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Abstract: Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough
knowledge of how the energy of these ions is deposited in biological media (mainly composed of
liquid water) is required. This can be attained by means of detailed computer simulations, both
macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for
determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-
called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism
from the excitation spectrum of liquid water obtained from two complementary approaches (one
relying on an optical-data model and the other exclusively on ab initio calculations). In addition,
the energy carried at the nanometre scale by the generated secondary electrons around the ion’s
path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and
electron cross sections calculated by means of state-of-the art approaches suited to take into account
the condensed-phase nature of the liquid water target. As a result of these simulations, the radial
dose around the ion’s path is obtained, as well as the distributions of clustered events in nanometric
volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for
carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.

Keywords: carbon ion beams; hadrontherapy; nanoscale biodamage; liquid water; Monte Carlo
simulation; scattering cross sections in the condensed phase

1. Introduction

Liquid water makes up around 75–80% of the mass of soft human tissues [1]. As a
consequence, it is widely considered as an appropriate surrogate of living tissue in exper-
imental and computational studies of radiation dosimetry [2]. Understanding precisely
how different types of radiation (photons, electrons, ions) interact with and deposit their
energy in this material in its condensed phase is of great relevance for further developing
radiotherapies against cancer, as well as for radiation protection purposes on Earth or from
cosmic radiation during manned space travel [3]. This is especially true for the advanced
modality of radiotherapy using accelerated ion beams (such as protons or carbon ions)
known as hadrontherapy. This cutting-edge technique is much more efficient than con-
ventional radiotherapy using X-ray or electron beams [4], mainly due to physico-chemical
interactions which take place at very different space, energy and time scales [5].
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From a macroscopic point of view, ion beams, contrary to photons, do not suffer
significant angular deflection and have a very well defined penetration range in matter.
This gives place to a characteristic depth-dose curve (known as the Bragg peak) where a
large fraction of their energy is deposited towards the end of their trajectories [4]. This
Bragg peak is particularly sharp for carbon ions, which are nowadays considered the most
promising projectiles for hadrontherapy [6,7]. Due to this feature, deep-seated tumours
close to sensitive organs such as the brain, eye or spinal cord can be treated without inflicting
much damage to the healthy surrounding areas. However, the theoretical prediction of
the precise location of the Bragg peak for beams of different energies is very sensitive to
the average energy loss per unit path length of ions in tissue (i.e., the stopping power) [8].
Despite their importance for treatment planning, the absolute values of the stopping power
of liquid water for light ions (and particularly for carbon ions) are still under debate [9–13].

Microscopically, the energy-loss patterns of ion beams in tissue also give rise to their
enhanced relative biological effectiveness (RBE), i.e., their ability to kill cells more effectively
than photons or electrons do for the same amount of delivered dose [2,4,14–16]. The high
RBE of ion beams, particularly of carbon ions, is related to the generation of large numbers
of secondary species (low-energy secondary electrons and chemically reactive species)
along the ion path, which give place to their microscopic track-structure [2,5]. Among these
species, the secondary electrons produced by ion-impact ionisation are especially relevant.
These are generated with low kinetic energies (typically < 100 eV), so they present ranges of
a few nanometres in liquid water. This creates concentrated patterns of energy deposition
(sharp and intense nanometric radial doses) and reactive chemical species around the ion
path, having the dimensions of the sensitive DNA strands carrying out the cell genetic
information. Electrons directly, as well as, indirectly, the free radicals generated by them,
can induce complex patterns of damage in the DNA strands, which, at high densities, are
difficult to repair by the cell machinery, inducing the cell death. Secondary electrons with
energies above the excitation threshold of liquid water (7 eV) can damage biomolecules
by electronic excitation and ionisation, while even those below the threshold can induce
damage by dissociative electron attachment (DEA) [17].

As the RBE of ions is so sensitive to the level of complex damage induced at the nanoscale,
any attempt to model it (by means of Monte Carlo track-structure simulations [2,18] or analyt-
ical approaches [19,20]) requires an accurate knowledge of the underlying probabilities (or
cross sections) for the different physical interactions between electrons and water (elastic
and inelastic scattering, DEA, etc.). As an alternative to the computational modelling
approaches (with which we deal in the present work), experimental nanodosimetry has
been also developed in the last decades in order to estimate the complex damage induced
by radiation at the scales of the DNA molecules [21–23].

Even though cross sections for water have been intensively studied experimentally
and theoretically [24–27], most of the information gathered corresponds to the molecules
in the gas phase. However, it is important to consider how the interaction of electrons
with water is influenced by the condensed-phase nature of the real biological environ-
ment. Unfortunately, experimental work on this regard is extremely difficult, as it is
challenging to disentangle individual scattering mechanisms from the unavoidable mul-
tiple scattering [28,29]. Most of the current nanodosimetry approaches are designed to
work on gaseous detectors and, moreover, they are typically sensitive only to ionising
collisions [21–23].

On this context, theoretical approaches become extremely useful to study individual
interaction processes in the condensed phase. Concerning the study of electronic interac-
tions (the main responsible for the energy loss of charged particles in matter), the dielectric
formalism together with optical-data models (which exploit the excitation spectrum of the
condensed-phase material, encoded in its dielectric properties) have been established as
reference methodologies [2,30] (alternatively, other procedures have been developed to esti-
mate the cross sections in condensed matter starting from atomic and molecular data, such
as the IAM-SCAR methodology [31,32]). Particularly, the Mermin dielectric function [33],
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(used within the so-called Mermin Energy Loss Function-Generalised Oscillator Strengths
(MELF-GOS) method [30,34,35]), has demonstrated to be a very reliable approach to repro-
duce the experimental excitation spectrum of liquid water [36], and to deliver stopping
powers [37,38], ionisation cross sections for ion beams [39,40], and excitation and ionisation
cross sections for electron beams [41,42], in good agreement with the known experimental
data. More recently, ab initio approaches based on linear-response time-dependent density
functional theory (LR-TDDFT) have shown to be able to give an extremely accurate repre-
sentation of the excitation spectrum of liquid water [43]. Regarding the elastic collisions,
it has also been shown that first principles methods (based on the solution of the Dirac
equation [44–46]) can shed light on the electron scattering in condensed-phase water [43].
These inelastic and elastic cross sections are the necessary input to perform detailed Monte
Carlo simulations of ion-impact production and transport of electrons in liquid water [43].

The purpose of the present work is to present these theoretical models to describe
the inelastic and elastic scattering of electrons generated by swift carbon ions in liquid
water, and to use these outcomes to provide detailed Monte Carlo simulations of the track-
structure of carbon ions in a wide energy range (going from the low kinetic energies typical
from the Bragg peak region in hadrontherapy up to very large energies characteristic of the
Bragg curve plateau or of cosmic radiation). Monte Carlo simulations can yield very useful
information on the patterns of energy deposition (radial doses) and clustering of damaging
events in nanometric targets of the size of two DNA convolutions. This study presents
new results, including the accurate simulation of radial doses and calculated stopping
powers (in better agreement with recent experimental determinations around the stopping
maximum than previous estimates). These findings, together with previously obtained
results on clustering of damaging events on the nanometre scale, provide important insights
on the energy deposition mechanisms of carbon ions in liquid water.

