
Citation: Zielińska, A.; Cano, A.;

Andreani, T.; Martins-Gomes, C.;

Silva, A.M.; Szalata, M.; Słomski, R.;

Souto, E.B. Lipid-Drug Conjugates

and Nanoparticles for the Cutaneous

Delivery of Cannabidiol. Int. J. Mol.

Sci. 2022, 23, 6165. https://doi.org/

10.3390/ijms23116165

Academic Editor: Menotti Ruvo

Received: 6 April 2022

Accepted: 30 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Lipid-Drug Conjugates and Nanoparticles for the Cutaneous
Delivery of Cannabidiol
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ryszard.slomski@up.poznan.pl

2 Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain;
acanofernandez@ub.edu

3 Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
4 CIQ-UP—Chemistry Research Centre, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;

tatiana.andreani@fc.up.pt
5 Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD),

Quinta de Prados, 5001-801 Vila Real, Portugal; camgomes@utad.pt (C.M.-G.); amsilva@utad.pt (A.M.S.)
6 Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD),

Quinta de Prados, 5001-801 Vila Real, Portugal
7 Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11,
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Abstract: Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known
as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles
have been proposed to increase the lipophilic character of drugs to overcome biological barriers.
However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic
colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer
surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble
drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review
discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This
work provides a metadata analysis of publications concerning the conjugation of cannabidiol with
lipids as a suitable approach and as a new delivery system for this drug.

Keywords: lipid-drug conjugates; micelles; cutaneous drug delivery; cannabidiol; lipid nanoparticles

1. Introduction

Nanotechnology has extensively been developed over the last decades, resulting in a
diversity of nanosized drug delivery systems (DDS) for chemically different drugs and other
bioactive ingredients, with relevance for academic research and for the pharmaceutical
industry [1,2].

Nanosized DDS are aimed to (i) minimize the premature degradation of drugs after
their administration; (ii) reduce the risk of systemic drug exposure and the development of
undesirable side effects, and (iii) increase the bioavailability of drugs and the amount of a
drug reaching the site of action. Drug delivery from DDS may be promoted by reactive
stimuli occurring at the site of action, such as pH and temperature variations. On the other
hand, it may also be desirable that DDS remains longer in the bloodstream and the drug is
released in a controlled fashion, which can be achieved by means of developing lipid-drug
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conjugates (LDC). From a quick search in the Web of Science, a total of 2957 published
works were exported. The bibliometric map obtained by VOSviewer software, using lipid-
drug conjugates as the keyword is shown in Figure 1. Amongst the listed applications,
LDC are mostly described for drug delivery aimed either for oral administration or for
antitumor activity and to overcome blood brain barrier.
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Site specific targeting can be accomplished by customizing nanoparticles with specific
targeting moieties, including monoclonal antibodies [4–7]. In addition, it is desirable that
the drug carrier remain in the bloodstream for long periods or as long as necessary to pro-
duce its desired therapeutic action. The prolonged circulation of drugs in the bloodstream
allows for the maintenance of desired therapeutic levels for a longer time, thus prolonging
the desired therapeutic action [8,9]. Moreover, a longer circulation allows drugs with
high molecular weight molecules or drug-loaded microparticles to slowly accumulate in
pathological sites with affected vasculature (such as tumors or inflammation, for example).
Through an increased permeability and the retention effect that may exist in these locations,
the concentrations of drugs in the target locations will increase [8,10–14]. The prolonged
circulation also allows for an increase in the enhanced interaction between the drugs and
the target organ, which is especially important for successful targeting in pathological areas
with poor blood supply and/or a low concentration of drugs [11,12,15].

The development of carriers that have suitable characteristics such as (i) biocompatibil-
ity and biodegradability, (ii) adequate particle size, (iii) a high load capacity, (iv) prolonged
circulation time, and (v) the ability to accumulate in pathological sites of action for ade-
quate periods have been a challenge for the scientific community in the search for a system
capable of solving and addressing deficiencies in the transport of hydrophilic drugs [16–18].
The availability of such vectors is essential since therapeutic applications with hydrophilic
drugs are currently associated with some health problems. In this sense, it is necessary to
emphasize that a low water solubility results in poor absorption and consequently a low
bioavailability [19,20].
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The formation of salts, or in some cases by adjusting the pH, facilitates the dissolution
of drugs that are poorly soluble in water in case they present ionizable groups. In this
sense, trying to overcome the low water solubility of some medications, some clinically
accepted organic solvents have been used as adjuvants, as is the case with Cremephor®

