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Abstract: α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino
acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause
hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is
a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s
disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes
with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in
the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein
is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy
bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to
be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of
phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from
phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on
the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration
process in α-synucleinopathy.

Keywords: α-synuclein; phosphorylation; Parkinson’s disease; dementia with Lewy bodies; multiple
system atrophy; α-synucleinopathy

1. Introduction

With the increase in global aging, the number of patients with dementia and Parkin-
son’s disease is similarly growing. In Parkinson’s disease and dementia with Lewy bodies
(DLB), the accumulation in the brain of a protein called α-synuclein is the pathological
hallmark. α-Synuclein is a protein with 140 amino acids encoded by the SNCA gene. It
is mainly expressed in the central nervous system in human adults. Most of the protein
is distributed in the cytoplasm of cells; however, a portion is extracellularly detected,
thus leading to postulation of its pathogenic ability. Aggregated α-synuclein is cytotoxic
and plays a central role in the pathogenesis of synucleinopathies. Phosphorylation of
α-synuclein presumably accelerates its fibrilization and the formation of insoluble aggre-
gates. Several kinases catalyze phosphorylation; nonetheless, the role of phosphorylation
enzymes in disease pathogenesis is currently not well understood. Therefore, in this re-
view, we focus on the pathogenic impact of phosphorylation and its kinases during the
neurodegeneration process in Parkinson’s disease.

2. Characteristics and Distribution of α-Synuclein

α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of
140 amino acids encoded by the SNCA gene. The protein consists of three domains: the
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N-terminal amphipathic region, the non-amyloid component region, and the C-terminal
acidic region (Figure 1). In the central nervous system, it is particularly abundant in
presynaptic terminals and is presumed to be involved in regulating synaptic function and
neural plasticity. Synuclein was first identified in cholinergic synaptic vesicles derived
from the electric organ of the northeastern Pacific electric ray (Torpedo californica) [1]. The
name “synuclein” originated from its distribution because its expression was observed
not only in synaptic vesicles in the presynaptic terminal but also in the nucleus following
immunostaining. Owing to this, α-synuclein was presumed to be a molecule related to the
nervous system, especially in synaptic function.

α-Synuclein is particularly highly expressed in the central nervous system in human
adults—accounting for approximately 1% of soluble proteins in the brain—and is abundant
in presynaptic terminals [2]. α-Synuclein protein is also abundant in erythrocytes [3]. Most
α-synuclein is distributed in the cytoplasm of cells and its carboxyterminal region, which
is flexible in monomeric and fibrillar states and plays an essential role in the interaction
with other partners [4]. Some of the protein is associated with biological membranes,
such as synaptic vesicles [5]. In addition, α-synuclein is observed in the mitochondrial
inner membrane, the mitochondria-associated endoplasmic reticulum membranes, the
Golgi apparatus, and endosomes [6–9]. It also interacts with various proteins, including
tau, ATPases, lipid membranes, lymphocyte-activation gene 3, flotillin, and fatty acid-
binding protein 3 [10–20], as well as metal ions [21,22]. Nuclear α-synuclein presumably
functions as a DNA-binding protein and is thought to be involved in regulating various
gene expressions [23–25].

Althoughα-synuclein functions intracellularly, the protein is detected in small amounts
in cerebrospinal fluid, serum, urine, and other bodily fluids [7–9]. It is also detectable in the
culture medium supernatant of cultured neuronal cells [26,27], thus being extracellularly
excreted in part. In addition, α-synuclein secretion is related to neuronal activity, with
the released protein activating inflammatory responses in microglia [26,27]. Consequently,
extracellular α-synuclein is of interest with regard to the prion-like propagation of Lewy
body diseases.
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Figure 1. Structure and summary of post-translational modification sites of α-synuclein. The
schematic represents α-synuclein protein [28] with the N-terminal amphipathic region, non-amyloid
component region, and C-terminal acidic region. Phosphorylation sites are indicated in red letters,
and ubiquitination is shown in purple. The indicated Ser129 phosphorylation site is the potential
region mostly associated with α-synuclein-induced neurodegeneration.