The calculation of the electronic excitation spectrum of liquid water is introduced in
Section 2.1, where both the MELF-GOS and the LR-TDDFT approaches are explained and
compared. In Section 2.2, the dielectric formalism approach for obtaining the electronic
interaction cross sections for swift ion beams is presented, yielding the stopping power
and other related energy-loss quantities of liquid water for carbon ions, based on the
two previous approximations to the electronic excitation spectrum. The calculation of
secondary electron energy and angular distributions for carbon ions in liquid water is
developed in Section 2.3. The interaction cross sections for the secondary electrons are
obtained in Section 2.4. The treatment of the elastic scattering with water molecules and
water molecule clusters (in an effort to include condensed-phase effects) are reviewed in
Sections 2.4.1 and 2.4.2 respectively. Then the method to extend the dielectric formalism to
obtain electronic excitation and ionisation cross sections for low-energy electrons in liquid
water is detailed in Section 2.4.3, exploiting both the MELF-GOS and ab initio excitation
spectra. The previous findings allow the detailed Monte Carlo simulation of the carbon-ion
track-structure in liquid water, discussed in Section 2.5. Several quantities of interest in
radiobiology are evaluated in Section 3, namely, the radial doses delivered around the ion
path and the distributions of complex damaging events, including ionisation and electronic
excitation, together with DEA. The summary and conclusions of the work are given in
Section 4. Occasionally, atomic units (a.u.) will be used when needed.

2. Materials and Methods
2.1. Theoretical Models for the Electronic Excitation Spectrum of Liquid Water

The complex dielectric function ε(k, E) = ε1(k, E) + iε2(k, E) (where ε1 and ε2 corre-
spond, respectively, to its dispersive and absorptive parts) provides a connection between
measurable dielectric properties of a target material and its electronic response to external
charged particles [47,48], as a function of the momentum h̄k and the energy E = h̄ω trans-
ferred to the target by an external electromagnetic perturbation. In the condensed phase,
the electronic excitation spectrum of the target is contained in the energy loss function
ELF = Im

[
−1

ε(k,E)

]
, which is the crucial quantity that determines the inelastic scattering
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cross section and the electronic energy loss of charged particles, as will be explained in
Section 2.2. However, the ELF must be known over a broad range of energy and momentum
transfers, i.e., the Bethe surface. Experimentally, the ELF can be determined by irradiating
the target with photon or charged particle beams and analysing the outgoing particle energy
spectra at different scattering angles, which correspond to different momentum-transfers.
However, with this kind of experiments it is not possible to obtain the entire Bethe surface
due to multiple-scattering effects at large momentum transfers [49]. As a consequence, it is
crucial to count on with theoretical estimates that allow us to know the ELF with sufficient
accuracy over the entire (k, E)-plane.

The traditional approach to obtain the Bethe surface relies on optical-data models, in
which the optical ELF(k = 0, E) is taken from experimental data and extended to k 6= 0 by
appropriate models [30], as discussed in Section 2.1.1. However, current implementations
of linear-response time-dependent density functional theory (LR-TDDFT) allow to directly
calculate the ELF of liquid water from first principles for finite values of the momentum
transfer (Section 2.1.2), without the need to use any particular set of experimental data.

2.1.1. MELF-GOS Optical-Data Model

An optical data model successfully applied to describe the energy-loss quantities of
charged particles in many condensed-phase materials [34,37,41,42,50–55] is the so-called
MELF-GOS (Mermin Energy Loss Function-Generalised Oscillator Strengths)
method [30,34,35,56,57]. This model properly describes the electronic excitation spec-
trum of a condensed-phase target, as it is the case of liquid water. In this methodology,
the contributions to the ELF coming from the excitation of the loosely-bound outer-shell
electrons and from the atomic-like inner-shell electrons are splitted as:

Im
[
−1

ε(k, E)

]
= Im

[
−1

ε(k, E)

]
outer

+ Im
[
−1

ε(k, E)

]
inner

. (1)

The justification for this separation lies on the fact that only the outer-shell electrons feel
the characteristic screening effects of the condensed phase, while the excitation spectrum of
the inner-shells is mostly insensitive to the target’s phase and can be treated as resulting
from isolated atoms. Therefore the inner-shell electrons, that preserve their atomic character,
are described by atomic generalised-oscillator-strengths (GOS) in the hydrogenic approach,
for which analytical expressions are available. In general, for a compound target Aν1 Bν2 . . . ,
the inner-shell contribution to the ELF is given by [58]:

Im
[
−1

ε(k, E)

]
inner

= Im
[
−1

ε(k, E)

]
GOS

=
2π2h̄2e2N

E ∑
j

νj ∑
n`

d f j
n`(k, E)
dE

Θ(E− Bj
n`) , (2)

where N is the molecular density of the target, νj is the stoichiometric contribution of the

different j elements in the compound, d f j
n`(k, E)/dE and Bj

n` are, respectively, the GOS

and the ionisation energy of the (n, `) sub-shell of the j-element of the target. Θ(E− Bj
n`) is

a step function that becomes null when the transferred energy is not enough to ionise a
target atom (i.e., E < Bj

n`). For liquid water, the K-shell electrons of oxygen are considered
to contribute to the inner electron excitation, with an ionisation energy BO

1s = 540 eV [59].
The outer-shell electron excitations are described by a weighted sum of Mermin-type

energy loss functions (MELF):

Im
[
−1

ε(k, E)

]
outer

= Im
[
−1

ε(k, E)

]
MELF

= ∑
j

Aj

(h̄ωj)2 Im

[
−1

εM
(
k, E; ωj, γj

)]Θ(E− Eth,j) , (3)

where the coefficients Aj, ωj and γj account for, respectively, the intensity, position and
width of the features of the experimental ELF. The step function Θ(E− Eth,j) makes the
ELF to vanish at transferred energies E smaller than some threshold energy Eth,j, which
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for liquid water corresponds to its excitation threshold energy (Eth = 7 eV), below which
electronic excitations are not possible. The Mermin dielectric function εM is given by [33]:

εM(k, E) = 1 +
(1 + ih̄γ/E) [εL(k, E + ih̄γ)− 1]

1 + (ih̄γ/E) [εL(k, E + ih̄γ)− 1]/[εL(k, 0)− 1]
, (4)

and represents an improvement over the Lindhard dielectric function εL [48,60], The
latter is based on the homogeneous electron gas model, together with the random-phase
approximation (RPA), which assumes that each target electron interacts with the average
field generated by all the other electrons. This assumption neglects dissipative processes
and gives place to collective excitations with infinite lifetime [61]. The Mermin dielectric
function includes the finite lifetime of collective excitations (or plasmon damping), as well
as the effects of inter-band transitions, which made this model more realistic [2].

