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Abstract: Enterotoxigenic Escherichia coli (ETEC) strains are one of the most common etiological
agents of diarrhea in both human and farm animals. In addition to encoding toxins that cause
diarrhea, ETEC have evolved numerous strategies to interfere with host defenses. These strategies
most likely depend on the sensing of host factors, such as molecules secreted by gut epithelial cells.
The present study tested whether the exposure of ETEC to factors secreted by polarized IPEC-J2 cells
resulted in transcriptional changes of ETEC-derived virulence factors. Following the addition of
host-derived epithelial factors, genes encoding enterotoxins, secretion-system-associated proteins,
and the key regulatory molecule cyclic AMP (cAMP) receptor protein (CRP) were substantially
modulated, suggesting that ETEC recognize and respond to factors produced by gut epithelial cells.
To determine whether these factors were heat sensitive, the IEC-conditioned medium was incubated
at 56 ◦C for 30 min. In most ETEC strains, heat treatment of the IEC-conditioned medium resulted
in a loss of transcriptional modulation. Taken together, these data suggest that secreted epithelial
factors play a role in bacterial pathogenesis by modulating the transcription of genes encoding key
ETEC virulence factors. Further research is warranted to identify these secreted epithelial factors and
how ETEC sense these molecules to gain a competitive advantage in the early engagement of the
gut epithelium.
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1. Introduction

Among the viral and bacterial pathogens causing diarrhea, enterotoxigenic Escherichia coli
(ETEC) is one of the most frequently encountered enteropathogens in humans in low-income
nations and an important cause of diarrhea and death in farm animals [1–3]. ETEC pathogens
are still a global health burden and remain a major cause of morbidity and mortality due to a
lack of preventive measures and limited treatment options [4]. It is estimated that hundreds
of millions of symptomatic ETEC infections occur annually among children younger than five
years old in low–middle income countries [1,4]. ETEC are also a common pathogen isolated
from travelers with watery diarrhea [4]. Among farm animals, ETEC infections are mainly
reported in neonatal cattle and piglets. In swine, especially in neonatal and post-weaning
piglets, the ETEC infection stimulates the secretion of water and electrolytes into the intestinal
lumen and cause diarrhea, weight loss, and even death, leading to severe economic losses for
farming industries worldwide [2,3]. ETEC cause diarrhea by the delivery of heat-labile and/or
heat-stable enterotoxins to the small intestine, a process that requires adhesins, such as fimbriae
or colonization factors (CFs) and coli surface antigens (CS). After ingestion, ETEC initially
engage host cells with their fimbriae where they interact with host receptors on the brush
borders of the small intestinal epithelium. To date, at least 25 distinct colonization factors have
been identified in human ETEC strains [5–9]. However, in swine-specific ETEC strains, only
five different fimbrial adhesins have been identified, including F4 (K88), F5 (K99), F6 (987P),
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F17 (F41), and F18 fimbriae [10]. Upon binding, ETEC rapidly proliferate in the intestine and
secrete heat-labile (LT) and/or heat-stable enterotoxins (STa and STb) into the intestinal tract.
These enterotoxins bind to their specific receptors on the brush border of villous and crypt
enterocytes, activating intracellular signaling cascades and resulting in a disruption of the
electrolyte homeostasis, which finally leads to fluid secretion [11]. LT activates the production
of cellular cAMP, which in turn activates protein kinase A (PKA). Activated PKA modulates
the cellular ion channels by phosphorylation, which triggers the opening of the cystic fibrosis
transmembrane conductance regulator (CFTR) and sodium/hydrogen exchanger 3 (NHE3)
channels. This results in the net export of salt and water into the intestinal lumen, culminating
in watery diarrhea. STa binds to the guanylate cyclase C receptor and elicits the accumulation
of intracellular cyclic GMP (cGMP) levels. These increased cGMP levels activate cGMP-
dependent protein kinase II (PKGII), which in turn phosphorylates sodium and chloride
channels. In addition, cGMP was also shown to inhibit phosphodiesterase 3 (PDE3), which
leads to the activation of PKA. STb, on the other hand, interacts with sulfatides and activates
a pertussis toxin-sensitive GTP-binding regulatory protein (Gαi3), resulting in a calcium ion
influx through a receptor-dependent ligand-gated Ca2+ channel. The increased intracellular
Ca2+ triggers the protein kinase C (PKC)-mediated activation of CFTR, resulting in fluid
accumulation in the intestine [11]. Thus, enterotoxins play a crucial role in ETEC pathogenesis.
Interestingly, porcine ETEC isolates differ in their capacity to secrete both heat-stable and
heat-labile enterotoxins, in part, dependent on their expression levels of the type 1 secretion
system component TolC and the type 2 secretion system protein YghG, respectively [12,13].