EL (castor oil polyethoxylated) and surfactants [21–26]. However, the administration of
some co-solvents and surfactants can cause toxicity or other undesirable side effects [27].
More recent approaches include liposomes, microemulsions, and cyclodextrins to increase
the bioavailability of poorly water-soluble drugs [10,11,15,28]. However, despite showing
promising results for certain poorly soluble drugs, liposomes and cyclodextrins also have a
limited ability to incorporate hydrophilic drugs. Additionally, the solubilization capacity of
these vectors varies for different drugs within extensive limits [11,15]. In this sense, a good
alternative is the use of micelles of phospholipids and conjugates of lipids and medicines
capable of carrying drugs of both hydrophilic and also lipophilic characteristics [11,13,14].

Cannabis has been used for medical purposes since 2700 BC. Additionally, in the nine-
teenth and early twentieth centuries, hemp was routinely used in Europe and in the United
States. The abandonment of hemp-based products was associated with the introduction of
synthetic drugs as well as international bans on the cultivation and marketing of cannabis. It
is assumed that the detection and the characterization of pharmacologically active cannabi-
noids is associated with an increased interest in cannabis and its components [29,30]. There
are three groups of cannabinoids: endocannabinoids produced in mammals, including
humans; cannabis-produced phytocannabinoids; and synthetic cannabinoids. Concerning
skin care, various health-promoting effects have been attributed to CBD, however most lack
scientific validation or refer to the use of CBD-containing extracts or oils, which may also
contain other cannabinoids. Table 1 shows recent publications regarding CBD bioactivities
at skin level. As it can be observed, a wide variety of activities are already described, with
an emphasis on the capacity to prevent UV-induced damage as UV radiation is often used
in therapy against skin disorders such as psoriasis [31].

Table 1. Health-promoting bioactivities of CBD at skin level.

CBD
Formulation Experimental Model Bioactivity Ref.

2.5% Rat Prevent protein modulation by
UVA and UVB exposure [31]

2.5% Rat Protection against
UV-induced damage [32]

10 µM Human keratinocyte cell
model (HaCaT)

Protection against H2O2-
induced oxidative damage [33]

1% Mice Moisturizing activity [34]

0.04–0.2 mg/mL Mice melanoma cell
line (B16-F) Anti-proliferative activity [35]

n.s. Human clinical case studies Treatment of
Epidermolysis bullosa [36]

10 µM Human immortalized
SZ95 sebocytes

Treatment of acne vulgaris
Anti-inflammatory activity

Sebostatic activity
[37]

Notes: n.s.—not specified.

Endocannabinoids act through CB1 and CB2 receptors, and they affect processes re-
lated to memory, the brain’s reward system, analgesia, drug addiction, sleep regulation,
mood, appetite, and metabolism. Among them, anandamide (AEA), palmitoylethanolamide
(PEA), and noladim ether can be distinguished. In turn, the most studied are phytocannabi-
noids, which include about 120 out of over 560 active chemical ingredients found in
Cannabis sativa L. plants. These include mainly delta 9-tetrahydrocannabinol with psychoac-
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tive properties, cannabidiol (CBD), cannabichromene, and cannabinol. Among synthetic
cannabinoids, we can distinguish systemic phytocannabinoid analogues such as Dronabi-
nol or Nabilone, as well as man-made substances, often with an effect many times greater
than the psychoactive properties of THC [38,39].

Changes in therapeutic and recreational legislation allow the increasing use of cannabis
and cannabinoids. Lipophilic properties and susceptibility to degradation limit the bioavail-
ability of cannabinoids. Among the different delivery options for cannabinoids including
oral, nasal inhalation, intranasal, mucosal (sublingual and buccal), transcutaneous (trans-
dermal), local (topical), and parenteral, it seems that topical and transdermal products tend
to have higher bioavailability, while limiting the psychotropic effects of the drug [30,40].

Cannabidiol (CBD) is a promising drug due to its broad spectrum of pharmacological
actions. This Cannabis sativa-derived active ingredient has excellent therapeutic potential.
Its development as an effective drug by the pharmaceutical industry is limited because
of low bioavailability, low water solubility, and variable pharmacokinetics. Potential
methods to overcome these limitations include drug delivery systems, improved crystal
formulations, and other solid-state delivery formulations, mainly in the pre-clinical or
early clinical stages of development [41]. In Table 2 are listed examples of advances in
CBD-loaded lipid particles with a potential application for topical delivery of CBD.