Since for long wavelengths (k = 0) the experimental optical data are more accurate, in
the MELF-GOS method the values of Aj, h̄ωj and h̄γj in Equation (3) are determined by
fitting the outer-shell ELF contribution to the available experimental optical spectrum by
means of the following relation:

Im
[

−1
ε(k = 0, E)

]
outer

' Im
[

−1
ε(k ' 0, E)

]
exp

=

∑
j

Aj

(h̄ωj)2 Im

[
−1

εM
(
k = 0, E; ωj, γj

)]Θ(E− Eth,j) = ∑
j

Aj
E h̄γj

[(h̄ωj)2 − E2]2 + [E h̄γj)2 Θ(E− Eth,j). (5)

Here, we have used the fact that for k = 0 the Mermin-type ELF is identical to the
Drude-type ELF, which is explicitly written on the most right hand side of Equation (5).
The consistency of the fitting procedure is checked by fulfilling the Kramers–Kronig and
f -sum rules [62]. The convenience of this method is that it includes in a realistic way the
electronic excitation spectrum of liquid water (including collective and individual electronic
excitations), as well as many body, chemical and physical state effects.

The top left panel of Figure 1 depicts by red circles the experimental optical ELF (at
k = 0) measured from inelastic X-ray scattering spectroscopy [36,63,64], as well as the
fitting made by means of the MELF-GOS method (dotted blue line). Subsequent panels
show the calculated ELF for transferred momenta k = 1.18, 1.96 and 2.11 a.u., obtained
from the analytical properties of the Mermin-type ELFs (without the need to introduce
further assumptions about the dispersion relation) [30]. A broadening and reduction in the
intensity of the ELF as the momentum transfer increases is observed, which agree with the
theoretical expectation that individual excitations should gradually prevail over collective
excitations for large momenta. The MELF-GOS results (dotted blue lines) agree fairly well
with the experimental data (red circles) in a large range of energy transfers, which is one
of the reasons why the MELF-GOS method is considered to lead to reliable energy-loss
quantities for charged particles in liquid water.

From the MELF-GOS method it is also possible to calculate the mean excitation
energy [62] of liquid water, which allows obtaining the ion or electron stopping powers at
high projectile energies from the Bethe theory [65–67]. We obtain a value of I = 79.4 eV [11],
which is in agreement with recent recommendations [12,68].
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Figure 1. Energy loss function (ELF) of liquid water as a function of the energy transfer E at several
momentum transfers h̄k from LR-TDDFT (black solid lines) and from MELF-GOS (blue dotted lines)
approaches. Red circles correspond to experimental data [36,63,64].

2.1.2. Linear-Response Time-Dependent Density Functional Theory

The polarisation function of the medium χ(k, E) can be determined by using linear-
response time-dependent density functional theory (LR-TDDFT) by solving the equation [69]:

χ−1(k, E) = χ−1
0 (k, E)− vC(k)− fxc(k, E) , (6)

where χ−1
0 (k, E) is the non-interacting (or independent particle) polarisation calculated from

the Kohn–Sham wavefunctions and band structures, vC(k) is the bare Coulomb interaction,
and fxc(k, E) is the TDDFT exchange and correlation kernel (usually Adiabatic Local
Density Approximation (ALDA) but also the Adiabatic Perdew–Burke-Ernzerhof (APBE)).
The microscopic dielectric matrix ε(k, E) is then related to the polarisation χ(k, E) by:

ε(k, E) = 1− vC(k)χ(k, E) . (7)

In the current calculations, we employ the APBE kernel [70] to obtain fxc(r, t) which is
related to the PBE exchange-correlation vxc potential used in ground state density functional
theory (DFT) calculations and the electronic density ρ(r, t) at the coordinates r and time
t through:

fxc(r, t) =
{

d
dρ

vxc[ρ]

}
ρ=ρ(r,t)

. (8)

Even though the Random Phase Approximation (RPA) ( fxc = 0) provides a reasonable
estimation of the macroscopic dielectric matrix, ALDA calculations have shown a general
improvement in the agreement with the Inelastic X-Ray Scattering (IXS) experimental
results, not only in finite-systems but also in crystalline systems [71–75]. This good TD-
LDA (TD-DFT with ALDA kernel) behaviour in describing the IXS is commonly due to
the less prominence of excitonic effects in the ELF in contrast to the absorption spectra
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(the ALDA and APBE omit the ultra-nonlocal term fundamental to represent them in the
macroscopic limit, see Ref. [76]). Nevertheless, these approximations are not a general
rule, and they must be checked for each system case by case (see, for instance, Ref. [77]
where the excitonic effects are not negligible in ELF). The inclusion of self energy lifetimes
in ALDA and APBE (TD-LDA+LT) has shown to improve the agree with the experiments
in the high momentum transfer k regime [78,79]. In a periodic system, the inverse of the
macroscopic dielectric function (which is the quantity to be compared to the experiment) is
determined as

1
εM(Q, E)

= ε−1(k, E)G,G, (9)

where Q = k+G, with G being the reciprocal lattice vector of the target [80,81]. The energy
loss function is then given by Im(ε−1

M ). The off-diagonal elements of the dielectric matrix
are responsible for the Local Fields Effects (LFEs) and become essential in inhomogeneous
systems where localisation of atomic orbitals plays a significant role [75].

Calculations require previous generation and optimisation of a liquid water simulation
box in the electronic ground state. Being an amorphous system, liquid water displays large
degrees of randomness. To overcome the prohibitive generation of a statistical independent
optimised water configurations ensemble, we assumed that a single snapshot of the liquid
water configuration is enough to obtain its energy loss function ELF(k, E). This relies on
previous photoabsorption spectra simulations of liquid water, where different molecular
arrangements showed similar optical response [82].

A water supercell was generated by carrying out molecular dynamics (MD) simula-
tions with several thousand molecules, using the empirical TIP3P force-field [83] imple-
mented in the LAMMPS package [84]. The simulations ran for 100 ps, the first 10 ps being
due to reach thermodynamic equilibrium at the temperature of 300 K. A cubic cell with side
of 0.985 nm that can accommodate 32 water molecules to reproduce the experimental water
density at room conditions (1 g/cm3) was then obtained. This cell size is a trade-off between
reasonable computational effort of the many-body calculations and good agreement with
experimental ELF data [36,63,64]. Finally, this cell was further relaxed imposing periodic
boundary conditions below 10−3 Ry/Å for the interatomic forces via first-principles DFT
calculations as implemented in the Quantum Espresso code suite [85], using PBE-GGA
functionals [86] for both O and H to deal with the electron-electron Coulomb repulsion. To
treat the ion-electron interaction we have used the Troullier–Martins (TM) norm-conserving
pseudopotentials tabulated in the Quantum Espresso web page. Using the Γ point to
sample the first Brillouin zone and a (kinetic) energy cut-off of 130 Ry, the self consistent
DFT convergence is reached within the energy error of 10−5. It should be noted that, even
though a recent study optimised liquid water samples by ab initio molecular dynamics [87],
the current approach can be considered for all practical purposes equivalent (which will be
seen from the results in the coming paragraphs), as our final classical molecular dynamics
was also optimised by first principles prior to the ELF calculation.