While the role of ETEC enterotoxins in diarrhea is clear, emerging data indicate that
these enterotoxins also elicit host responses to alter the function of the small intestinal
epithelium. On the one hand, the F4+ ETEC infection enhanced the secretion of the proin-
flammatory molecules IL-6 and CXCL-8 by epithelial cells. Both molecules are important
to initiate innate immune responses and, subsequently, the induction of adequate adaptive
immune responses to intestinal pathogens [14]. On the other hand, enterotoxins modulate
the gene expression of host epithelial cells. STa was shown to induce the accumulation of
extracellular cGMP and further to modulate cytokine transcript levels in host epithelial
cells [15]. LT induced increased levels of the second messenger cAMP and was linked to
changes in the host cellular response that favors the binding of ETEC to the epithelium [16].
In addition, cAMP activates PKA and, subsequently, the transcription of genes with cAMP
response element-binding protein (CREB) motifs in their promoter [17]. Moreover, a recent
study showed that LT promotes the expression of carcinoembryonic antigen-related cell
adhesion molecule 6 (CEACAM6) on the surface of gut epithelial cells, where they serve
in turn as a critical docking site for ETEC and its secreted enterotoxins [18]. Despite the
thorough dissection of the host response to ETEC infection on the transcriptional and
protein level, information on transcriptional dynamics in porcine-specific ETEC upon host
cell engagement is limited. Nevertheless, some studies have shown that host-derived
factors in the gastrointestinal tract might affect the expression, secretion, or function of
these virulence factors [19,20]. For instance, LT secretion by ETEC was promoted in the
presence of an ETEC-conditioned medium and epinephrine [19]. In E. coli, cAMP has
been shown to regulate the production of virulence factors [21,22]. Both glucose and salt
present in the gut lumen modulate the expression of enterotoxins in a cAMP receptor
protein (CRP)- and Histone-like Nucleoid Structuring (H-NS)-dependent manner [23,24].
Enterotoxin levels were upregulated by salt in an H-NS-dependent manner, while the effect
of glucose on the enterotoxin levels varied for each toxin due to the position of the CRP
response elements in their promoter region [23]. In the presence of cAMP, CRP represses
LT production, but triggers STa and STb expression [3,25]. Moreover, the previous study
suggested some ETEC strains were more sensitive to extracellular cAMP and can even use
exogenous cAMP [20,26,27].

This study aimed to evaluate changes in the production levels of enterotoxins, key
regulatory molecules, and secretion system-associated proteins in porcine ETEC wild type
strains in response to factors secreted by epithelial cells. To this end, ETEC strains were
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stimulated with apical culture medium of differentiated IPEC-J2 monolayers and changes
in the transcript levels of the gene encoding virulence factors and key regulators proteins
were evaluated by qPCR and confirmed on the protein level. These transcriptome analyses
suggest that ETEC can finely orchestrate their production of virulence factors in response
to host-derived epithelial factors, although the response differed between bacterial strains.
These results might be exploited in outlining novel strategies for vaccine development or
other interventions.

2. Results
2.1. Epithelial Factors Modulate Expression of Virulence Factors in ETEC Isolates Differing in
Their Enterotoxin Secretion

We previously reported that porcine ETEC strains have a different ability to produce
and secrete enterotoxins [12]. Among the tested porcine ETEC strains, both IMM07 and
IMM96 have a higher periplasmic production of LT as compared to the other strains. The
LT secretion levels of the IMM07 strain matched its periplasmic production levels, while the
IMM96 strain secreted only moderate LT levels even though it showed one of the highest LT
levels in the periplasm. In ETEC strains with a different ST secretion capacity, the IMM10
strain has a lower porcine ETEC strain-derived STa (pSTa) and STb secretion levels than our
reference strain, GIS26 [12]. Based on their differential ability to secrete the enterotoxins
LT, pSTa, and STb, the ETEC strains IMM07, IMM96, GIS26, and IMM10 were selected
to investigate the impact of factors secreted by intestinal epithelial cells on enterotoxin
secretion levels in detail.