Table 2. Examples CBD-loaded lipid particles with potential for skin application.

Formulation Composition Size Application Ref.

Ethosome CBD, EtOH, Phospholipon 90 300–400 nm Increased skin permeation
Anti-inflammatory activity [42]

Emulsion

CBD, Oil phase (Soybean oil,
rapeseed oil, Trimyristin or Miglyol

812), Poloxamer (188 or 407),
Sodium azide

69–233 nm Increased drug loading [43]

Emulsion CBD, chitosan, collagen, oil phase
(olive oil or liquid paraffin) n.s. Increased delivery and deposition in

the stratum corneum [44]

Emulsion
CBD, chitosan (various

deacetylation degrees), gum Arabic,
olive oil

45–787 nm Higher skin absorption [45]

Emulsion CBD, isopropyl myristate, Solutol
HS 15 and Transcutol P 35 nm Development of a microemulgel for

the treatment of skin disorders [46]

Notes: n.s.—not specified.

Considering that cannabidiol has been recommended for skin disorders, such as
eczema, psoriasis, pruritis, and inflammatory conditions [39,47,48], in this work we have
evaluated the available literature that describe the use of lipid nanoparticles for the delivery
of cannabidiol, with a special focus on cutaneous delivery. The Scopus database was used
to search “solid lipid nanoparticles,” “cannabidiol,” and “cutaneous administration” as
keywords and selecting published papers from 1990 until 2022. Duplicate articles found
in more than one of the databases not focusing on selected keywords were excluded. The
VOSviewer software version 1.6.16 (Leiden, The Netherlands) was used [3].

2. Lipid-Drug Conjugates

Lipid carriers are interesting for the transport of lipophilic drugs and, to some extent,
hydrophilic drugs [18,49]. Some limitations of specific lipid carriers commonly investi-
gated, such as nanoparticles produced only from solid lipids, and also nanostructured lipid
carriers, include their low capacity to incorporate hydrophilic drugs due to the effects of
stability during the production process. Only poorly water-soluble drugs can be conve-
niently incorporated into the solid lipophilic matrix. To overcome this limitation, lipid-drug
conjugates have been developed, and up to the present loading capacities of up to 33%
have been achieved [50,51]. The first search on cannabidiol and lipid nanoparticles resulted
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in the bibliometric map shown in Figure 2, showing the high amount of work done in the
field of drug delivery and drug formulation for a range of applications (e.g., antidiabetic,
anticancer, and anti-inflammatory actions, for multiple sclerosis and Alzheimer’s disease),
including in clinical trials.
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When compared to other lipid carriers (e.g., solid lipid nanoparticles and nanos-
tructured lipid carriers), lipid-drug conjugates can exceed the minimal loading capacity
for hydrophilic drugs, typically below 0.5% [52,53]. This is sufficient for highly potent
peptides and proteins, such as eosinophil peroxidase (EPO) and interferons, as these can
be solubilized in the fused lipid matrix, using mixtures of surfactants or acyl and dia-
cylglycerols present in the lipid [49]. Lipid-drug conjugates have numerous advantages,
namely: (i) protection against enzymatic and chemical degradation of drugs [50]; (ii) an
increase in the lipophilicity of the hydrophilic compound [49,50,54]; (iii) easier passage
through the blood–brain barrier [50]; (iv) an increase in the load capacity for hydrophilic
drugs [49,50,54]; (v) increased stability in vivo, reducing solubility and subsequently acces-
sibility by enzymes [49,51]; and (vi) an improvement in the permeability of the lipophilic
molecule across membranes [51,55].

