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Abstract: A new chemosensor, namely N-(2-morpholinoethyl)acetamide-4-morpholine-1,8-naphthimide
(MMN), was designed and synthesized through an amidation reaction. MMN was fabricated as a
multifunctional fluorescent probe for monitoring pH and isoxaflutole. MMN exhibited excellent stability
in MeCN/H2O (v/v, 9/1), with an obvious “off–on” fluorescence response toward pH changes due
to intramolecular charge transfer (ICT), where the linear response ranges of MMN in the weakly
acidic system were from 4.2 to 5.0 and from 5.0 to 6.0 with apparent pKa = 4.62 ± 0.02 and 5.43 ± 0.02.
Based on morpholine as the lysosome targetable unit, MMN could selectively locate lysosomes in
live cells. MMN also successfully detected the presence of H+ in test papers. Finally, MMN could
specifically recognize isoxaflutole at a detection limit of 0.88 µM. A possible sensing mechanism was
identified based on density function theory calculations. These results indicate that MMN could be
a superior potential chemosensor for detecting pH and isoxaflutole selectively and sensitively and
could be used in real sample detection.

Keywords: fluorescence; pH sensing; lysosome target probe; isoxaflutole; ICT

1. Introduction

pH is essential to human life and plays vital roles in some physiological and chemical
processes, including enzymatic activity, cell function, environmental monitoring and human
tissue fluid [1]. Intracellular pH homeostasis is necessary for the regulation of various basic
cellular processes to maintain normal cell function [2–4]. Lysosomes, as essential acidic
subcellular organelles (pH 4.5–5.5) in eukaryotic cells, participate in intracellular digestion
and cellular differentiation [5,6]. Monitoring lysosome pH change is very important in
the development of medical diagnoses and treatment methods. Hence, exploring a more
effective strategy for the accurate detection of pH is crucial.

In the past few years, various techniques have been used for pH detection such
as the colorimetric method [7], electrochemistry procedures [8], ion-sensitive field-effect
transistors [9] and fluorescence techniques [10]. However, there are still shortcomings
such as photobleaching, high background emission, alkalization, complicated sample
preparation, the need for sophisticated instruments, and high time-consumption and costs.
Despite these limitations, fluorescent techniques have the advantages of being convenient,
efficient, sensitive and selective and have the potential to be used for monitoring pH.

Pesticides refer to chemical agents used in agriculture to control pests and to regulate
plant growth. Pesticides are widely used in agriculture, forestry and animal husbandry; in
environmental and family hygiene, pest control and epidemic prevention; and in industrial
products to prevent mildew and moths [11]. Isoxaflutole is a highly effective preseedling
herbicide that is used in maize, sugarcane and other dry crop fields [12–14]. However,
the long-term application of pesticides across wide areas not only bring potential health
risks to humans but also cause environmental pollution [15–17]. The negative impact of
pesticide residue has thus aroused people’s attention.
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Current reports on the detection methods for isoxaflutole residue mainly involve
liquid chromatography and liquid chromatography-tandem mass spectrometry [18,19].
Even though the chromatography method has the advantages of being highly sensitive,
having a superior separation ability and having excellent selectivity, this method has a
long pretreatment time and can have interferences in the detection process. It can also be
costly and requires the presence of highly selective detectors for detecting pesticides. A
more accurate, fast, efficient and convenient method in the detection of pesticides is needed.
Chemosensors such as fluorescent probes have the potential to detect isoxaflutole with the
advantages of low costs, easy operation, fast signal response and signal visualization.

A new lysosome-targetable pH fluorescent probe, namely N-(2-morpholinoethyl)acetamide-
4-morpholine-1,8-naphthimide (MMN), was synthesized and characterized. MMN was synthe-
sized by introducing the morpholine unit [20–22] as a lysosomal targeting group to naphthalim-
ide, which was highly sensitive to pH changes due to intramolecular charge transfer (ICT) [23].
The fluorescence intensity of MMN increased linearly to 2.2 times in the apparent pH
range from 4.2 to 6.0, and the apparent pKa was 4.62 ± 0.02 and 5.43 ± 0.02. The proposed
sensing mechanism was confirmed by 1H NMR. MMN selectively located lysosomes in
live cells and successfully detected H+ in test papers. Additionally, MMN could specifically
recognize isoxaflutole at a detection limit of 0.88 µM.