3. Propagation of α-Synuclein and Neurodegeneration

Although the distribution of α-synuclein-positive Lewy bodies increases with the
progression of Lewy body disease, cognitive and motor deficits are not observed in the
early stages of α-synuclein accumulation, with the accumulation of the causative protein
in the brain being significantly advanced when cognitive decline is observed. In 2003,
Braak et al. proposed a model of lesion development in which α-synuclein appears in the
dorsal medullary vagus nucleus in the early stages of the disease and then expands from
the midbrain to the limbic system and neocortex in patients with Parkinson’s disease [29].



Int. J. Mol. Sci. 2022, 23, 6216 3 of 14

Furthermore, α-synuclein-positive Lewy-body-like inclusions were identified in neurons
of fetal donor origin following an autopsy of brains affected by Parkinson’s disease that
had undergone transplantation of fetal substantia nigra tissue fragments [30,31]. These
reports suggest that α-synuclein may propagate from cell to cell and cause lesion expan-
sion. Pathological studies have indicated that α-synuclein may appear in the peripheral
nervous system, including the gastrointestinal mucosa and cardiac sympathetic neurons,
and migrate to the central nervous system after 20 years [20,31–34].

Previous studies reproduced the cell-to-cell propagation of α-synuclein in several
animal models. In A53T mutant α-synuclein-expressing mice, intracerebral administration
of brain extracts from prion-treated old mice accelerated the pathology of α-synuclein
and shortened survival time [35]. Furthermore, following the administration of human
α-synuclein fibrils into the brains of wild-type mice, the administrated “seeds” were
degraded and, in turn, undetectable, while endogenous mouse α-synuclein was phospho-
rylated, ubiquitinated, and accumulated three months after the administration [36]. In
addition, injection of pathological α-synuclein preformed fibrils into the duodenal and
pyloric muscular layers showed the spread of α-synuclein into the brain as determined
by phosphorylation at serine 129 [31]. These data indicate that exogenous α-synuclein
may serve as a template to facilitate the aggregation and phosphorylation of endogenous
protein with propagation potential.

For the cell-to-cell propagation of α-synuclein, the uptake process into the cells is
essential. Although the molecular mechanism by which α-synuclein is taken up into cells
is still not fully understood, the involvement of various biomolecules has been reported in
recent years. For example, Na+/K+-ATPase, a sodium-potassium exchange pump coupled
with ATP hydrolysis, binds α-synuclein multimer via its extracellular domain [13]. In
addition, the regulatory T-cell-associated protein LAG-317, neurexin 1b, and amyloid-
β precursor-like protein 1 are possible receptors for α-synuclein [14]. α-Synuclein can
also be internalized by the lipid raft-associated protein flotillin-1-dependent endocytosis
of dopamine transporter [16]. Furthermore, fatty-acid-binding protein 3 coupled with
dopamine D2 long-type receptor is critical for the uptake of α-synuclein, and knockout
of these proteins abolishes α-synuclein accumulation and propagation [17,19,37]. These
data indicate that various mechanisms participate in the internalization and accumulation
of α-synuclein.

4. Kinases That Phosphorylate α-Synuclein and Their Association to Cytotoxicity

Exogenous α-synuclein that is propagated and taken up into the cell facilitates ag-
gregation with intracellular proteins to form inclusions, which are immunopositive for
α-synuclein phosphorylated at Ser129 (Figure 2). Nonetheless, the question of how
α-synuclein obtains these aggregation characteristics and enhances cytotoxicity arises.
Earlier investigations reported that α-synuclein within Lewy bodies is subject to post-
translational modifications, including phosphorylation and ubiquitination. Notably, among
these modifications, the phosphorylation at residue Ser129 and its possible implication
on α-synucleinopathy have had significant research focus and are postulated to play a
key role in the regulation of α-synuclein aggregation and neurotoxicity [37–39]. In partic-
ular, a small portion of α-synuclein (~4%) is constitutively phosphorylated at Ser129 in
the brains of healthy individuals [40–42], whereas >90% of the insoluble α-synuclein is
phosphorylated in the brain of patients with synucleinopathies [41,43–45]. The accumu-
lation of phosphorylated α-synuclein at Ser129 was also observed in animal models of
Parkinson’s disease [46–50]. These observations indicate the importance of α-synuclein
phosphorylation at Ser129 in regulating its aggregation and neurotoxicity.
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aggregates. Cells were exposed to ATTO550-labeled α-synuclein fibrils for 48 h. Scale bar = 10 µm,
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The carboxy-terminal region of α-synuclein is flexible in monomeric and fibrillar
forms as well as in membrane-bound states [4,18,51–53]. Interestingly, the α-synuclein
C-terminal tail contains the majority of phosphorylation sites (Figure 3). Phosphorylation
of α-synuclein Ser129 is mediated by several kinases such as G-protein-coupled receptor
kinases (GRKs) [54–56], casein kinase II [56–58], polo-like kinases [59–61], and leucine-rich
repeat kinase 2 (LRRK2) [62,63]. Below, we summarize the α-synuclein phosphorylation
kinases and describe the associated pathogenic neurotoxicity.
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4.1. Impact of G-Protein-Coupled Receptor Kinases on α-Synuclein Phosphorylation