First principles simulations of the ELF of liquid water for the optimised cell were
carried out using the Lanczos chains algorithm (LCA) implemented in the turboEELS
code [88]. LCA main advantage is that it allows to avoid the sum over the excited states.
Calculations were performed in the energy range 0 ≤ E ≤ 100 eV for momentum transfers
0 ≤ k ≤ 2.5 a.u., with a resolution of 0.25 a.u. Due to the random orientation of water
molecules, only the dependence on the wave vector module k was considered. The water
ELF converged with a 4× 4× 4 Monkhorst-Pack mesh grid and 600 Lanczos iterations.

The LR-TDDFT results for the ELF of liquid water at various momentum transfers
are shown by solid black lines in Figure 1, and are compared to the MELF-GOS method
predictions (dotted blue lines) and the experimental data from X-ray scattering spectroscopy
(red symbols) [36,63,64]. It can be seen that LR-TDDFT calculations give very good results
at the optical limit (k = 0), as well as an excellent description of the ELF evolution for
finite momentum transfers. Particularly, the agreement with experiments at momentum
values of 1.96 a.u. and 2.11 a.u. is remarkable, and better than the MELF-GOS predictions,
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which slightly overestimate the experimental ELF at large momenta. Noteworthy, current
results are closer to the experimental data than similar LR-TDDFT calculations recently
reported [87].

It should be noted, though, that despite the success of the LR-TDDFT calculations of
the ELF of liquid water, ab initio determinations become prohibitive for energy transfers
larger than 100 eV as well as for very large momentum transfers. Therefore, any further
calculation of the ELF based on LR-TDDFT will require its extrapolation to E > 100 eV
and k > 2.5 a.u. by means of the MELF-GOS methodology. The effect of using these two
approaches to the ELF of liquid water on the energy-loss quantities for carbon ions and
their secondary electrons will be analysed in the following sections.

2.2. Energy Loss of Swift Carbon Ions in Liquid Water

The dielectric formalism [47,66,89–91] represents the standard theoretical framework
for studying the inelastic scattering of fast charged particles in condensed media, where the
ELF of the material accounts, in an effective way, for the electronic excitation spectrum of the
target in condensed phase. The model assumes that the perturbation produced on (and by)
the moving charged particle is small and that it is possible to apply first order perturbation
theory, i.e., that the particle both before and after scattering can be described by plane
waves (the so-called first Born approximation, FBA). An important consequence of the
dielectric formalism is that the differential inelastic scattering cross section can be factorised
into a particle dependent (kinematic) factor and a material-dependent (dynamic) factor.

Let us consider a swift ion with net charge q, mass M and atomic number Z moving
with kinetic energy T through a medium having a dielectric function ε(k, E). The electronic
interactions are usually characterised by the energy E and momentum h̄k transferred in
an inelastic collision between the incident ion and the target electrons, whose probability
per unit path length Pi−e

q (T, k, E) is given by [30] (the superscript “i−e” refers to the
ion-electron interaction):

Pi−e
q (T, k, E) =

d2Λi−e
q (T, k, E)
dE dk

=
e2

πh̄2
M[Z− ρq(k)]2

T
1
k

Im
[
−1

ε(k, E)

]
, (10)

where e is the fundamental charge, ρq(k) is the Fourier transform of the electronic charge
density of the projectile of charge state q and Im[−1/ε(k, E)] is the energy loss function
(ELF) of the material, Equation (1). In this work, the electronic charge density of the
projectile is described by the statistical model proposed by Brandt and Kitagawa [92].

From a macroscopic point of view, Equation (10) corresponds to the inelastic doubly
differential cross section (IDDCS), d2Λi−e

q (T, k, E)/dE dk, from which one can obtain the
statistical moments of the energy-loss distribution: the zeroth moment corresponds to the
inverse inelastic mean free path (IIMFP), Λq(T), the first moment to the stopping power,
Sp,q(T), and the second moment to the energy-loss straggling, Ω2

q(T), i.e.,:

Mn
q (T) =

∫ E+

E−
dE En

∫ k+

k−
dk Pi−e

q (T, k, E), (11)

where the symbolMn
q (T) denotes the statistical moment of order n for the energy-loss

distribution per unit path length of a projectile of charge state q. The IIMFP represents the
average number of inelastic collisions experienced by the projectile per unit path length;
the stopping power is the average energy lost per unit path length, and the energy-loss
straggling is related to the width of the energy loss distribution.

The integration limits of Equation (11) are obtained by energy and momentum con-
servation in an inelastic collision. The lower limit for the energy transfer is E− = 0 if the
target is a metal, or E− = Eth (the excitation threshold energy) if it is a semiconductor
or an insulator. For liquid water E− = Eth = 7 eV. The upper limit in the energy transfer,
assuming a collision with a free electron at rest, is E+ = 4 m

M T [93] (where m is the electron
mass), although the amount of energy transferred can be a little bit larger due to the recoil
of the target. The limits for the momentum transfer are h̄k± =

√
2M[
√

T±
√
(T − E)]. For
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ion projectiles, as is the case for carbon ions, M� m, and the following simplifications are

possible: h̄k− = E
√

M
2T , h̄k+ → ∞ and E+ → ∞.

On the other hand, it is necessary to consider that when a projectile travels through
a condensed medium it can dynamically change its charge state due to electron capture
and loss processes, which affect its energy loss. Therefore, after a few femtoseconds, when
the projectile charge-state reaches a dynamical equilibrium, the total energy-loss quantities
(Λ(T), Sp(T), Ω2(T)) can be expressed as a weighted sum over their possible charge-states:

Mn(T) =
Z

∑
q=0

φq(T)Mn
q (T) , (12)

where φq(T) is the probability of finding the projectile in a given charge state q (the
charge state fraction) at the energy T, which depends on the target nature, the projectile
and its energy. Experimental data of equilibrium charge state fractions for carbon ions
incident on water vapour are scarce, while those for liquid water do not exist. To our
knowledge, only experimental data for C0 and C1+ in water molecule fragments have been
obtained by time-of-flight mass spectrometry by Montenegro et al. [94], which are shown
in Figure 2a by symbols. In our calculations, the equilibrium charge-state fractions as a
function of the carbon projectile energy in water are obtained from a parameterisation
to available experimental data from different targets and ions developed by Grande and
Schiwietz [95] and where the Bragg’s additivity rule is employed for compound targets.
The results of this approach are shown in Figure 2a by solid lines. Experimental [94] and
parametric model [95] results agree around 10 keV/u; however, they deviate at lower
collision energies. At energies larger than 3 MeV/u the parameterisation predicts fully
stripped carbon ions. Note also the growing influence of small carbon charge fractions as the
projectile energy decreases, which must be taken into account (according to Equation (12))
to calculate energy-loss quantities around the Bragg peak region energies. A classical
trajectory Monte Carlo method was used by Liamsuwan and Nikjoo [96] to calculate the
equilibrium charge fractions of carbon ions in water molecules, obtaining anomalously
high values for C4+ fraction. Using these charge fractions in Equation (12), a stopping
power was obtained with an unrealistic shoulder at energies lower than at the maximum
Sp [13]. It is clear that the charge state fractions strongly influence the calculated stopping
power for ions such as carbon, which can be found in a large number of different charge
states, particularly at energies around the maximum stopping power. Therefore, accurate
experimental or theoretical determinations of the charge fractions of carbon ions in liquid
water are extremely desirable.