The principle of lipid-drug conjugates lies in transforming drugs with hydrophilic
characteristics into a more lipophilic and consequently a more insoluble molecule by
conjugation with a lipidic compound (Figure 3) [49]. Thus, the conjugation can be carried
out by forming a salt with a fatty acid, for example, the reaction of the functional groups of
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the drugs with the carboxylic groups of the fatty acids [51,54] or alternatively by covalent
bonding (for example, ether, ester) [49,51].
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Obtaining the formulation of cannabidiol-loaded lipid nanoparticles is difficult be-
cause of the low water solubility of CBD. However, several studies have already proven
the successful and efficient production of CBD-high-loaded lipid carriers for parenteral
or oral application. Lipid carriers allow parenteral administration in therapy with CBD,
which could be of interest due to the broad field of pharmacological effects. Francke et al.,
(2021) [43] have shown that a higher drug loading in emulsions and self-dispersing mix-
tures than in liposomes emphasizes an advantage of oil-containing carrier systems for CBD
formulation. For oral therapy, phospholipids as natural emulsifiers and solubilizers can
generate self-dispersing lipid formulations. Due to mild agitation, these formulations can
be filled into hard capsules and dispersed in gastrointestinal fluids [43]. Figure 4 shows
that cannabidiol has been reported for skin infection and the treatment of acne vulgaris,
in combination with other synthetic drugs, and also formulated as lipid nanoparticles to
improve its bioavailability.
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The poor bioavailability of drugs, when administered topically, is mainly due to two
reasons: (i) low dissolution rate and (ii) poor permeability [16,49,51,54,56]. This can be
explained by the Noyes–Whitney Equation, which describes the dissolution rate (dc/dt),
which is proportional to the concentration gradient (cs − cx/h), where the cs factor is the
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total concentration of drugs in the liquid (solubility saturation). The h factor is the diffusion
distance above the surface of the drugs particle. The dissolution rate is given as a function
of the surface area:

dc
dt

=
DA (cs − cx)

h
where D is the diffusion coefficient and A is the surface area. The higher the stirring
speed in the dissolving medium, the lower the value of h and, consequently, the higher the
dissolving rate of the drugs. The ideal situation is when h tends to zero and, simultaneously,
dc/dt tends to infinity (Figure 5) [57,58].
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To obtain lipid-drug conjugates, drugs are added to an aqueous solution with an
excess of sodium hydroxide. Subsequently, a precipitate forms, which is filtered through a
filter paper and then washed three times with water suitable for injections. Then, it is dried
at 40 ◦C and stored at 4 ◦C. The fatty acid salts of drugs are prepared by dissolving this and
the fatty acids (e.g., oleic acid and stearic acid) in an appropriate solvent and consequent
solvent evaporation under reduced pressure. The formulations obtained, i.e., the conjugates,
are dried for 24 h [54,59]. Another method of obtaining lipid-drug conjugates includes
high-pressure homogenization. Fatty acid vesicles with drugs are prepared by dispersing
the residue in a surfactant (i.e., Tween®80) [50,54] containing glycerol, forming a pre-
dispersion. This pre-dispersion is subject to homogenization at high pressure, comprising
20 to 27 cycles at a pressure of 1500 bar. Some authors [50] argue that after five cycles, the
samples should be placed on ice to avoid the high temperatures—temperatures well above
40 ◦C—of the dispersion.

Lipid-drug conjugates have been widely used for brain therapy, specifically in treating
sleeping sickness caused by Trypanosoma brucei gambiense [50,54,59]. Currently, no products
are available that use this technology for cutaneous application. However, this methodol-
ogy presents a therapeutic advance, a new approach to transport hydrophilic drugs in a
lipophilic medium, as is the case of the skin structure. Some factors that may justify the
non-exploitation of this methodology at the top level may be:

• The traditional pharmaceutical formulas (e.g., creams and ointments) have responded
to different pathologies as much as possible;

• Unlike many other structures and organs, the skin’s composition allows a broad
absorption of hydrophilic and lipophilic drugs;

• Simply the development of other transport mechanisms, such as the phospholipid micelles.

However, if developed for a cutaneous application, this therapeutic approach would
present numerous advantages: (i) bioavailability; (ii) the use of biocompatible lipids, which
would lead to more significant bioavailability; (iii) the ability to deliver hydrophilic drugs
to more lipophilic compartments of the skin’s constitution; (iv) a decrease in the number of
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drugs used; and (v) more excellent protection for drugs from degradation agents. Therefore,
this therapeutic approach presents several relevant and promising aspects for a future,
possible cutaneous application [49,55,56].

Micelles are colloidal dispersions (i.e., vesicles of size comprised between 10–100 nm)
of amphiphilic nature; their composition is simultaneously a lipophilic portion (nucleus)
and a hydrophilic portion (outer surface). These vesicles are currently used to transport
lipophilic drugs, among other functionalities (Figure 6).
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Micellar technology was introduced in the last decade of the 20th century [60]. Subse-
quently, scientists developed Novavax®, patenting micelle technology and, later, launched
the first nano-product of transdermal lotion (EstrasorbTM) in 2003 [48]. Compounds used
in EstrasorbTM are generally recognized as safe (GRAS) as micellar vesicles are formulated
based on nanotechnology that achieves an advance in transdermal therapy. The formulation
represents a robust and a versatile delivery system, accommodating a range of therapeutic
composts with different physical–chemical properties [60–65]. As micellar vesicles, in the
form of emulsions (lotions), are attractive alternatives for delivering bioactives through
topical application. The technology allows high concentrations of drugs to penetrate the
skin, and it functionally creates a deposit of drugs in the stratum corneum and epidermis,
avoiding the first passage effect [11]. These two formulations could be exploited for the
transdermal delivery of cannabidiol.