GRKs are a serine/threonine kinase family that regulate G-protein-coupled recep-
tors. Mammalian GRKs have seven isoforms that can be divided into three subfamilies
based on their structural organization and homology: GRK1 (rhodopsin kinase) and GRK7;
GRK2 (βARK1) and GRK3 (βARK2); and GRK4, GRK5, and GRK6. Among these iso-
forms, GRK2 preferentially phosphorylates α-synuclein, while GRK5 prefers α-isoform as
a substrate [54,55]. Interestingly, GRK-mediated authentic phosphorylation and mimicking
of the phosphorylation state (S129E) reduce α-synuclein affinity to binding phospho-
lipids [54,65]. Furthermore, phosphomimetic mutation (S129D) inhibits its association with
membranes [66,67]. These data indicate an inhibitory effect of Ser129 phosphorylation on
the α-synuclein binding to the cellular membrane. Following the loss of ability to bind to
plasma membrane, phosphorylated α-synuclein preferentially localizes to mitochondria
and suppresses cell respiration [68,69], which also induces endoplasmic reticulum stress
and cell death [46,70,71]. These data indicate that α-synuclein phosphorylation is linked
to mitochondrial dysfunction and the production of reactive oxygen species. GRK5 is
immunohistochemically co-localized with phosphorylated α-synuclein in Lewy bodies [55],
indicating its pathogenic significance in α-synucleinopathies.

4.2. Impact of Casein Kinase II on α-Synuclein Phosphorylation

Another kinase of α-synuclein phosphorylation, casein kinase II (CK2), is a serine/
threonine-selective protein kinase. CK2 is a tetrameric enzyme assembled from two cat-
alytic subunits (CK2α and CK2α′) and a regulatory subunit (CK2β dimer). Casein kinase
II is necessary for cell survival and is a crucial suppressor of apoptosis [72]. Wu et al. re-
ported that CK2α can be S-nitrosylated by nitric oxide (NO). Intriguingly, S-nitrosylation of
CK2α enhanced the kinase activity of this catalytic subunit towards the phosphorylation of
α-synuclein at Ser129 [56]. These data indicate that CK2α can enhance the phosphorylation
of pSer129 α-synuclein. In addition, Sano et al. found that α-synuclein aggregates are pre-
dominantly phosphorylated at Y136 in brains with DLB, which is mediated by the activity
of CK2 [58]. Furthermore, aggregate formation with Ser129 phosphorylation was signifi-
cantly attenuated by CK2 inhibition, which increased Y136 phosphorylation in cultured
neuroblastoma SH-SY5Y cells [58]. Moreover, CK2β regulatory subunits are detected in the
halo region of Lewy bodies in the substantia nigra of patients with Parkinson’s disease [70].
These data indicate the involvement of CK2-related α-synuclein phosphorylation in the
pathogenesis of Lewy-body-associated diseases.