Figure 2b represents the electronic stopping power of carbon ions impinging on liquid
water for each charge state multiplied by their charge fraction, Sp,q(T)φq(T), as a function
of the projectile energy T, as obtained from Equations (11) and (12). Solid (dotted) lines
correspond to calculations using the ELF of liquid water derived from the LR-TDDFT
(MELF-GOS) approach. Both values are quite similar, although small discrepancies appear
around the maximum stopping power and are accentuated when the incident projectile
energy decreases. This is a consequence of the differences between both calculated ELFs at
the lower energy transfers E. For small charge fractions the stopping power calculated from
the MELF-GOS method is systematically (moderately) larger than the results obtained from
the LR-TDDFT model. We notice that at energies larger than 3 MeV/u only bare carbon
ions contribute to the stopping. However, at intermediate energies around the maximum
of the stopping power (∼200 keV/u), several intermediate charge states contribute. In
view of these results, it can be deduced that the widely used assumption that the stopping
power of heavy ions can be calculated from the proton stopping power through an effective
charge qeff, such as Sp,heavy ion = q2

effSp,proton, is not appropriate [97].
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Figure 2. (a) Equilibrium charge state fractions, φq(T), of carbon ions in water, as a function of
the incident energy T. Solid lines come from the parameterisation from Ref. [95] and Bragg’s rule,
whereas symbols correspond to experimental data from [94]. (b) Stopping power multiplied by
the equilibrium charge fraction, Sp,q(T)φq(T), for each charge state of carbon in liquid water, as
a function of the incident energy. Solid (dotted) lines correspond to the LR-TDDFT (MELF-GOS)
approach for the ELF.

The 0th and 2nd moments of the electronic energy-loss distribution of carbon ions in
liquid water are depicted in Figure 3a as a function of the incident energy. All quantities
have been weighted with the corresponding charge state fractions, Equation (12). Black
solid (blue dotted) lines correspond to calculations based on the LR-TDDFT (MELF-GOS)
approach to describe the ELF of liquid water. The left part of the axis in Figure 3a shows the
IIMFP, which presents a maximum value at energies around 100–200 keV/u, corresponding
to a mean free path of about 0.05 nm. At high projectile energies, the calculations obtained
from the LR-TDDFT and MELF-GOS ELFs are rather similar, whereas at energies around
and lower than the maximum IIMFP the results from MELF-GOS are slightly larger than
the ones obtained from LR-TDDFT.

The electronic energy-loss straggling, Ω2, is presented in the right axis of Figure 3a. As
the incident projectile energy increases, Ω2 grows, approaching a limiting value, known as
the Bohr energy-loss straggling, Ω2

B [35]. At high projectile energies and elemental targets
of atomic number Zt it is possible to evaluate the Bohr straggling as Ω2

B = 4πe4NZ2Zt.
Applying the additivity Bragg’s rule for compound targets, a value Ω2

B = 3.14× 105 eV2/nm
is obtained, which is in good agreement with the calculated value. No differences are found
between the energy-loss straggling obtained from the LR-TDDFT and the MELF-GOS ELFs in
all the energy range.

The calculated electronic stopping power Sp of carbon ions in liquid water is shown
in Figure 3b for the LR-TDDFT (black solid line) and the MELF-GOS (blue dotted line)
methodologies to describe the ELF of liquid water. Both approaches provide similar
values for energies larger than ∼1 MeV/u. At lower energies, the MELF-GOS method
systematically gives larger stopping power values than those obtained by the LR-TDDFT
ELF; the largest discrepancy is ∼3% and occurs around the maximum stopping power
at carbon energies ∼220 keV/u. Recently, a sophisticated experiment to measure the
stopping power of carbon ions in liquid water (whose results are depicted by red circles
in Figure 3b) has been performed [13] for energies in the range 1–6 MeV (around the
maximum stopping power) using the inverted Doppler shift attenuation method with
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an improved experimental setup than in preliminary measurements [98]. These are the
only experimental stopping power data available for carbon ions in liquid water around
the maximum. Our theoretical stopping power calculations (see Figure 3b) present their
maximum value at the same energies as the experiments [13], although with higher values,
but close to the experimental error bars. The stopping power obtained with the LR-TDDFT
model is closer to the experimental data, being only 5% higher than the upper limit of the
experimental error bars. It is worth to recall at this point, in any case, the comment made
in Ref. [99] regarding previous measurements by Baek et al. for carbon in graphite using
the same inverted Doppler shift attenuation method, in which the normalisation method
used may underestimate the absolute values by ∼15%. Although it does not seem that the
same issue applies for the most recent determinations [13], such an increase applied to the
experimental data would make it to almost perfectly match with our calculations based
on both the MELF-GOS and the LR-TDDFT ELF, in shape as well as in absolute value. At
low carbon energies, the stopping power for water molecule fragments has been measured
by Montenegro et al. [94] (magenta square symbols in Figure 3b, which agree within the
experimental uncertainties with the presented calculations. Although at these very low ion
energies nuclear stopping power (not included in current calculations) may be important,
an estimate using the semiempirical code SRIM2013 [100] shows that, for energies around
10 keV/u, nuclear stopping only contributes ∼10–15% to the total energy loss. Moreover,
Montenegro et al. also measured electronic energy-loss, so their experimental data can
be directly compared to our results. It should be noted that, for the integral energy-loss
quantities, only small differences in the calculations are observed using the MELF-GOS or
LR-TDDFT approaches to the ELF.
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Figure 3. Energy-lossquantities of carbon ions in liquid water as a function of the incident projectile
energy T. Black solid (blue dotted) lines correspond to our calculations when the liquid water
ELF is described by the LR-TDDFT (MELF-GOS) approach. (a) Inverse inelastic mean free path
(IIMFP) (left side axis) and energy-loss straggling Ω2 (right side axis). (b) Electronic stopping power.
Available experimental data for liquid water are shown by red circles [13] and measurements for
water molecules are depicted by magenta squares [94]. Other models and simulations are also shown
(see the text for details).

