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Abstract: The new SARS-CoV-2 coronavirus is responsible for the COVID-19 pandemic. A massive
vaccination campaign, which is still ongoing, has averted most serious consequences worldwide;
however, lines of research are continuing to identify the best drug therapies to treat COVID-19
infection. SARS-CoV-2 penetrates the cells of the host organism through ACE2. The ACE2 protein
plays a key role in the renin–angiotensin system (RAS) and undergoes changes in expression during
different stages of COVID-19 infection. It appears that an unregulated RAS is responsible for the
severe lung damage that occurs in some cases of COVID-19. Pharmacologically modifying the
expression of ACE2 could be an interesting line of research to follow in order to avoid the severe
complications of COVID-19.
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1. COVID-19

The COVID-19 pandemic has so far caused about 520,912,257 infections and 6,272,408
deaths [1–3]. The massive vaccination campaign that is still taking place worldwide, thanks
mainly to mRNA vaccines, has prevented the number of deaths and severe cases from being
higher; however, research efforts continue to identify the best drug treatments and cures
for treating the COVID-19 viral infection. In most cases, the infection has an asymptomatic
or mildly symptomatic course. The most common clinical manifestations of COVID-19
infection include loss of sense of smell, fatigue, fever, cough, and dyspnea [4–6]. In severe
cases, injury to the lungs and heart can occur, caused by an abnormal and dysregulated
response of the inflammatory/immune system induced by a massive and sudden release of
proinflammatory mediators such as cytokines and chemokines [7–10]. In the early stages of
the pandemic, several pharmacological treatments were proposed for COVID-19 infection,
including anti-inflammatory/immunomodulatory agents, anticoagulants, convalescent
plasma, and antivirals indicated for other diseases [11–14]. Today, there are several antivi-
rals directed against SARS-CoV-2. The SARS-CoV-2 coronavirus penetrates cells through
the ACE2 glycoprotein, which is expressed in different tissues of the body [15–17]. In
this sense, the homeostasis of the renin–angiotensin system is another risk factor underly-
ing the pathogenesis of COVID-19, since angiotensin-converting enzyme 2 (ACE2) is the
predominant receptor through which the SARS-CoV-2 virus enters cells and infects them.

This probably also shows that COVID-19 is not only a respiratory disease but also a
multisystem disease that can cause neurological, cardiovascular, and reproductive system
damage [18–20]. An altered ACE/ACE2 expression ratio could contribute to severe out-
comes in patients with COVID-19 [21], as is the case with cardiovascular disease. ACE2
plays a key role in the RAS renin-angiotensin system.