To obtain factors secreted by intestinal epithelial cells in steady state conditions, the
small intestinal epithelial cell line IPEC-J2 was cultured as monolayers on transwell inserts,
as previously described [14]. Upon differentiation of the monolayers, the apical medium
was collected and used to determine if secreted epithelial factors might change the transcript
levels of enterotoxin genes in the selected ETEC strains. To examine the contribution of host
epithelial factors to the expression modulation of ETEC enterotoxins, we first quantified the
mRNA fold changes of LT and STs enterotoxins of ETEC isolates in the presence of epithelial
factors in IEC medium conditioned by IPEC-J2 cells by qPCR. As shown in Figure 1, factors
secreted by polarized epithelial cells induced the mRNA expression of LT in the IMM96
strain, while eltB mRNA expression was decreased five-fold in the IMM07 strain. With
regard to the heat-stable enterotoxins pSTa and STb, the transcription of the estA and
estB genes were differently affected in the GIS26 and IMM10 strains upon growth in the
IEC-conditioned medium, compared to the CAYE and Diff medium. While the transcript
levels of the estA and estB genes showed a three-fold increase in the GIS26 strain when
exposed to the IEC-conditioned medium, IMM10 showed a reduced transcription of these
genes (Figure 1). These results suggest that ETEC may be able to sense factors secreted by
epithelial cells to initiate enterotoxin secretion.

To investigate whether these changes in the mRNA expression were also present on
the protein level, enterotoxin secretion levels were assessed via ELISA or Western blotting,
as described [12]. The secretion of LT from the cytoplasma through the outer membrane is
a two-step process. First, LT is transported through the inner membrane into the periplasm.
Then, this periplasmic LT is transported through the outer membrane secretin GspD via
its association with the lipoprotein YghG and released into the extracellular environment.
Therefore, we not only assessed the levels of secreted LT, but also periplasmic LT levels.
As shown in Figure 2, epithelial factors decreased the periplasmic and secreted LT levels
in the IMM07 strain, while they increased those levels in the IMM96 strain. Remarkably,
the increase in the secreted LT levels of the IMM96 strain in response to epithelial factors
was less pronounced than the increase in the periplasmic levels, suggesting that LT is
poorly secreted into the extracellular milieu when ETEC are grown in media conditioned
by intestinal epithelial cells, whereas increased LT is expressed in the periplasm. In contrast
to LT, the secretion of pSTa and STb involves the translocation of precursor peptides
from the cytosol to the periplasmic space via the Sec machinery. Upon cleavage of the
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signal sequences, mature peptides are formed via the periplasmic disulfide oxidoreductase
DsbA. The mature peptides are finally secreted through the outer membrane via the TolC
channel [3]. As expected, the pSTa and STb secretion levels in the GIS26 strain were
increased in the presence of secreted epithelial factors compared to the control medium,
while the IMM10 strain decreased its pSTa and STb secretion in response to these factors.
Together, these results suggest that ETEC strains may differently regulate the production
and secretion of enterotoxins in response to host-derived epithelial factors.