2. Results and Discussion
2.1. Design and Synthesis of MMN

Naphthalimide, as a representative of fluorophore, shows a high fluorescence quantum
yield and high thermal stability [24,25]. Morpholine has been recognized for its special
lysosomal targeting function [26]. Based on a rational design, MMN was synthesized
through an amidation reaction, as illustrated in Scheme 1. The fluorescent probe was
characterized by FTIR, 1H NMR, 13C NMR and HRMS spectroscopy. MMN exhibited an
obvious “off–on” fluorescence response toward pH changes and detected isoxaflutole.
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Scheme 1. Synthetic route of MMN.

2.2. pH-Dependent Sensing Performance

The solvent effect of MMN was studied through fluorescence measurements in dif-
ferent solvents (Figure S1). Based on the solvent fluorescence response and a low toxicity,
the spectral properties of MMN were investigated in CH3CN/H2O (v/v, 9/1) where the
apparent pH was 6.0. The fluorescence spectra of MMN exhibited a striking dependence
on pH (Figure 1a). MMN showed a weak fluorescence signal at 529 nm in the strongly
acidic apparent pH region (pH < 4.2). When the alkalinity of the solution increase to weakly
alkaline (pH > 6.0), the fluorescence intensity increased significantly, with a slow blueshift
by 6 nm.
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To further evaluate the dependence of MMN on pH, the UV–Vis spectra of MMN
at different pH values were investigated. As the pH values of the solution increased, a
blueshift of the UV absorption band was observed (Figure 1b). MMN displayed a superior
“off–on” switching behavior from apparent pH 2 to 10 and demonstrated an obvious change
in the electron density of naphthalene rings, which was consistent with the fluorescent
emission spectra analyses. The fluorescence spectra of MMN were investigated to examine
its anti-interference in the presence of other ions at a representative pH value (pH = 4.2).
As shown in Figure S2, MMN possesses the potential to accurately detect pH changes with
negligible interference.

2.3. pKa Value, Reversibility and Photostability

As shown in Figure 2a, the fluorescence intensity of MMN expressed an excellent
partitioned response to pH, i.e., the partitioned linear ranges of apparent pH were from
4.2 to 5.0 with a correlation coefficient (R2) of 0.99 and from 5.0 to 6.0 with an R2 of 0.99. The
fluorescence intensity of MMN with different apparent pH values was used to calculate
the acidity-constant apparent pKa values of MMN based on the Henderson–Hasselbalch
equation in MeCN/H2O (v/v, 9/1):

pKa = pH − log
(

Imax − I
I − Imin

)
where I is the observed fluorescence intensity at a fixed wavelength, and Imax and Imin are
the corresponding maximum and minimum intensities, respectively [27]. These results
indicated that MMN exhibited a high sensitivity to weakly acidic pH with apparent pKa
values of 4.62 ± 0.02 and 5.43 ± 0.02. The reversibility behavior of the prepared MMN
probe was investigated by tracking the changes in emission intensity at 529 nm at apparent
pH 4.2 and pH 6.0 (Figure 2b). The changes in colors (inset of Figure 2b) were recorded
at apparent pH 4.2 and 6. There was no significant change in the reversibility up to four
cycles. Thus, this proved that MMN could be used as a reversible pH monitor due to its
excellent reversibility. In Figure 2c, the response of the proposed MMN to H+ was in real
time, and the fluorescence intensity remained nearly unchanged over 130 min when tested
at apparent pH 4.2 and 6.0. The results indicated that MMN could be reliably applied for
real-time monitoring of pH in practical applications.
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Figure 2. (a) The linear responses of fluorescence intensity. (b) Reversibility of the fluorescence
intensity of MMN between apparent pH 4.2 and 6.0. Inset: The color changes of MMN solution
under UV light of 365 nm. (c) Changes in the fluorescence intensities of MMN with times among
nonacidic and acid conditions.