Due to the enormous importance of the stopping power in several areas of physics and
materials science, several models or semiempirical approaches to predict it for a variety
of ions, targets and energies have been developed. Figure 3b shows the recommended
data by ICRU [99] by a cyan dash-dotted line, where the agreement with the available
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experimental data [13,94] is very good, as the ICRU compilation mainly relies on available
experimental data. The semiempirical code SRIM2013 [100] is depicted by a green dash
double-dotted line, which for compound targets is based on the Bragg’s additivity rule and
where an extrapolation of the experimental stopping power for H, He and Li ions was used.
This widely used code predicts stopping power values with the maximum shifted towards
larger energies and (particularly) with higher values than reported in the experiments [13].
The results of the theoretical model CasP v.5.2 [101] are shown by a dark green dotted
line. CasP employs a non-perturbative unitary convolution approximation (UCA) method
to calculate the impact-parameter dependent energy loss for each target-subshell and for
each projectile charge-state separately. In this calculation for carbon in water, CasP uses a
value of I = 78 eV [68] for the mean excitation energy of liquid water. The stopping power
calculated by the CasP code is lower than the other codes and the experimental data. All
the calculated and semiempirical stopping powers practically merge at energies larger than
3 MeV/u.

2.3. Angular and Energy cross Sections of Electrons Generated by Energetic Carbon Ions

It is not sufficient to count with an accurate knowledge of the integral energy-loss
quantities (such as the stopping power or the total number of emitted electrons, i.e., the
total ionisation cross sections) to evaluate the biodamage produced in the target. The
angular and energy distributions of the secondary electrons are also crucial to understand
how the electron cascade transports the energy lost by the projectile around its path. Based
on the dielectric response formalism (as explained in the previous section), a model has
been developed [39,40] able to calculate, in a relatively simple way and with reasonable
accuracy, the energy (i.e., the ionisation singly differential cross sections, ionis-SDCS) [39]
and the angular distributions (i.e., the ionisation doubly differential cross sections, ionis-
DDCS) of secondary electrons generated by the incidence of energetic ions in condensed
targets [40]. The advantage of this model lies on its applicability to a wide range of energies
and projectile-target combinations, especially in the condensed phase, and on its simplicity,
which makes it easy to be implemented in radiobiological models, with a reasonable
computing time.

Starting from Equation (10) and using the relation between the macroscopic Λ = N σ
and the microscopic σ cross sections, where N is the molecular density of the material, the
total ionis-DDCS of an ion with energy T can be expressed as:

d2σi−e
q,ionis(T, k, W)

dW dk
=

e2

πh̄2N
M[Z− ρq(k)]2

T
1
k ∑

α

Im
[

−1
ε(k, Bα + W)

]
α

, (13)

where the sum goes over the different target electronic (both outer- and inner-) shells, i.e.,
α = outer/inner. The transferred energy in an ionising collision is expressed as E = Bα +W,
where W is the kinetic energy of the secondary electron and Bα is the binding energy of

the α electronic shell. Im
[

−1
ε(k, Bα + W)

]
α

refers to the outer- or inner-shell contributions

to the ELF, as defined in Equation (1). For liquid water we take the oxygen K-shell as an
inner-shell with binding energy BO

1s = 540 eV [59]. For the outer-shells of liquid water (and,
in general, for organic materials), an approximated mean binding energy was introduced,
because the outer-shell (i.e., valence) ELF only presents a single clear excitation, due to the
closeness among the binding energies of the different outer-shells [39]. For liquid water,
the mean binding energy is B = 13.7 eV [42].

The energy spectrum of the emitted secondary electrons generated by an incident
ion, dσi−e

q,ionis(T, W)/dW, or the ionisation singly differential cross section (ionis-SDCS), is
simply obtained by integrating Equation (13) over momentum transfers:

dσi−e
q,ionis(T, W)

dW
=
∫

dk
d2σi−e

ionis(T, k, W)

dW dk
. (14)
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Figure 4 shows the distributions of energy W of the secondary electrons (ionis-SDCS)
generated by carbon ions with kinetic energies from 0.2 MeV/u up to 1 GeV in liquid water.
Solid (dotted) lines are calculations based on the LR-TDDFT (MELF-GOS) approach to
evaluate the ELF of liquid water. At high energies W of the emitted electrons, both models
give similar results and only at energies W less than 10 eV appreciable (but not significant)
differences appear. The maximum value of the ionis-SDCS is for T = 0.2 MeV/u, which
corresponds to the energy at which the maximum stopping power occurs. It is interesting to
remark that when the energy of the incoming carbon ion increases, the value of ionis-SDCS
diminishes very quickly. For instance, when the energy T increases from 0.2 MeV/u to
20 MeV/u, the (maximum) value of ionis-SDCS decreases in almost a factor 14. It is also
worth mentioning that the ionis-SDCS presents, for a given ion energy, an W-value at which
the cross section drastically drops to zero. This corresponds to the kinematic limit, i.e., the
maximum energy that an ion can transfer to an electron [93], which grows with the ion
energy. For the case T = 0.2 MeV/u, this limit is seen in the figure at W ∼ 600 eV. Circles
in the figure correspond to experimental data in water vapour for T = 6 MeV/u carbon
ions [26], while triangles are for T = 4 MeV/u [102]. The agreement between our results
and the experimental data for 6 MeV/u is reasonable, especially considering the phase
difference of the targets analysed. However, the experimental data for 4 MeV/u seem too
low compared to our calculations. As it will be discussed in the following, there might be
some scaling issue with the experimental data from Ref. [102], as a 4 MeV/u-ion should
have a larger ionis-SDCS than a 6 MeV/u one.

100 101 102 103
10-6

10-5

10-4

10-3

10-2

1 GeV

20 MeV/u

6 MeV/u

4 MeV/u

 

 

io
ni

s-
SD

C
S 

(n
m

2 /e
V)

W (eV)

T=0.2 MeV/u 2 MeV/u

Figure 4. Energy distributions (ionis-SDCS) of emitted electrons as a function of the ejected kinetic
energy W, for several carbon incident energies T. Solid (dotted) lines correspond to our calculations
for liquid water using the LR-TDDFT (MELF-GOS) approach. Symbols are experimental data for
water vapour coming from Ref. [26] (6 MeV/u carbon ions, full circles) and from Ref. [102] (4 MeV/u
carbon ions, open triangles).
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The ionis-DDCS, in terms of the scattering angle θ1 of the incident ion, can be calculated
taking into account the relationship between the momentum transfer h̄k in an inelastic
collision and this angle:

h̄k =

√
2M
[

2T − (Bα + W)− 2
√

T(T − (Bα + W)) cos θ1

]
. (15)

However, our objective is to obtain the ionis-DDCS as a function of the energy W
and the angle θ2 of the electron emitted in the inelastic collision. For this purpose, it was
assumed [40] that both angles are proportional, θ1 = C · θ2, which means that the maximum
position in ionis-DDCS(θ2) is correlated with the maximum position in ionis-DDCS(θ1),
and that the shapes and widths of these distributions are proportional. To calculate C
we take into account that the ionis-DDCS(θ2) is dominated by the binary encounter peak,
i.e., a well-defined maximum at θBE

2 = arccos
√

MW/(4mT), where the collision can be
regarded as a binary collision between free particles. On the other hand, the ionis-DDCS(θ1)
is also dominated by a maximum at θmax

1 . In principle, it is reasonable to assume that
this maximum value corresponds to the binary encounter collision, so the proportionality
constant for a projectile with mass M and kinetic energy T that ejects an electron with
energy W is C(M, T, W) = θmax

1 /θBE
2 .