The obtained results suggest that secreted epithelial factors can modulate mRNA
expression in ETEC strains. We previously showed that the LT secretion level by porcine
ETEC strains also correlated with the expression levels of genes encoding components of
the type 2 secretion system (T2SS) [12]. Moreover, previous studies demonstrated that
the physical contact of ETEC with epithelial cells is required for the effective delivery of
heat-labile toxin (LT) [28]. In a next effort, we evaluated the potential impact of the secreted
epithelial factors on the transcription of genes encoding T2SS components. The mRNA
expression of the yghG gene is remarkably induced in the IMM07 strain when exposed
to the IEC-conditioned medium, while yghG mRNA expression showed a decreased
transcription in the IMM96 strain in the IEC-conditioned medium compared to the controls
(Figure 3). Intriguingly, the transcription of the gspD gene showed a similar increase in the
presence of epithelial factors in both the IMM07 strain with a high LT secretion level and
the IMM96 strain with a low LT secretion level (Figure 3). In contrast to LT, the heat stable
enterotoxins are secreted by T1SS. The tolC gene was selected as it is a crucial component of
T1SS and central to the export of STs. In addition, the dsbA gene encoding the periplasmic
protein disulfide isomerase DsbA was originally identified on the chromosome of ETEC [29].
DsbA is required for intramolecular disulfide bonds in the assembly of mature STs before
their release into the external environment [30]. The strains GIS26 and IMM10 showed a
different mRNA expression of the tolC and dsbA genes in response to secreted epithelial
factors. tolC and dsbA gene expression levels were significantly upregulated in GIS26,
while IMM10 downregulated its gene expression of tolC and dsbA (Figure 3).
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Figure 1. Factors secreted by gut epithelial cells significantly altered transcript levels of enterotoxins
in ETEC strains. The mRNA expression levels of enterotoxins were assessed by qPCR in ETEC
strains. These strains were cultured in CAYE medium, IPEC-J2 differentiation medium (Diff), or
apical medium obtained from intestinal epithelial monolayers (IEC). The mRNA expression level
of the targeted genes was normalized to three reference genes and presented as the fold change to
CAYE medium. Data are presented as the mean ± SD. ** p < 0.01, *** p < 0.001.
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Figure 2. Porcine strains differ in their ability to secrete enterotoxins in response to secreted epithelial
factors. ETEC strains were grown in CAYE medium, IPEC-J2 differentiation medium (Diff), and
IEC-conditioned medium. Periplasmic LT production (A) and secretion levels (B) were quantified
by GM1-ELISA. (C) The pSTa secretion levels were quantified by an in-house competitive ELISA.
(D) The secreted STb levels expressed by ETEC strains were evaluated by Western blotting and
quantified by ImageJ. Data are presented as the mean ± SD. *** p < 0.001.
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For a successful infection of the host, it is crucial that the expression of virulence
factors is finely orchestrated. Early studies established the importance of cAMP, which is
required for the regulation of enterotoxin production in ETEC via binding to the CRP [25].
As shown in Figure 3, the IMM07 strain increased crp mRNA expression in the presence
of epithelial factors, whereas a significant reduction was observed in the IMM96 strain.
Similarly, epithelial factors promoted crp transcript levels in the GIS26 strain, while the
IMM10 strain reduced the mRNA expression of crp in the presence of epithelial factors.
These data are consistent with earlier findings showing that the secretion of LT is strictly
dependent on the presence of CRP [25]. Collectively, these findings suggest that ETEC
responds to the presence of factors secreted by epithelial cells by regulating the expression
of important virulence genes in a strain-specific way.

2.2. Heat-Treatment of Epithelial Factors Resulted in Opposite Transcriptional Levels of Virulence
Factors in ETEC

The results presented above show that ETEC strains regulate the transcription of their
virulence-associated genes in response to secreted host epithelial factors. To investigate
if these factors are sensitive to heat, we examined whether the heat treatment of IEC-
conditioned medium affected the production of enterotoxins by ETEC. As shown in Figure 4,
heat treatment did not impact the mRNA fold change of the estA and eltB gene (Figure 4). In
contrast, estB gene transcription was altered when the IEC-conditioned medium was heat
treated. Whereas estB transcripts in the GIS26 strain were reduced, estB gene expression
in the IMM10 strains was triggered upon incubation in a heat-treated IEC-conditioned
medium (Figure 4). Concerning the transcriptional profiles of the related secretion system
components, mRNA expression of the T1SS components tolC and dsbA were also modulated
in a heat-treated IEC-conditioned medium. Both tolC and dsbA mRNA expression are
inhibited in the GIS26 strain, while transcription levels of tolC and dsbA were increased in
the IMM10 strain as compared to the IEC-conditioned medium (Figure 4). Likewise, heat
treatment of the IEC-conditioned medium also differently changed the mRNA expression
of the T2SS component yghG in the IMM07 and IMM96 strains (Figure 4). However, the
heat treatment had no effect on the transcription of the gspD gene in the tested strains
(Figure 4). Heat treatment also inhibited transcription of the crp gene in IMM07 and GIS26.
In contrast, an increased crp gene expression was seen in IMM96 and IMM10 incubated
in the heat-treated IEC-conditioned medium (Figure 4). The results above indicate that
secreted epithelial factors involved in the expression of the T1SS- and T2SS-related genes
tolC, dsbA, and yghG, as well as the crp gene, were heat sensitive, although this was not the
case for the T2SS-related gene gspD.
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the key transcriptional regulator CRP, were assessed by qPCR in ETEC strains grown in IEC- and 
heat-treated IEC-conditioned medium. The mRNA expression level was normalized to three 
reference genes. Data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. 