4.3. Impact of Polo-like Kinase on α-Synuclein Phosphorylation

The third phosphorylation candidate, polo-like kinase, is also a regulatory serine/
threonine kinase containing an N-terminal kinase catalytic domain and a C-terminal polo-
box domain (PBD) that is involved in substrate binding and regulation of kinase activity.
Five mammalian PLK family members have been identified, viz. PLK1–5 [71]. The polo-
like kinases PLK2 and PLK3 have phosphorylation activity against α-synuclein that is
better than that of PLK1 and PLK4 and are capable of completely phosphorylating α-
synuclein [59,60]. PLK5 lacks a functional kinase domain due to a premature stop codon
in exon 6 and is thus unable to phosphorylate α-synuclein. Interestingly, a significant
reduction in α-synuclein phosphorylation has been observed in primary cortical neurons
and the cerebral cortex of PLK2 knockout mice [59]. Bergeron et al. further demonstrated
the ability of PLK2 to phosphorylate α-synuclein at Ser129 in the brain of mice in vivo [61].
These data show that polo-like kinase is critical for α-synuclein phosphorylation in the
pathogenesis of α-synucleinopathy. Furthermore, dephosphorylated α-synuclein bind-
ing inhibits the activity of tyrosine hydroxylase (TH) [73], the rate-limiting enzyme in
dopamine biosynthesis. Interestingly, phosphorylation of α-synuclein at Ser129 by PLK2
in vitro reduced the ability of α-synuclein to inhibit TH [74]. Active phosphorylated TH
is easily aggregated [75,76] and degraded by the ubiquitin-proteasome system [77,78],
indicating the attenuation of dopaminergic function. These data suggest the relevance of
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PLK2 in the reduced dopamine levels observed in Parkinson’s disease in an α-synuclein
phosphorylation-dependent manner.

4.4. Impact of Leucine-Rich Repeat Kinase 2 on α-Synuclein Phosphorylation

Leucine-rich repeat kinase 2 (LRRK2) is a 286-kDa multi-domain containing a member
of the receptor-interacting protein kinase (RIPK) family. LRRK2 consists of several domains,
viz. N-terminal ankyrin repeats, leucine-rich repeats, a ras of complex (ROC) GTPase
domain with an adjoining C-terminal of ROC (COR) domain, a serine/threonine-protein ki-
nase domain, and C-terminal WD40 repeats. Mutations of the LRRK2 gene were discovered
to be the cause of familial Parkinson’s disease (PARK8) [79–82]. Interestingly, Qing et al. re-
ported that LRRK2 has a significant capacity to phosphorylate recombinant α-synuclein at
Ser129 [62,63]. Furthermore, Guerreiro et al. reported that the levels of LRRK2 are positively
related to the increase in α-synuclein phosphorylation and aggregation in diseased brain re-
gions, including the amygdala and anterior cingulate cortex [83]. The authors also reported
the co-localization of these two proteins in the substantia nigra neuronal cells and Lewy
bodies in the brain tissue of a patient with Parkinson’s disease [83]. Notably, LRRK2 and
α-synuclein phosphorylated at Ser129 co-localized in a small proportion of the pathologies,
and knockdown of LRRK2 expression did not produce significant changes in phosphory-
lated α-synuclein levels [83]. These data suggest the physiological significance of LRRK2
in the pathogenesis of Lewy-body-associated diseases. However, further investigations are
required to reveal the relationship between LRRK2 and α-synuclein phosphorylation.

5. Physiological Significance of Phosphorylation on α-Synuclein Aggregation

As previously alluded, several kinases influence the phosphorylation of α-synuclein,
and the status of the protein is evidently linked to the pathogenesis of Lewy body dis-
eases. However, it is still ambiguous whether phosphorylation is the limiting step to
promoting aggregation. In cell lines and primary neuronal cultures, exposure to the ex-
ogenous α-synuclein fibrils results in the formation of intracellular aggregation, which
is immunopositive to α-synuclein phosphorylated at Ser129 [84,85] (Figure 2). However,
phosphorylation does not seem to be mandatory for the formation of cytoplasmic inclusions.
Luk et al. reported that phosphorylated α-synuclein was present only in the triton-insoluble
fraction following biochemical analysis, suggesting this modification occurs to the growing
inclusion after recruitment [85].

As a matter of fact, there is much debate about the effect of α-synuclein phospho-
rylation on protein aggregation. Previously, Fujiwara et al. reported that α-synuclein
phosphorylated at Ser129 by CK2 was found to form fibrils more readily than dephospho-
rylated α-synuclein in vitro [41]. The genetic mutant to mimic Ser129 phosphorylation
(S129D) was associated with pathology in a transgenic Drosophila model [49]. Furthermore,
α-synuclein hyperphosphorylation and insolubility were correlated with the disease in
transgenic mouse models of multiple system atrophy [86] and DLB [87]. Other investi-
gations that made use of cell lines, primary cultures, and rat models further support the
notion that α-synuclein phosphorylation promotes cytoplasmic inclusion formation in
Parkinson’s disease [55,88–91]. Similar findings were also observed in a multiple system
atrophy model using an oligodendroglial cell line [92]. These observations indicate that
α-synuclein phosphorylation at Ser129 promotes its aggregation and inclusion formation in
the pathogenesis of Lewy body diseases including Parkinson’s disease, DLB, and multiple
system atrophy.