2. The Role of ACE2

The renin-angiotensin system (RAS) maintains blood pressure and electrolyte bal-
ance in the body and has also been implicated in the pathogenesis of acute respiratory
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distress syndrome (ARDS). The RAS operates through two axes: the classical angiotensin-
converting enzyme (ACE)/Angiotensin (Ang) II/Ang II type 1 receptor (AT1) axis and the
non-classical ACE2/Ang 1–7/Mas receptor (MasR) axis. These two pathways have opposite
functions: while the former is associated with impaired respiratory status, the latter plays a
protective role in ARDS. SARS-CoV-2 virus uses ACE2 as its receptor-binding domain for
endocellular penetration [22]. ACE2 is a carboxypeptidase and a type I transmembrane
protein with an N-terminal extracellular domain containing the active site. ACE2 is a key
regulator of the renin–angiotensin system (RAS). ACE2 receptors are expressed in different
tissues of the body, particularly in the lungs, heart, intestine, and testes [23]. In the lungs,
the highest concentration of ACE2 has been identified in type II pneumocytes [24]. This may
suggest why the lung is the most vulnerable target organ for COVID-19 infection. ACE2
is also expressed as a coreceptor in intestinal epithelial cells, where it mediates the role of
nutrient absorption [25]. ACE2 has been found to be expressed on cell membranes and in
circulation in soluble form. The role that ACE2 plays in the various stages of COVID-19
infection is still not entirely clear. Some evidence shows a variation in the modulation of
RAS and ACE2 during the various stages of infection. After ACE2 binding and SARS-CoV-2
entry into target cells, shedding of host ACE2 receptors occurs, which may alter RAS tissue
homeostasis, with important implications for the severity of COVID-19. ACE2 appears
to play a protective role on the lungs during viral infection. This evidence suggests the
use of ACE2-targeted therapeutic approaches. ACE2 mediates the conversion of Ang-II
to Ang 1–7 and Ang-I to Ang 1–9 (Figure 1). The biological effects of Ang-II mediated by
AT1 receptors are vasoconstrictive, hypertrophic, and proinflammatory, increasing oxida-
tive stress and coagulation, biological effects that, if dysregulated and uncontrolled, can
complicate the course of COVID-19 infection. In addition, Ang-II can induce increased
inflammation through the production of IL-6, tumor necrosis factor (TNF)-α, and other
inflammatory cytokines [26–28]. ACE2 causes the degradation of Ang-II and the formation
of Ang 1–7. Ang 1–7 has opposite biological effects to Ang-II through MasR and AT2-r,
such as anti-inflammatory and antifibrosis, antiplatelet, and antihypertrophic effects. In
support of this fact, recent evidence has shown that the serum of highly exposed but unin-
fected individuals has the ability to neutralize SARS-CoV-2, probably mediated by soluble
ACE2, and that lower levels of ACE2, are present, although only marginally significantly, in
more severe patients [29]. Further evidence shows that sACE2 levels were lower in severe
and moderate COVID-19 patients than in mild subjects at the time of admission. Within
5–7 days, as patients recovered, sACE2 levels increased in all moderate patients, but only
in half of the patients with severe disease [30]. The description of these molecular and
biological aspects suggests the use of therapeutic solutions based on ACE2 targets [31,32].

Figure 1. Schematic representation of the correlation between SARS-CoV-2 and ACE2: SARS-CoV-2
penetrates cells through binding of the viral spike protein (spike; S) to angiotensin-converting enzyme 2
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(ACE2). ACE2 converts angiotensin (Ang)-II into Ang 1–7, which has biological effects mediated by
MASr activation (antifibrotic, antioxidant, and antihypertrophic) as opposed to Ang-II mediated by
AT1 receptors (prooxidant, hypertrophic, vasoconstrictive, and hyperinflammatory).

3. Pharmacological Approach on ACE2

SARS-CoV-2 infection impairs endothelial function through the downregulation of
ACE2, leading to lung injury. In addition, among other pathophysiological aspects of
COVID-19, stress on the RAS also plays a role in the development and severity of the
disease. However, it is unclear at what stage of COVID-19 disease ACE2 is downregulated.
Increased expression of ACE2 could prove to be of therapeutic benefit in COVID-19 in-
fection. Commonly used RAS-modulating pharmacological agents such as ACEi increase
ACE2 levels, whereas the use of ARBs causes an increase in the expression and activity
levels of ACE and ACE2 [33,34]. Increased ACE2 might be useful in the late stages of
infection to counteract the hyperinflammatory and hyperphybrotic state of lung tissue.
Finally, increased ACE2 could lead to increased bradykinin degradation, further preventing
pro-inflammatory, pro-oxidant, and profibrotic effects [35]. Treatment with an rhACE2-
soluble form of ACE2 could prove useful as a decoy effect for SARS-CoV2 and decrease
cellular entry of the virus, thereby hindering viral infection [36]. The administration of
recombinant soluble human ACE2(rhACE2) has shown good efficacy in subjects with acute
respiratory distress syndrome (ARDS) [37]. From a molecular pharmacological point of
view, the administration of rhACE2 activates the Ang 1–7 and Ang 1–9 synthesis pathway
of the RAS system (nonclassical pathway) by decreasing Ang II levels with a tendency to
lower proinflammatory cytokine concentrations. Evidence shows that [38] the administra-
tion of rhACE2 blocks the early stages of SARS-CoV-2 infection by preventing SARS-CoV-2
from entering cells and increases the efficacy of remdesivir activity when administered
in combination [39,40]. The rhACE2 can act as a “decoy”. Their molecular “decoy effect”
binds the spike protein SARS-CoV-2 so tightly that it competes with true human ACE2 and
prevents the virus from carrying on the infectious process (Figure 2).