2.4. Recognition Mechanism of MMN to H+

To examine the proposed interactive mechanism of MMN on the pH value, 1H NMR
spectra of MMN (D2O/DMSO-d6 (v/v, 1:1)) were measured by adding TFA (H+) or NaOH
(OH−) to solutions. As shown in Figure 3a, upon the addition of H+ to MMN, the signal
at δ 8.10–8.13 ppm was downfield-shifted to 8.45–8.47 ppm owing to a decrease in the
electron density around N-H of amide induced by H+. The signal of the aromatic protons
(Ar-H) was not affected except for a later peak fraction. However, the 1H NMR spectrum
of MMN + OH− was consistent with that of MMN. Therefore, when H+ was added, the
change in 1H NMR spectrum contributed to a decrease in electron density around N-H
of amide and the active hydrogen protons NH produced a charge transfer process, where
N atom was positively charged and C=N was formed due to tautomerism. When OH−

was added, the intramolecular charge transfer (ICT) effect was weakened, and a blueshift
and enhancement of the fluorescent emission band were observed [23]. The mechanism of
MMN for H+ is proposed in Figure 3b.
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2.5. Colocalization Imaging Experiment and Test Stri

The colocalization experiment was carried out using a commercial lysosome-specific
dye, Lyso-Tracker Red, to confirm the lysosome-targeting ability of MMN. As shown
in Figure 4, MMN displayed blue punctuated fluorescence (Figure 4b), which merged
well with the red fluorescence produced by Lyso-Tracker Red (Figure 4d) and had a high
Pearson’s colocalization coefficient of 0.67 with an overlap coefficient of 0.99 (Figure 4e).
Simultaneously, the intensity profile within the ROI in the blue and red channels displayed
a trend of synchronization (Figure 4f). The results demonstrate that MMN could selectively
locate lysosomes in live cells and has the potential to detect pH in lysosomal cells. This is
evident in the test paper experiments shown in Figure 5. When the apparent pH decreased
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from 6.0 to 4.2, the fluorescent colors of the test papers changed from light green to ivory
by degrees. The dye strip results show that MMN can be used for rapid and portable pH
monitoring. In addition, the performance of MMN was compared with other previously
reported pH probes (Table 1) [28–30].
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Figure 5. The photographs of MMN on test papers with different apparent pH solutions under a UV
lamp (365 nm).

Table 1. Comparison with other reported pH probes based on naphthalimide.

Type Working Media Sensitive Range
(pH)

Sensing
Mechanism Application References

Off–on MeCN/H2O (9/1) 4.2–6.0 ICT Paper strip/Targetable
Imaging/pesticide detection MMN

On–off PBS buffer 5.0–7.2 PET Cell imaging [28]
Off–on–off H2O 2.0–10 PET - [29]

Colorimetric probe DMSO 4.5–8.0 FRET Cell imaging [30]

2.6. Detection of Isoxaflutole

To further investigate the detection properties of MMN, MMN was placed in a CH3CN
solution along with different pesticides, including triketones, fluorine, cyanide and isox-
azole. In the fluorescence spectra (Figure 6a), the addition of isoxaflutole to the solution
of MMN induced obvious fluorescence quenching, while the other pesticides exerted a
negligible influence under the same conditions. Similarly, the MMN solution could be
clearly observed only when isoxaflutole was added and the fluorescence changed from
strongly green to quenched (inset in Figure 6a). When isoxaflutole was added to the probe
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solution, the absorption spectrum was not affected at 400 nm and a new strong absorption
band appeared, centered at 293 nm. (Figure S3). The results indicate that MMN could be
used to distinguish isoxaflutole from these other pesticides. To further illustrate the specific
detection of isoxaflutole by MMN, the fluorescence spectra of MMN were investigated
when other pesticides existed in the background. As shown in Figure 6b, no noticeable flu-
orescence interference from other pesticides was observed, revealing that MMN possesses
high selectivity as a disturbance-free isoxaflutole fluorescent probe.
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Figure 6. (a) Fluorescence spectra changes of the MMN solution (10 µM) after adding different
pesticides (50 µM). Inset: color changes of MMN solution before and after adding pesticides under
UV light of 365 nm. (b) Competition selectivity of MMN (10 µM) toward isoxaflutole (50 µM) in the
presence of other competition pesticides (100 µM).