The results above show that in contrast to estA and eltB, only the estB gene 
transcription was changed when the ETEC strains were incubated in heat-treated IEC-
conditioned medium. In the next step, these changes were evaluated on the protein level. 
Consistent with the estA and eltB mRNA fold changes, pSTa secretion and periplasmic, as 
well as secreted LT levels in the IMM07 and IMM96 strains were not significantly changed 
after incubation in heat-treated IEC-conditioned medium (Figure 5). However, the heat 
treatment largely affected the STb secretion levels in both the GIS26 and IMM10 strains, 
as expected based on the transcript levels (Figure 5).  
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Figure 4. The mRNA expression levels of enterotoxin genes, crucial components of T1SS, T2SS,
and the key transcriptional regulator CRP, were assessed by qPCR in ETEC strains grown in IEC-
and heat-treated IEC-conditioned medium. The mRNA expression level was normalized to three
reference genes. Data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

The results above show that in contrast to estA and eltB, only the estB gene transcription
was changed when the ETEC strains were incubated in heat-treated IEC-conditioned
medium. In the next step, these changes were evaluated on the protein level. Consistent
with the estA and eltB mRNA fold changes, pSTa secretion and periplasmic, as well as
secreted LT levels in the IMM07 and IMM96 strains were not significantly changed after
incubation in heat-treated IEC-conditioned medium (Figure 5). However, the heat treatment
largely affected the STb secretion levels in both the GIS26 and IMM10 strains, as expected
based on the transcript levels (Figure 5).
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3. Discussion

Despite continuous efforts, to date, no licensed vaccines to human ETEC are available.
In contrast, an oral live bivalent vaccine, Coliprotec® F4/F18, has been marketed to protect
newly weaned piglets against ETEC infections [31]. However, these live vaccines have a
limited efficacy and present a biosafety risk. Moreover, the vaccine-induced protective
immune responses need time to be induced. This presents a window of opportunity
(between the moment of weaning and the presence of sufficient protective immunity) to
intervene with diet components to modulate the production of ETEC virulence factors.
This, however, requires a deeper understanding of ETEC pathogenesis, in particular, its
interactions with host cells on a molecular level. Intestinal epithelial cells (IEC) can sense
ETEC and activate the intestinal immune system through the secretion of IL-6, IL-8, and
IL-17C [14]. This proinflammatory response was mediated by the recognition of ETEC-
derived flagellin by Toll-like receptor (TLR) 5 on IEC [14,32]. Recently, the heat-stable
enterotoxins pSTa and STb activated early immune responses, including an increased
secretion of IL-17A. This hinted at the importance of T-helper 17 (Th17) cells in clearing an
ETEC infection [33,34]. It has been shown that ETEC can use LT to promote its adhesion to
the small intestinal epithelium by stimulating the production of cellular carcinoembryonic
antigen-related cell adhesion molecules (CEACAMs) on the surface of intestinal epithelial
cells [16,18]. Furthermore, while LT induced the expression of MUC2 by IEC resulting
in an enhanced protective barrier, the serine protease EatA countered this defense by
degrading MUC2 to facilitate ETEC pathogen–host interactions [35,36]. While the host
responses mediated by ETEC enterotoxins have been thoroughly investigated, the impact
of host-derived epithelial factors on the production of ETEC virulence factors has yet to be
investigated [8].