Due to the formation of micelles and driven by the reduction of free energy in the
system, the removal of two hydrophobic fragments from the aqueous environment conse-
quently results in a network of hydrogen bonds in water. The hydrophobic fragments of
the amphiphilic molecule form the nucleus of a micelle, while the hydrophilic components
constitute the outer surface of the micelle [11,15]. In general terms, in the formation of
phospholipid micelles, the formation of a multiphase nanoemulsion occurs (hydrophilic
and lipophilic portion simultaneously). In this sense, there are five essential components for
the construction of phospholipid micelles, namely (i) drugs; (ii) the solvent; (iii) a surfactant;
(iv) phospholipid, and (v) the aqueous medium. When these compounds are added and
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subjected to a homogeneous mixing process, the drugs can have one or more conformations
(Figure 7): (a) solid particles; (b) drugs associated with the micelle; (c) drugs associated
with the oil; and/or (d) solubilized (micro/nanoparticles).
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Although micellar technology can preferentially accommodate crystalline compounds,
surprisingly, it can also be used for amorphous compounds. The formed micellar system can
also accommodate poorly soluble drugs. Depending on the physical–chemical properties
of the drugs and the dosage requirements, the load capacity that can be achieved through
this system is up to 20% [66,67].

The solvent is generally used to assist solubilization of the drugs during processing,
although it is not a prerequisite. The typical solvent used in the preparation of phospholipid
micelles is ethanol. In addition, stable micelles can be obtained through other solvents, such
as propylene glycol, low molecular weight polyethylene glycol, triacetin, and N-methyl
pyrrolidinone. The solvent plays an essential role in controlling the solubilized fraction
of drugs, critical for facilitating drug permeability. The stabilizers used are generally non-
ionic. Stable micelle preparations have been prepared using hydrophilic and lipophilic
stabilizers that encompass a range of products with an appropriate hydrophilic-lipophilic
balance (HLB) [68]. Surfactants include sorbitan esters, glycerol esters, block copolymers,
polyethylene glycol esters, and ethoxylated fatty esters. Surfactants help stereochemically
stabilize oil droplets and contribute to the formation of the micellar phase [11,14,15,66].
Table 3 describes some phospholipids used to form micelles and the final particle size. The
lipids are from the internal phase of the micelle. Depending on the properties of the drugs,
the lipophilic phase can accommodate a fraction of the drug’s insoluble form. The aqueous
medium used is generally purified water. A buffering agent can be included to maintain the
pH and to maximize the stability of the drugs. The phospholipid micelles are dependent on
therapeutic need as well as the physical–chemical properties of the drugs, the intended site
of action (local or systemic), and the profile of the target product. For topical or transdermal
administration, the micellar system can be classified as a type of micro-reservoir system
of controlled dissolution that can be adapted for the release of drugs topically (where the
site of action is the skin) or transdermally (systemic availability). The physical–chemical
properties of the formulation can be adapted, depending on the type of administration
intended [69].
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Table 3. Phospholipids used in the formation of micelles and the final particle size.

Micelles Mean Vesicle Size (mm)

PEG750-DSPE 7–15
PEG2000-DSPE 7–20
PEG5000-DSPE 10–40
PEG2000-DOPE 7–20
PEG5000-DOPE 10–35

PVP1500-P 5–15
PVP8000-P 7–20

PVP15000-P -
PVP1500-S 5–15
PVP8000-S 10–20

PVP15000-S -
Captions: PEG, Polyethylene glycol; PVP, Poly (N-vinyl -2-pyrrolidone); DOPE, Dioleolylphosphatidylethanolamine;
DSPE, Phosphatidylethanolamine distearate; P, Palmitoil; S, Stearyl.