For a sensitivity analysis, a fluorescence titration study of MMN was conducted in
the presence of various concentrations of isoxaflutole. The intensity of fluorescence at
529 nm decreased gradually with the addition of an increasing amount of isoxaflutole
(Figure 7a). The emission intensity stabilized after the amount of added isoxaflutole ion
reached 5 equiv. and showed a linear relationship (R2 = 0.98 or 0.99) with the concentration
of isoxaflutole in the ranges of 10–27 or 28–50 µM (inset in Figure 7a). Moreover, based
on the equation LOD = 3σ/k, the LOD of MMN for isoxaflutole was determined to be
0.88 µM, where σ is the standard deviation of the response at the lowest concentrations
and k represents the slope of the calibration. The results indicate that MMN could be
used to quantitatively determine isoxaflutole with a low detection limit. The binding
constant of MMN with isoxaflutole was calculated according to the fluorescence intensity
data using the modified Stern–Volmer equation: I0/(I0 − I) = 1/A + 1/K·1/[Q] [31],
where I0 and I are the maximum luminescent intensities of MMN before and after adding
isoxaflutole, K is the binding constant (M−1) and the unit measurement [A] represents molar
concentration. The binding constant (K) was calculated as 3.7 × 105 M−1 (Figure 7b), which
was compared with other previously reported fluorescent probes (Table S1). Considering
that response time is a crucial factor for photostability, the time-dependent curve was
studied, as shown in Figure S4. The results demonstrate that the fluorescence signal of
free MMN remained stable while MMN showed immediate and distinct fluorescence
quenching; the fluorescence intensity reached the minimum within 30 s and remained
stable in the following 90 min, indicating a high reactivity of MMN with isoxaflutole.
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A Job’s plot analysis was carried out to determine the stoichiometric ratios of MMN
to isoxaflutole,. The emission intensity reached the maximum when the molar fraction of
isoxaflutole was 0.5, which indicates that MMN and isoxaflutole act in a stoichiometric
ratio of 1:1 (Figure S5). The possible mechanism of MMN for detecting pesticides was
investigated by density functional theory (DFT) calculations exhibited via the electron
density or energy level between isoxaflutole and MMN. As shown in Figure 8, several
representative pesticide molecules for DFT were selected as examples for investigation.
It was found that the LUMO energy levels of isoxaflutole and mesotrione were lower
than those of other pesticides (glyphosate, oxyfluorfen, pyrazoxyfen and cypermethrin),
indicating that the electron affinities of isoxaflutole with the -CF3 electron-withdrawing
group and mesotrione with the -NO2 electron-withdrawing group were relatively higher
than those of other pesticides. Meanwhile, their LUMO energy levels were between the
HOMO and LUMO energy levels of MMN, which could cause the transition of electrons
from the LUMO orbital of MMN to the LUMO orbitals of isoxaflutole and mesotrione in
the excited state [32–37]. The transition of electrons from the LUMO orbital of MMN in
the excited state to the LUMO of isoxaflutole prevented the electrons from returning to
the HOMO orbital of MMN, leading to the phenomenon of fluorescence quenching in the
recognition of isoxaflutole. The electron-withdrawing group in isoxaflutole may play a
vital role in quenching effects due to the photoinduced electron transfer from MMN to
electron-deficient isoxaflutole. Therefore, DFT illuminates the possible mechanism of how
MMN detects isoxaflutole.
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3. Experimental Section
3.1. Materials and Methods

All reagents used in the experiment, including raw materials, solvents and pesti-
cides, were purchased from commercial suppliers and used without purification. A Bruker
ALPHA-T spectrometer (KBr, Bruker, Ettlingen, Germany) was used to record FTIR spec-
tra. The 1H NMR and 13C NMR spectra of the samples were obtained using a Bruker
AVANCE 400 MHz system (Bruker, Germany). High-resolution mass spectrometry (HRMS)
was performed on an FTMS Ultra Apex MS spectrometer (Bruker Daltonics Inc., Billerica,
MA, USA). UV–Vis and fluorescence spectra were measured on a UV-2550 ultraviolet spec-
trophotometer (Shimadzu, Kyoto, Japan) and a PerkinElmer LS55 fluorescence spectrometer
(PerkinElmer, Buckinghamshire, UK), respectively. All pH values were measured with a
PHS-3C pH meter (Inesa, Shanghai, China). Cell images were obtained on a LEICATCSSP2
confocal laser scanning microscope (Leica, Wetzlar, Germany).