Seminal studies on the impact of host factors on the production of virulence factors
by ETEC have shown that bile salts upregulated the expression of heat-stable and heat-
labile enterotoxins in human-specific ETEC [37]. In addition, environmental signals have
been shown to regulate virulence-associated genes in ETEC strains [20]. The pH of the
gastrointestinal tract also affected LT secretion: LT secretion was inhibited at a low pH
(pH 5) by CRP, while LT secretion was promoted when ETEC was exposed to a high pH
(pH 9) [24,25]. Moreover, hypoxia in the intestinal tract seemed to reduce the eltAB tran-
script levels via the FNR transcription factor [20]. The use of the E. coli-conditioned medium
suggested that the autoinducer AI-2 might be correlated with LT and pSTa expression [38].
Given the above, we hypothesized that porcine ETEC may orchestrate the expression of
enterotoxins in response to secreted host epithelial factors prior to the engagement of the
gut epithelium. In previous studies, a preconditioned medium from E. coli was added to
mimic the environment of gastrointestinal tract microbiota and to determine whether ETEC
virulence expression was affected by signals from the host in vivo [16,37]. However, in
the current study, we used a well-established in vitro model of the porcine small intestinal
epithelium, i.e., differentiated IPEC-J2 monolayers [39]. To determine if molecules secreted
by differentiated IPEC-J2 monolayers may be responsible for the transcriptional modulation
of enterotoxin genes in ETEC, several ETEC strains were cultured in an IEC-conditioned
medium. As a control, ETEC strains were cultured in an IPEC-J2 differentiation medium
and bacterial culture medium. As expected, enterotoxin gene expression was not signifi-
cantly changed in the ETEC cultured in the differentiated medium as compared to bacterial
culture medium. Interestingly, the presence of epithelial factors altered the transcriptional
modulation of te ETEC strains, thus suggesting that ETEC sense host-derived epithelial
factors to modulate enterotoxin production. However, the impact of epithelial factors on
enterotoxin production seems to be strain-specific, as in porcine, ETECs strains with a dif-
ferent ability to secrete LT (IMM07 vs. IMM96) [12] epithelial factors had an opposing effect
on LT secretion: promoting LT secretion in the IMM96 strain and inhibiting LT secretion in
the IMM07 strain. Likewise, factors secreted by gut epithelial cells had an opposing effect
on ST secretion in strains with a different ability to secrete the heat-stable enterotoxins pSTa
and STb (GIS26 vs. IMM10) [12]. While epithelial factors promoted ST secretion by GIS26,
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they reduced ST secretion in the IMM10 strain. The comparison of transcriptional response
of two human ETEC isolates, E24377A and H10407, suggested inter-strain differences in the
transcription of essential virulence genes in response to chemical signals [37,40]. Similarly,
enterotoxin secretion by porcine ETEC in our study was affected by host secreted epithelial
factors, although inter-strain differences were observed. Collectively, these strain-specific
responses further highlight the complexity of ETEC pathogenesis and indicate that ETEC
sense molecules secreted by gut epithelial cells to regulate their enterotoxin production.

ETEC molecular pathogenesis can be viewed as the sum of events that enable these
bacteria to engage epithelial cells and ultimately deliver their LT and/or ST toxin pay-
loads [18]. This process requires a coordinated division of labor between highly conserved
core elements and the virulence factors [41]. Examples of these conserved core elements
are the type 1 secretion system (T1SS), which controls the secretion of mature STs into the
extracellular environment, and the T2SS, which is involved in the transport of LT from
the periplasm to the external environment. T1SS requires the efflux protein TolC and
the disulfide isomerase DsbA [30], while in T2SS the outer membrane secretin GspD is
responsible for releasing LT into the extracellular environment. YghG promotes LT deliv-
ery to intestinal epithelial cells via its association with GspD. Given our observation that
secreted epithelial factors modulate enterotoxin secretion by ETEC and our previous data
that the ability of ETEC strains to secrete enterotoxins depends on the expression levels of
T1SS and T2SS components, we hypothesized that these factors might also affect the gene
expression of T1SS and T2SS components that favor pathogen–host interactions [12]. Here,
we demonstrated that culturing ETEC strains in an IEC-conditioned medium altered the
mRNA expression of T1SS and T2SS components. In the presence of epithelial factors, the
transcript levels of the T1SS components TolC and DsbA mirrored the ST secretion levels in
strains GIS26 and IMM10. This seems to indicate that the expression of ST and T1SS are
co-regulated. In contrast, the transcript levels of the T2SS components GspD and YghG do
not match with the LT secretion levels in response to secreted epithelial factors in the tested
ETEC strains. This suggests that the delivery of LT may involve mechanisms on top of the
T2SS that coordinate the release of holotoxin from the periplasm of ETEC.

The CRP–cAMP axis has been shown to control secretion systems and to orchestrate
regulating cascades involved in enterotoxin gene expression in response to growth con-
ditions [25,40]. Given that cAMP is an important secondary messenger in regulating LT
secretion by ETEC, it is intriguing to speculate that CRP may also provide a competitive
advantage by modulating ST secretion by ETEC [27,42]. In contrast to a negative associa-
tion between LT and CRP transcripts, our study revealed that the upregulation of CRP is
linked to the increased transcripts of both ST encoding genes and T1SS components [25,27].
Interestingly, a mild heat treatment abrogated the effect of the IEC-conditioned medium
on the transcription of some of the investigated genes in ETEC. Heat treatment of the
IEC-conditioned medium did not reduce the effect of the secreted epithelial factors on the
secretion of LT and pSTa. However, the effect of the epithelial factors on STb secretion
was abrogated. This might suggest that the secreted epithelial factor involved in eltB and
estA gene transcription is heat stable, while the epithelial factor modulating the estB gene
transcription is not. Concerning the T1SS (TolC, DsbA) and T2SS (YghG) components, heat
treatment abrogated the effect of the IEC-conditioned medium on their transcription, while
gspD transcription was unaffected. Likewise, the effect of the IEC-conditioned medium
on crp transcription was negated by heat treatment. Collectively, the heat treatment of
the IEC-conditioned medium was sufficient to negate the effect of epithelial factors on the
transcription of enterotoxins, suggesting that the epithelial factors may be heat sensitive
proteins or other small molecules.