The composition of a phospholipid micelle formulation is inherently antimicrobial.
According to the results of the United States Pharmacopeia (USP) antimicrobial efficacy
tests for a placebo formulation of phospholipid micelles, it indicates that the micellar formu-
lation not only impedes bacterial growth but essentially presents microbicide activity. This
can be attributed to the small size of the preparation (in the order of nanometers) and the
nature of the composition (that is, the high concentration of non-ionic surfactant). However,
a micellar formulation exhibits a good safety profile, and it is relatively dermatologically a
non-irritant [11]. This property offers commercial advantages such as the possible elimi-
nation of an antimicrobial preservative (especially for a product packaged in a multidose
container), or the possible synergy of the microbicidal effect of a micellar preparation when
prepared with an antibacterial, antifungal, antiviral agent [11].

Transdermal administration involves the application of a pharmacologically active
compound on the skin to reach the systemic circulation to reach the site of action, often
away from the site of application. Since the approval of the first transdermal delivery
system for drugs in 1981, Transderm-Scop®, there has been intense research in the field of
transdermal therapy for the treatment of a variety of clinical conditions [70]. Transdermal
administration is particularly advantageous for drugs with a significant hepatic first-pass
effect or degradation in the gastrointestinal tract.

Although lately there has been a good development of formulations at the transdermal
level, there is still a low point of innovation about the vectorization and delivery of drugs
at the top level [66,67]. Most dosage forms are limited to traditional creams, ointments, and
gels. Some of the new commercial applications are sprays and foams. Phospholipid micelle
technology can be exploited to create better dosage forms at the top level, guaranteeing
efficient and effective delivery of drugs locally (at the application site). It is possible to adapt
a drugs deposition, disposition, and permeability kinetics through formulation engineering
(altered composition, drug charge, particle size, among others). The ever-growing interest
in CBD’s health-promoting bioactivities and the benefits of lipid nanoparticles and lipid
particles as delivery systems to overcome the low bioavailability of CBD has advanced in
recent years. This led to the registration of various patented works for applications of CBD
for skin care as well as formulations to deliver the active ingredient. In Table 4 we present
several examples of patents within this scope.
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Table 4. Examples of patented formulations aiming CBD use in skin care products or in lipidic
particle formulations.

Patent Application

CA2760460C CBD transdermal formulation with enhanced penetration to be used in inflammation and
pain treatment

WO2019244160A1 Anti-microbial hyperosmotic formulation containing CBD

USRE47885E1 CBD-containing hydrogel developed for transdermal (microneedle) or topical application

US11260033B2 CBD-loaded lipid nanoparticles for increased stability and bioavailability

US8435556B2 Transdermal formulation containing CBD and diethylene glycol monoethyl ether as
penetration enhancer

US20210244680A1 Wearable transdermal patch with CBD-loaded liposomes

BR112020003025A2 Transdermal gel containing CBD for osteoarthritis treatment

US10842758B1 Transdermal delivery formulation containing CBD, phosphatidylcholine, safflower oil, oleic acid,
stearic acid, and isopropyl palmitate

3. Conclusions

Transport and the transdermal delivery system for compounds are not suitable or
clinically justified for all drugs. Therefore, they are often seen as a very restricted and
more limited mechanism than they are. Due to the high number of bioactivities described
for CBD, new delivery systems that improved drug stability and bioavailability were
mandatory. At the same time, CBD benefits on skin have been reported, thus this organ
arising as a focus for CBD delivery. Micellar phospholipid technology helps to integrate
and to deliver many therapeutic compounds, which are otherwise seen as unsuitable for
transdermal administration. This technology allows for rapid and low-cost development,
compared to the typical story of new chemical entities. The data from the preclinical studies
described here show a high probability of clinical success, in addition to demonstrating
advantages both in the context of a shorter period of development of the formulation or
at a lower cost than the development of a traditional pharmaceutical form. Understand-
ing the basic physico–chemical properties of micellar formulations allows greater control
and manipulation over pharmacokinetic parameters, providing an attractive option for
pharmaceutical technology and, consequently, for the treatment of many pathologies. The
technology is validated for the transdermal delivery of compounds, and the commercial
product, EstrasorbTM, is manufactured on a significant scale. EstrasorbTM’s ingredients are
GRAS, and the manufacturing process is attractive from a cost perspective. The multiphase
nanoemulsion that comprises the micellar formulation is surprisingly stable and, in some
cases, subject to terminal heat sterilization. The scientific community, at present, has dedi-
cated new studies to the development of new pharmaceutical forms, according to micellar
technology, particularly for compounds that are poorly soluble in water. It should be noted
that experiments have demonstrated the potential of micellar technology to be used for the
topical route, being just a matter of time for the emergence of new pharmaceutical forms
based on the micellar technology of phospholipids.
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