3.2. Synthesis
3.2.1. Synthesis of 4-Morpholine-1,8-naphthalic Anhydride (1)

Compound 1 was synthesized based on the published literature [38]. 4-Bromo-1,8-
naphthalic anhydride (5.54 g, 20.0 mmol) was added to 2-methoxyethanol (25 mL) in a
three-necked flask and stirred at 25 ◦C until it dissolved. Then, 1.92 mL (22.0 mmol) of
morpholine was dropped into the reaction system and the temperature was increased to
125 ◦C, after which the system was refluxed for 5 h. After cooling to room temperature, the
insoluble orange needle-like precipitate was separated out. The residue was recrystallized
from EtOH to obtain the final yellow needles (1). Yield: 90%. m.p.: 227.7–228.5 ◦C. All
spectra of the structural characterization of compound 1 are presented in the electronic
Supplementary Materials (Figures S6–S8). FT-IR (KBr) cm−1: 3076, 2954, 2852 (v C-H), 1762,
1724 (v C=O). 1H NMR (CDCl3, TMS, 400 MHz, ppm) δ 8.61 (m, 1H), 8.55 (d, J = 8.1 Hz, 1H),
8.48 (m, 1H), 7.76 (m, 1H), 7.28 (s, 1H), 4.07–4.00 (m, 4H), 3.35–3.29 (m, 4H). 13C NMR (CDCl3,
TMS, 100 MHz, ppm): 156.83, 134.88, 133.32, 131.57, 126.18, 115.26, 77.22, 66.83, 53.31.
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3.2.2. Synthesis of N-Carboxymethyl-4-morpholine-1,8-naphthalimide (2)

Compound 2 was synthesized by improving the previous synthesis method [39]. A
mixture of compound 1 (2.85 g, 10 mmol) and glycine (1.15 g, 15 mmol) was refluxed with
continuous stirring in N,N-dimethylformamide (DMF) (75 mL) at 100 ◦C for 30 h. The
filtrate was transferred to a water-filled beaker. After the yellow solid was completely
separated out, the crude product was obtained by filtration, which was purified by re-
crystallization from ethanol to give compound 2. Yield: 86%. m.p.: 247.7–248.4 ◦C. All
spectra of the structural characterization of compound 2 are presented in the electronic
Supplementary Materials (Figure S9–S11). FT-IR (KBr) cm−1: 3435 (v OH), 2960, 2821 (v
C-H), 1735, 1701,1658 (v C=O). 1H NMR (DMSO-d6, TMS, 400 MHz, ppm) δ 13.04 (s, 1H),
8.57–8.42 (m, 3H), 7.85 (m, 1H), 7.39 (d, J = 8.1 Hz, 1H), 4.72 (s, 2H), 3.97–3.84 (m, 4H),
3.29–3.19 (m, 4H). 13C NMR (DMSO-d6, TMS, 100 MHz, ppm): 169.88, 163.75, 163.16, 156.35,
133.05, 131.58, 131.51, 129.71, 126.70, 125.79, 122.57, 115.67, 66.64, 53.51, 41.50.

3.2.3. Synthesis of N-(2-Morpholinoethyl)acetamide-4-morpholine-1,8-naphthimide (MMN)

The compound N-(2-morpholinoethyl)acetamide-4-morpholine-1,8-naphthimide was
prepared by adopting the reported procedure [40–42]. Compound 2 (5 mmol) was reacted
with 4-(2-aminoethyl)morpholine by the coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC, 1.1 eq), the base N,N-diisopropylethylamine (DIEA, 2 eq) and hydroxy-
benzotrizole (HOBt, 1.2 eq) in dry DMF. After 10 h, the reaction was quenched by adding
water and the desired product was precipitated from the reaction mixture, which was
filtered and dried. The mixture was purified by column chromatography on silica gel
eluted with CH2Cl2/MeOH (v/v, 15/1). Yield: 75%. m.p. > 280 ◦C. All spectra of the
structural characterization of compound MMN are presented in the electronic Supplemen-
tary Materials (Figure S12–S15). FT-IR (KBr) cm−1: 3305 (v NH), 3097, 2924, 2854 (v C-H),
197, 1662 (v C=O). 1H NMR (DMSO-d6, TMS, 400 MHz, ppm) δ 8.54 (d, J = 8.5 Hz, 1H),
8.50 (d, J = 7.3 Hz, 1H), 8.43 (d, J = 8.1 Hz, 1H), 8.12 (s, 1H), 7.85 (s, 1H), 7.39 (m, 1H), 4.63
(s, 2H), 3.93 (t, J = 4.6 Hz, 4H), 3.56 (t, J = 4.7 Hz, 4H), 3.29–3.14 (m, 6H), 2.35 (m, 6H). 13C
NMR (DMSO-d6, TMS, 100 MHz, ppm): 167.14, 163.92, 163.37, 156.08, 132.73, 131.21, 129.77,
126.61, 125.78, 123.03, 116.26, 115.56, 66.65, 55.38, 53.70, 53.52, 42.74; HRMS (ESI): calcd. for
C24H28N4O5 ([M+H] +) 453.2060, found 453.2144.