In this study, host-derived gut epithelial factors were present in the IEC-conditioned
medium. However, further research is needed to identify the secreted gut epithelial factors
that are associated with the expression of enterotoxins. In vitro observations suggested a
potential role for cAMP in the promotion of ETEC adherence to host cells and in modulation
of bacterial adhesion genes [16,21]. Moreover, ETEC strains possess the ability to utilize
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exogenous cAMP [20,26,27]. Hence, it is likely that the IEC-conditioned medium contained
cAMP produced by differentiated IPEC-J2 cells, which is then used by ETEC to regulate its
gene expression via CRP. Interestingly, some ETEC strains are more sensitive to extracellular
cAMP, which might explain the inter-strain differences we observed.

In conclusion, it appears that factors secreted by intestinal epithelial cells under steady
state conditions affect the transcription of genes encoding enterotoxins in porcine ETEC
strains. Although further research is needed to identify these factors, these results offer
a novel model for bacteria–intestine interactions in which ETEC sense secreted epithelial
factors to orchestrate enterotoxin secretion.

4. Materials and Methods
4.1. Preparation of Intestinal Epithelial Cell-Conditioned Medium

The porcine jejunal cell line IPEC-J2 (intestinal porcine epithelial cells from jejunum)
was originally isolated from the jejunum of a neonatal piglet. The culture medium con-
sisted of 1:1 Dulbecco’s Modified Eagle Medium (DMEM)/Ham’s F-12 mixture (Invitrogen,
Geel, Belgium) supplemented with 5% fetal bovine serum (Gibco, Belgium), 1% penicillin–
streptomycin (Sigma–Aldrich, Hoeilaart, Belgium), 1% insulin–transferrin–selenium (In-
vitrogen), 2% L-glutamine (Invitrogen), and 5 ng/mL human epidermal growth factor
(Invitrogen). IPEC-J2 cells were maintained at 37 ◦C, 5% CO2, and 90% humidity, and
passaged when they reached 90% confluence. For the collection of intestinal epithelial
cell-conditioned medium (IEC-conditioned medium), IPEC-J2 cells between passages 55
and 62 were seeded onto collagen-coated 6-well transwell inserts at 5 × 105 cells per
inserts (pore size 0.4 µm; 4.67 cm2; Corning, Amsterdam, The Netherlands) and grown
as monolayers until confluency, as previously described [14]. Upon confluency, IPEC-J2
monolayers were cultured in differentiation medium (IPEC-J2 culture medium without
FCS, Diff medium) for 48 h before medium was replaced with fresh one every other day
until full differentiation. To monitor differentiation, the trans-epithelial electrical resis-
tance (TEER) was measured using a Millicell Electrical resistance system (Millipore-Merck,
Hoeilaart, Belgium). Upon reaching a TEER value of 3000 Ω·cm2, the IPEC-J2 monolayers
were washed twice with phosphate-buffered saline (PBS) and cultured with differentiation
medium without antibiotics. At a TEER value of at least 5000 Ω·cm2, IPEC-J2 monolayers
were considered as differentiated and used to collect IEC-conditioned medium from the
apical side of the transwell [14].

4.2. Bacterial Strains and Growth Conditions

The bacterial strains used in this study are listed in Table 1. The selection of the ETEC
strains in this study were based on the information previously published [12]. Briefly, the
IMM07 and IMM96 strains differ in their ability to secrete the LT enterotoxin, although they
have the same production ability. The GIS26 and IMM10 strains were included to evaluate
pSTa and STb secretion levels. GIS26 has higher pSTa and STb secretion levels than IMM10.

Table 1. The bacterial strains used in this study.

Strain Name Enterotoxins Infection

GIS26 LT+pSTa+STb+ PW
IMM07 LT+pSTa−STb+ PW
IMM10 LT+pSTa+STb+ N
IMM96 LT+pSTa−STb+ PW

PW: postweaning, N: neonatal.