Controversially, other studies suggested that phosphorylation prevents or has no
effect on inclusion formation in a Drosophila model [49] and in vitro [93,94]. In particular,
phosphomimetic S129E mutation had no effect, while the dephosphomimetic mutation
S129A increased α-synuclein toxicity in budding yeast [66,95]. Moreover, in rat models
using retrovirus-mediated expression of α-synuclein in neurons of the substantia nigra,
the S129A variant also showed toxicity. Contrarily, S129D showed protective [90] or
no [96] effects. In a Caenorhabditis elegans model, S129D α-synuclein was also protective
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and reduced neuronal dysfunction, while S129A expression resulted in severe motor
dysfunction and synaptic abnormality following reduced membrane interaction [67]. These
data are apparently consistent with the α-synuclein characteristics that present soluble
oligomeric or protofibrillar species as more toxic than larger aggregated forms. Furthermore,
Schreurs et al. showed that Ser129 phosphorylation by PLK2 displays similar fibrillization
kinetics to wild-type α-synuclein in vitro [97]. More recently, Weston et al. reported
that aggregation of presynaptic α-synuclein is not influenced by its phosphorylation at
Ser129 in vivo [98]. Collectively, these data demonstrate that phosphorylation is not a
mandatory factor in the limiting step for α-synuclein aggregation as well as for enhancing
pathogenic toxicity.

Several hypotheses may be proposed to explain the inconsistencies between the results
obtained in different cell and animal models. One possibility is that phosphorylated
protein is preferably ubiquitinated and degraded by the ubiquitin–proteasome system [78],
which diminishes the phosphorylated soluble α-synuclein following its clearance in the
aggregation process. α-Synuclein aggregation is not a single event and is affected by
various modifications [99,100]. Further studies are required to understand the physiological
significance of phosphorylation in the process of aggregation and formation of inclusions.

6. Pathological Impact of Phosphorylated Synuclein and Its Potential as a Novel
Therapeutic Target

Previous investigations involving immunohistochemical and biochemical analyses
have accumulated much data on Lewy bodies, showing the deposition of α-synuclein
phosphorylated at Ser129 in postmortem brains of patients with Parkinson’s disease and
DLB. Thus, it is worth investigating when the accumulation of phosphorylated protein
begins in the various stages of Lewy body diseases. In this section, we summarize when
phosphorylation at Ser129 occurs during the pathogenesis of Lewy body diseases and
propose potential therapeutic targets to modulate α-synuclein phosphorylation.

Previously, Walker et al. reported that a biochemical analysis revealed progressive
accumulation of p-Ser129 immunoreactivities as well as a positive correlation between
phosphorylation level and the severity of symptoms of Parkinson’s disease and DLB [101].
Moreover, the accumulation of insoluble phosphorylated forms and the formation of p-
Ser129-positive insoluble species became detectable only at the late stages of the diseases,
stages IV and V, according to the Unified Staging System [101,102]. Zhou et al. also reported
a dramatic accumulation of p-Ser129-positive inclusions in various brain regions at the
late stages of the disease using postmortem brain samples from patients with Parkinson’s
disease [103]. These findings revealed that pathogenic deposition of insoluble α-synuclein
phosphorylated at Ser129 primarily occurs at the advanced stages of synucleinopathies.