If we express the ejection angle θ2 of the emitted electron as a function of the solid
angle, dΩ2 = 2π sin θ2dθ2, the ionis-DDCS(W, θ2) to eject electrons in the angle θ2, per unit
energy W and solid angle Ω2 is [40]:

d2σi−e
q,ionis

dW dΩ2
=

C e2

2π2h̄2N sin θ2

M[Z− ρq(k)]2

T ∑
α

Im
[

−1
ε(k, Bα + W)

]
α

×
√

T(T − (Bα + W)) sin (Cθ2)

2T − (Bα + W)− 2
√

T(T − (Bα + W)) cos (Cθ2)
. (16)

This equation, based on the first Born approximation (i.e., no interaction considered
between the ejected electron and the scattered and residual ions), can be improved by taking
into account two center effects (i.e., the ejected electron being attracted by the projectile after
the collision) if we multiply it by the semiempirical Salin’s factor FS, given by [93,103,104]:

FS =
u

1− e−u , (17)

with:

u = 2πBα
1/2

( T
M

+ W − 2
(

TW
M

)1/2
cos θ2

)−1/2

−
(

T
M

)−1/2
 . (18)

Thus the number of electrons ejected in the forward direction (electron capture to the
continuum) attracted by the field of the projectile after the collision is corrected, showing
an improvement with the experimental data for small angles for H and He projectiles in
several targets [40].

Figure 5 represents the angular distribution (ionis-DDCS) of electrons ejected by the
incidence of (a) 4 MeV/u and (b) 6 MeV/u C6+ ions in water, as a function of the emission
angle θ2 at several energies W of the emitted electrons. The results obtained from the
LR-TDDFT (solid lines) and from the MELF-GOS approaches (dotted lines) for liquid water
are very similar in most of the cases, showing small differences only at very low electron
energies. As the energy W of the emitted electrons increases, a maximum appears in the
angular distribution, which corresponds to the binary encounter peak. Comparison with
experimental data for 6 MeV/u carbon ions in water vapour [26] shows a good agreement
except for very large angles and very low emitted energies. These discrepancies may
be attributed to the phase difference between the experiments (gas) and the calculations
(liquid). Regarding the experimental data fo 4 MeV/u carbon ions [102], the agreement
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is also good in terms of the shapes of the ionis-DDCS curves, although the experimental
absolute values are systematically lower than our calculations for most of the emission
energies W (except for the lower ones). As commented earlier, this might point out to a
normalisation issue with this particular set of data [102]. Actually, similar conclusions were
drawn in Ref. [105] when comparing their classical trajectory Monte Carlo calculations to
these and other sets of ionis-SDCS and ionis-DDCS data for different projectiles.
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Figure 5. Angular distributions (ionis-DDCS) of emitted electrons by the impact of (a) 4 MeV/u and
(b) 6 MeV/u carbon ions, as a function of the emitted angle θ2 at different values of the emission
energy W. Solid (dotted) lines correspond to our calculations for liquid water using the LR-TDDFT
(MELF-GOS) approach, while symbols are experimental data for 4 MeV/u (empty symbols [102])
and 6 MeV/u (full symbols [26]) carbon ions in water vapour. (c) Angular distribution (ionis-DDCS)
of 100 eV electrons generated by the incidence of carbon ions at several energies T in liquid water.

Figure 5c shows the angular distribution (ionis-DDCS) of ejected electrons with energy
W = 100 eV in liquid water, due to the impact of carbon ions having energies between
0.2 MeV/u and 1 GeV. The calculations have been convoluted with the energy-dependent
equilibrium charge state fraction of the projectile (see Figure 2a), which show that projectiles
with energies larger than 3–4 MeV/u travel through water as bare C6+ ions. Results ob-
tained from the LR-TDDFT (solid lines) and from the MELF-GOS (dotted lines) approaches
to the liquid water ELF are practically identical. At carbon energies larger than 2 MeV/u,
the relative shapes of the angular distributions are similar, but for T = 0.2 MeV/u, the
behaviour of the ionis-DDCS is more forward-peaked, probably due to the contributions in
this case from the charge states from C2+ up to C5+.

2.4. Cross Sections for Electrons in Liquid Water

A secondary electron will suffer elastic and inelastic collisions with the water molecules
until thermalising its energy and eventually becoming solvated or attached to the molecules
in the medium. The elastic collisions will change the direction of motion of the electron,
while the inelastic events will slow it down until stopping. In addition, as a result of the
inelastic collisions, the energy lost by the electron may be locally deposited in the medium
by electronic excitations, or it may lead to the ejection of another electron by ionisation,
transporting the energy further away. These inelastic events can also fragment water
molecules to produce chemically reactive species.

Elastic scattering of electrons by atomic cores can be dealt with using two different
levels of theory: the relativistic Mott theory [106] with a potential taken as best fit of data
from Hartree–Fock (HF) simulations, typically in a central field (Section 2.4.1), or the direct
self-consistent solution of the Dirac equation, which can be extended to multi-centered
potentials [46], such as in the case of liquid systems (Section 2.4.2).
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The inelastic collisions lead to electronic excitations and ionisations, whose cross
sections for electrons in liquid water will be obtained in Section 2.4.3 within the framework
of the dielectric response theory, which will be also used to estimate the electron-induced
probabilities for water molecule fragmentation.

2.4.1. Elastic cross Section of an Electron with a Water Molecule Obtained by the
Mott Theory

This approach gives access to the elastic differential scattering cross-section in the solid
angle dΩ of an electron with an atomic core (here referred as “e−c” interaction), which
in the case of scattering from a central potential can be written using relativistic quantum
mechanics as [106–110]:

dσe−c
el

dΩ
= [| f (θ)|2 + |g(θ)|2][1 + S(θ)P · n̂] , (19)

where the subindex “el” refers to the elastic electron scattering. The functions f (θ) and
g(θ) are the direct and spin-flip scattering amplitudes, respectively, and θ represents the
scattering angle, S(θ) is the Sherman function and

n̂ =
ki × kf
|ki × kf|

(20)

is the versor orthogonal to both the initial (h̄ki) and final (h̄kf) momenta of the electrons,
respectively. P = 0 (1) means that the beam emerges not (fully) polarised.