3.3. General Method for the Spectra Experiments of MMN

The stock solution of MMN was prepared in CH3CN/H2O (v/v, 9/1). The 1.00 × 10−2 M
stock solutions of metal cations (KCl, NaCl, AgNO3, PbCl2, SnCl2, CoCl2, CuCl2, HgCl2,
BaCl2, MnCl2, CaCl2, ZnCl2, MgCl2, NiCl2, CrCl3, FeCl3 and AlCl3) were prepared with
deionized water. The 1.00 × 10−2 M solutions of anions (F−, Cl−, Br−, I−, NO3

−, NO2
−,

CN−, SCN− H2PO4
−, SO4

2− and HSO4
−) were prepared by tetrabutylammonium (TBA)

salts and sodium salts with deionized water. The ionic salts were dissolved in distilled
water to prepare the stock solutions for the cations and anions (1.00 × 10−2 M). The stock
pesticide solutions (1.00 × 10−2 M) were prepared in DMSO due to the poor solubility
of some pesticides using cypermethrin, cyhalothrin, oxyfluorfen, mesotrione, cyhalofop-
butyl, teflubenzuron, NTBC, sulcotrione, tembotrion, isoxaflutole, pyrazoxyfen, glyphosate,
clethodim, fluazuron, flusilazole, fluorobenzene and benoxacor. For different pH solutions,
1.00 × 10−1 M HCl or NaOH was added to 10 mL of 1.00 × 10−5 M MMN solution and the
apparent pH value was determined with a pH meter. To investigate the anti-interference of
MMN, 50 µL aliquots of 1.00 × 10−2 M different cation and anion solutions were used as the
background to measure the fluorescence spectra at two representative apparent pH values
(4.2 and 6.0). Different instruments were used for fluorescence spectroscopic detection of
pH and isoxaflutole. The slit widths of excitation and emission were set to 10 nm, and the
excitation wavelength was set to 415 nm in the fluorescence spectral experiment.
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3.4. Cell Incubation and Fluorescence Imaging

Human stromal cell line (HSC) cells were purchased from the Chinese Academy of
Sciences and cultured using the medium DMEM, which contains 15% fetal bovine serum,
100 µg/mL penicillin and 100 g/mL streptomycin at 37 ◦C within a humidified 5% CO2
atmosphere. One day before the fluorescence imaging experiment, the cells were placed
on petri dishes (NESTC) at the bottom of 35 mm cover slides. The cells were incubated
with Lyso-Tracker Red (70 nM) for 30 min, washed with PBS 3 times, fixed with 4%
paraformaldehyde for 1 h, washed with PBS 3 times, washed with a solvent 3 times, stained
overnight with MMN (100 nM), washed with a solvent 3 times, sealed and observed under
a confocal microscope.

3.5. Computational Methods

The Perdew–Burke–Ernzerh (PBE) method of Generalized Gradient Approximation
(GGA) in the Dmol3 module was used to calculate the exchange correlation energy using a
DNP+ basis set calculation and dispersion correction with Grimme [43–45].

4. Conclusions

In summary, we designed and developed a multifunctional naphthimide-based flu-
orescent probe (MMN). Because of the H+-induced intramolecular charge transfer (ICT)
effect, MMN displayed significant pH sensitivity with apparent pKa values of 4.62 ± 0.02
and 5.43 ± 0.02 as well as good linear apparent pH responses ranging from 4.2 to 5.0 and
from 5.0 to 6.0, which were suitable for selectively detecting acidic lysosomes. MMN shows
potential for the rapid detection of pH in test papers. Furthermore, MMN could quickly
and easily detect isoxaflutole with an extremely low detection limit. Density function
theory calculations revealed MMN’s potential underlying the sensing mechanism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23116256/s1.
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