Strains were grown on brain heart infusion (BHI) agar plates from −80 ◦C glycerol
stocks and grown for 18–24 h at 37 ◦C in Casamino Acids–Yeast Extract (CAYE) medium
with 0.25% glucose (v/v) in a rotary shaker, set at 180 rpm. The amount of overnight
fresh bacteria was determined by measuring the optical density (OD) at 650 nm by spec-
trophotometry (Cytiva, Hoegaarden, Belgium), and adjusted to the same value with CAYE
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medium. The 1:100 diluted fresh bacteria were grown for 18–24 h at 37 ◦C in CAYE, IPEC-J2
differentiation medium (without antibiotics), and IEC-conditioned medium, respectively. In
order to investigate which factors secreted by intestinal epithelial cells might be involved in
the transcriptional modulation of ETEC, the IEC-conditioned medium was treated at 56 ◦C
for 30 min to inactivate potential factors. ETEC was added to the heat-treated medium
at the same concentration as above and the cells were incubated for 18–24 h at 37 ◦C in a
rotary shaker, set at 180 rpm.

4.3. Isolation of Total Bacterial RNA

The bacteria were harvested and total RNA was isolated using the TRIzol® Max™
Bacterial RNA Isolation kit (Thermo Fisher, Waltham, MA, USA). Prior to their lysis in
TRIzol Reagent, bacteria were treated with Max Bacterial Enhancement Reagent following
the manufacturer’s guidelines. To remove DNA, total bacterial RNA was treated with RQ1
RNase-Free DNase (Promega, Madison, WI, USA) and purified with the RNeasy Mini Kit
(Qiagen Benelux, Venlo, The Netherlands), according to the kit instructions. The RNA
concentration and purity were determined with a DS-11 spectrophotometer (DeNovix,
Wilmington, DE, USA). Only the samples with OD260/OD280 ratios between 1.8 and 2.1,
and OD260/OD230 ratios between 1.7 and 2.0 were reverse transcribed into cDNA using
SuperscriptTM III Reverse Transcriptase (Thermo Fisher) and random primers (Thermo
Fisher). Briefly, 1 µg of total RNA was converted to cDNA, diluted 8× in nuclease-free
water and used to analyze the transcript levels of selected genes by qPCR.

4.4. qPCR

To assess transcriptional changes in ETEC induced by secreted epithelial factors, sev-
eral genes were evaluated by RT-qPCR. Enterotoxin-encoding genes (eltB, estA, and estB),
T1SS-associated genes (dsbA and tolC), T2SS-associated genes (gspD and yghG), and a key
transcriptional regulator (crp) were selected. Prior to qPCR, gene-specific primers and
reference genes were optimized. Specific primers were designed using BLAST primer
design and confirmed by melting curve analysis as previously published [12]. The amplifi-
cation efficiency of all the reactions ranged from 95% to 105% using serially diluted cDNA.
Expression stability of 8 candidate reference genes was analyzed by geNorm software
in samples of native CAYE medium, Diff medium, and IEC-conditioned medium, and
3 reference genes, cysG, ropA, and hcaT, with a stable expression were selected as reference
genes to perform normalization. Relative gene expression was quantified on a StepOnePlus
real-time PCR system (Thermo Fisher) with specific primers in PowerUp SYBR Green
PCR Master Mix (Thermo Fisher). Gene-specific transcripts were normalized to the three
reference genes using the 2−∆∆Ct method. All reactions were performed in triplicate.

4.5. Detection of Enterotoxins Secreted by ETEC Strains Grown in Different Media

To examine secretion of LT, pSTa, and STb by porcine-specific ETEC strains in CAYE,
Diff, IEC-conditioned medium, and heat-treated IEC-conditioned medium, bacterial culture
supernatants and periplasmic extracts were collected. LT, pSTa, and STb levels were
assessed by GM1-ELISA, a competitive ELISA, and Western blotting, respectively, as
described [12].

4.6. Data Analysis

The experiments were performed in triplicate on at least three separate occasions. The
concentration of secreted LT and pSTa were determined with DeltaSoft JV software (Version
2.1.2, BioMetallics, Princeton Junction, NJ, USA). Quantification of STb band intensities was
performed using ImageJ. Statistical analysis was performed using SPSS 26. The transcribed
mRNA levels were analyzed using qBaseplus software (Biogazelle, Ghent, Belgium) and
analyzed by a non-parametric Kruskal–Wallis analysis, followed by a Dunn’s post hoc test.
A p-value < 0.05 was considered statistically significant.
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