Many kinases are activated in Parkinson’s disease and related disorders and are
associated to the diseases’ pathogenesis. Focusing on the kinases that have the ability to
phosphorylate α-synuclein (Figure 3), GRK, CK2, and PLK indeed alter the activity by their
modification in Lewy body diseases. As introduced in Section 4, GRK6 and CK2α can
be S-nitrosylated by NO, with S-nitrosylation enhancing their kinase activity towards the
phosphorylation of α-synuclein at Ser129 [56]. Notably, in an A53T α-synuclein transgenic
mouse, a familial Parkinson’s disease model, Wu et al. demonstrated that increased
GRK6 and CK2α S-nitrosylation was age-dependent and associated with an increased level
of p-Ser129 α-synuclein, which suggests GRK6 and CK2α S-nitrosylation as a potential
therapeutic target of α-synucleinopathy. In fact, treatment of A53T α-synuclein transgenic
mice with Nω-nitro-L-arginine (L-NNA), a NO synthase inhibitor, significantly reduced
the S-nitrosylation of GRK6 and CK2α in the brain [56]. Additionally, Chau et al. reported
that pramipexole (PPX) decreases the phosphorylation of CK2 to reduce its activity, thereby
inhibiting the phosphorylation of α-synuclein at Ser129 [104]. Observation of LRRK2
phosphorylation by casein kinase 1α [105] also raises the possible development of another
therapeutic agent.
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PLK is also associated with the pathogenesis of Parkinson’s disease. Oxidative
stress generated as a consequence of mitochondrial dysfunction can activate PLK2 [106].
Weston et al. demonstrated that PLK2 knockout reduces presynaptic terminal α-synuclein
Ser129 phosphorylation [107]. In this condition, PLK2 deletion has no effect on the phos-
phorylation levels in Lewy-body-like inclusions [107], suggesting that the formation of
inclusions is α-synuclein-phosphorylation-independent. Furthermore, PLK2 deletion slows
the rate of neuronal death [107], indicating that inhibition of PLK2 is a potential therapeutic
target. Ingris et al. demonstrated that treatment with the PLK inhibitor BI2536 inhibited
α-synuclein phosphorylation at Ser129 [59]. Furthermore, treatment with a designed highly
selective inhibitor for PLK2, compound 37, reduced α-synuclein phosphorylation in rat
brain [108,109]. However, the inhibitor had no effect on α-synuclein aggregation, p-Ser129,
or inter-neuronal spreading of the aggregated α-synuclein in the S129A preformed fibril
injection model [110]. These findings suggest that PLK2 could be a potential target for
the development of novel therapies, although further optimization is still required at the
current stage (Figure 4).
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process and potential pharmacotherapeutic targets [56,104,106–110]. NO: nitric oxide; NOS: NO
synthase; ROS: reactive oxygen species; L-NNA: N(omega)-nitro-L-arginine, a competitive inhibitor of
nitric oxide synthase; GRK: G-protein-coupled receptor kinase; CKII: casein kinase II; PLK: polo-like
kinase; PPX: pramipexole.

In recent years, the detection of phosphorylated α-synuclein at Ser129 in human cere-
bral spinal fluid and blood plasma has been highlighted as a viable biomarker for diagnosis
of α-synucleinopathies [111]. The result of the concentration of total α-synuclein in the
plasma reportedly varied, with some work showing no difference between healthy controls
and diseased patients [112] and others showing lower [113,114] or higher levels [115–117].
However, p-Ser129 α-synuclein levels were significantly higher in samples from patients
with Parkinson’s disease [111,112]. In addition, the analysis of skin biopsies revealed
that the majority of patients with Parkinson’s disease show an accumulation of p-Ser129
α-synuclein, while no immunoreactivity was detected in healthy controls [118,119]. Fur-
thermore, other studies reported the presence of p-Ser129-immunoreactivities in gastric,
duodenal, and colonic biopsies [120,121]. These observations suggest that α-synuclein
phosphorylation is not only physiologically crucial in the pathogenesis of Lewy body dis-
eases but is also a potential biomarker for the diagnosis and monitoring of the progression
of Parkinson’s disease and related disorders.
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7. Conclusions

This review summarizes the physiological significance of α-synuclein-phosphorylating ki-
nases and the impact ofα-synuclein phosphorylation in the pathogenesis ofα-synucleinopathies.
α-Synuclein phosphorylation can clinically be an accompanying event in the brains of patients
with Parkinson’s disease rather than the critical factor for α-synuclein aggregation and toxicity.
Nevertheless, increasing phosphorylated α-synuclein and the accumulation with disease pro-
gression is useful as a therapeutic target and biomarker. We recently showed that clearance of
p-Ser129 α-synuclein alleviates cognitive and motor dysfunction in a Parkinson’s disease mouse
model [50]. We also developed a therapeutic compound targeting metal ions, which has the
potential to modulate α-synuclein metal binding and alleviate its accumulation [122,123]. Based
on our finding that fatty-acid-binding proteins are critical for the accumulation of α-synuclein
following phosphorylation [17,19,37], we intend to develop more fundamental therapeutics
and diagnostic tools for α-synucleinopathies, including Parkinson’s disease, DLB, and multiple
system atrophies.
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