acidophilic material in the corpuscle; 3rd stage—formation of a cyst in the center
of a corpuscle; 4th stage—rupture of a thymic corpuscle and elimination of debris by
macrophages [52]. Cortex/medulla ratio was calculated as the ratio of the surface area of
the cortex to the surface area of the medulla.

4.4. Immunohistochemistry

Immunohistochemical evaluation of Ki-67 was performed on paraffin-embedded tis-
sues. After antigen retrieval with 10 mM sodium citrate (pH 6.0), endogenous peroxidase
and endogenous immunoglobulins were blocked with Hydrogen Peroxide Block and Pro-
tein Block (Thermo Fisher Scientific, Waltham, MA, USA). The slides were incubated with
primary antibodies to Ki-67 (1:100, Cell Marque, Rocklin, CA, USA) overnight at 8 ◦C. Slides
processed without incubation with primary antibodies were used as a negative control.
The reaction was visualized with UltraVision LP Detection System reagent kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to manufacturer’s recommendations. The
sections were counterstained with Mayer’s hematoxylin.

Expression Ki-67 in lymphoid cells was evaluated separately in subcapsular region,
inner cortex, and medulla of the thymus. In the inner cortex and the medulla rate of prolif-
eration was assessed as a percentage of immunopositive cells with per 1 mm2. The width
of the Ki-67-positive subcapsular layer of lymphoblasts was measured using “ImageScope”
software (Leica Microsystems Gmbh, Wetzlar, Germany).

4.5. Statistical Analysis

The statistical analyses were carried out using the software package Statistica 7.0
(StatSoft, Tulsa, OK, USA). The central tendency and dispersion of quantitative traits with
approximately normal distribution were presented as the mean and standard error of the
mean (M ± SEM). Quantitative comparisons of independent groups were performed using
Student’s t-test, taking into account the values of Levene’s test for the equality of variances.
Quantitative comparisons were performed using Chi-square. Differences were considered
statistically significant at p < 0.05.

5. Conclusions

The present investigation clearly demonstrates that endocrine disrupter DDT disturbs
the postnatal development of the thymus. Low-dose exposure to DDT during ontogeny
does not suppress growth rate but does violate the developmental program of the thymus
by slowing down the onset of age-related involution and maintaining high cell proliferation
rate. This may result in an excessive formation of thymus-dependent areas in the peripheral
lymphoid organs and an altered immune response.
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