Figure 2. Soluble ACE2 binding prevents SARS-CoV-2 attachment to membrane ACE2, reducing
viral endocellular penetration.
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Not only does the sACE2 function as a decoy receptor, its catalytic activity as an
enzyme in the renin-angiotensin-aldosterone (RAS) system could be highly beneficial to
decrease levels of Ang II. Engineered variants of sACE2 may possess catalytic activity and
contribute to the conversion of Ang II to Ang 1,7 to treat respiratory distress as well [41].
Another interesting line of research is the administration of Ang 1–7 peptide; clinical trials
in this direction are ongoing. The sites of interaction between ACE2 and SARS-CoV-2
represent important pharmacological targets to synthesize compounds directed against
this site of action. In addition, vitamin D administration raises ACE2 levels [42], potentially
representing a role in combating severe complications from COVID-19. In addition, viral
delivery systems using adenoviruses, adeno-associated viruses, or lentiviruses have been
used as approaches to increase ACE2 expression in vivo in the central nervous system and
a variety of peripheral tissues. Several compounds named “ACE2 activators” are being
investigated to amplify ACE2 [43]. Finally, an interesting pharmacological approach could
be allosteric modulation. It is hypothesized that SARS-CoV-2 may lose the ability to infect
new host cells due to an allosterically impaired interaction between the ACE2 receptor and
the viral RBD. Drugs that act by allosteric modulation, such as allosteric enzymes, bind
to sites other than the active site and often alter the shape of the active site itself and its
affinity [44]. Finding pharmacological compounds that use allosteric modulation to alter
the ACE2 binding site with RBD SARS CoV-2 could be an interesting line of research. In
other words, due to altered biophysical properties of the ACE2 receptor, viral RBD may lose
or enhance the degree of affinity toward the ACE2 receptor [45]. Similarly, the alteration of
the biophysical properties of the ACE2 receptor could be possible following allosteric drug
binding, which could disrupt the interactions between ACE2 and the RBD of SARS-CoV-2.
Some evidence has shown that the binding of a drug to the allosteric site of the ACE2
receptor can decrease biophysical interactions of the ACE2 and viral RBD.

Specifically for some drugs such as dexamethasone (DEX), chloroquine (CQ), and
telmisartan (TLS), binding to an allosteric site with a conformational shift of ACE2 can
disrupt interactions between the SARS-CoV-2 spike protein and human ACE2 [45]. How-
ever, the binding of a drug to an allosteric site of ACE2 can also reduce the conversion of
angiotensin-I and -II enzyme substrate. Therefore, altering the biophysical properties of
the ACE2 receptor by modulating an allosteric site of ACE2 could be a promising strategy
against COVID-19. This aspect will need to be explored in detailed in future research.
Finally, current evidence has not provided evidence for a significant association between
ACEI/ARB treatment and COVID-19 mortality. ACEIs/ARBs should not be withdrawn in
the absence of formal contraindications [46].

4. Conclusions

A pharmacological approach based on increasing ACE2 may reduce the detrimental
actions mediated by the stimulation of AT1r by Ang2 and increase the benefits of the
stimulation of MASr activated by Ang 1–7 and Ang 1–9. These benefits are potentially useful
in combating COVID-19 infection and reducing the risk of serious complications, such
as hyperinflammatory state and tissue hyperfibrosis, and helping to mitigate pulmonary,
cardiac, and renal damage caused by COVID-19. Clinical evidence is needed to generate
useful data to confirm this interesting line of research.
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