However, in our case being the target a water molecule, for which the central symmetry
is broken, the previous derivation must be generalized to deal with the electron-molecule
scattering. In the molecular case, one has:

dσe−c
el

dΩ
= ∑

m,n
exp(ik · rmn) [ fm(θ) f ∗n (θ) + gm(θ)g∗n(θ)] , (21)

where h̄k is the momentum transfer, rmn = rm − rn, with rm(rn) being the position vector
of the mth(nth)–atom in the molecule, and fm(θ), gm(θ) are the direct and spin-flip scat-
tering amplitudes of the mth–atom. As water molecules in liquid phase are randomly ori-
ented, one can average over all the orientations. By performing this average, Equation (21)
reads [108]:

dσe−c
el

dΩ
= ∑

m,n

sin krmn

krmn
[ fm(θ) f ∗n (θ) + gm(θ)g∗n(θ)] . (22)

Writing explicitly this expression for the water molecule, the elastic differential scatter-
ing cross-section (EDCS) of electrons impinging on randomly oriented water molecules is:(

dσe−c
el

dΩ

)
H2O

= 2

(
dσe−c

el
dΩ

)
H

+

(
dσe−c

el
dΩ

)
O

+ 2
sin krOH

krOH
[ fH(θ) f ∗O(θ) + fO(θ) f ∗H(θ) + gH(θ)g∗O(θ) + gO(θ)g∗H(θ)]

+2
sin krHH

krHH
[| fH(θ)|2 + |gH(θ)|2] , (23)

where rOH = 0.09572 nm and rHH = 0.1514 nm are the equilibrium bond lengths of the water
molecule, fO/H(θ), gO/H(θ) are the direct and spin-flip scattering amplitudes of O and
H. The first and second terms describe the independent atomic contribution to the EDCS,
while the third and fourth terms include the interference between elastically scattered
electron waves emerging from the atomic constituents of water.

The many-body electrostatic atomic potential in the Dirac equation was modelled by a
screened Coulomb potential. The latter is obtained by multiplying a bare Coulomb potential
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by a function expressed as a superposition of Yukawa functions, whose parameters were
set according to a best fit of data from Hartree–Fock simulations [107]. Exchange effects
were described by using the Furness and McCarthy formula [111].

2.4.2. Elastic cross Section of an Electron with Liquid Water Molecules Obtained by the
First Principles Approach

The Dirac Hamiltonian of many electron systems with mass m, interacting via a
Coulomb potential can be written in Hartree–Fock (HF) approximation [112]:(

mc2 + VH + Vexc − E −cΣ · i∇
−cΣ · i∇ −mc2 −VH −Vexc − E

)(
ψL
ψS

)
= 0, (24)

where ψL and ψS are, respectively, the large and small components of the Dirac spinor, and
VH, Vexc are the Hartree and non-local exchange terms. E is the energy, while Σ corresponds
to the vector of the Pauli matrices. The numerical solution of the Dirac Hamiltonian,
Equation (24), was found by defining a projector:

π = ∑
j
|gj〉〈gj| , (25)

onto a finite functional space G of L2-functions gjs. In our numerical model the functions
gjs are Gaussians. This approach is particularly suitable when dealing with molecular
systems without spherical symmetry, such as the case of a liquid water cluster. The Dirac
equation can be projected in this functional space as follows:

(H0 − E + πVπ)ψ = 0 , (26)

where H0 is the unperturbed hamiltonian (the kinetic energy in this case). This equation
can be transformed into a Lippmann–Schwinger type of relation:

πψ = π
1

E − H0
πVπψ . (27)

We notice that only the Coulomb potential in the Hamiltonian (26) is projected into the
Hilbert subspace spanned by the projector. Within this framework, the elastic continuum
(excited or scattering states) can be recovered.

The crucial point in this approach is to replace the true total potential V with the
projected potential:

Vβ = ∑
δηµτ

|gδ〉S−1
δη 〈gη |V|gµ〉S−1

µτ 〈gτ |; Sδη = 〈gδ|gη〉 , (28)

which results in the truncation of the long-range part of the HF potential. This procedure
is based on the idea that it is sufficient to have a projected potential Vα that, applied to a
plane wave, correctly reproduces the effect of the long range part of the true potential at
least in a part of the asymptotic region, where Vα(r) ' Vtot(r) (when r is large and far from
the scattering center). This fact guarantees that the scattering wavefunction both inside the
molecular volume, which is the important region for calculating the elastic scattering matrix
elements, and outside the scattering volume, which determines the normalisation condition,
has the correct form. The solution of Equation (26), or equivalently of Equation (27), of
course delivers the eigenvalues of the projected Hamiltonian H0 + πVπ rather than those
of the complete Hamiltonian H0 + V. However, we notice that the eigenvalues of the
projected and complete Hamiltonian coincide, provided that the vectors Vψ and ψ belong
to the projected functional subspace.

We used our numerical relativistic approach based on the HF approximation of the
wavefunction, along with the Fermi golden rule, to assess the total elastic cross section of
electrons moving within liquid water. In particular, due to computational constraints in
terms of prohibitive scaling with the system size, we used a cluster of six water molecules to
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mimic liquid water and account for multiple scattering from the surrounding environment
in liquid phase. It is worth to mention here that Hartweg et al. [113] have recently shown
experimentally that the photoelectron angular distributions for the valence orbitals of
neutral water clusters converges for a size equal or larger than 5–6 molecules, which
may indicate that a cluster of such size might already be a good representation of the
liquid environment.

These six-molecule cluster has been extracted by the configuration previously obtained
by optimising a cell containing 32 water molecules at the experimental density in room
conditions. Wavefunctions and potentials were projected in a set of aug-cc-pVTZ Gaussian
base functions optimised for both hydrogen and oxygen atoms [114] and centered into the
nuclei. Mono- and bi-electronic molecular integrals of the bare Coulomb and exchange
interaction are computed at each self-consistent field cycle [46]. Once the problem to find
the scattering stationary states of the projected Dirac Hamiltonian ĥ = H0 + Vα at the
energy E is solved,

ĥ|ψ+
k (E)〉 = E|ψ+

k (E)〉 , (29)

the differential cross section for unit solid angle is then obtained as follows:

dσe−c
el

dΩ
=

m2

4π2 |〈Φkn̂|T +(E)|Φk〉|2 =
m2

4π2 |〈Φkn̂|V|ψ+
k 〉|

2 , (30)

where m is the electron mass, Φkn̂ is the incoming plane-wave impinging on the water
cluster with momentum k in the direction n̂, Φk is the outgoing free plane wave elastically
scattered in the direction k within the solid angle Ω and (Ω + dΩ), T +(E) is the on-shell
T-matrix, V is the molecular relativistic potential obtained via the self-consistent solution
of the Dirac equation. The scattering wavefunction ψ+

k (E) is characterised by the so-called
outgoing (+) wave boundary conditions, which means that the eigensolutions of the Dirac
equation asymptotically describe a plane wave plus outgoing spherical waves [46,115].

For swift electrons, one may also adopt the first Born approximation (T = V). Fur-
thermore, since V is the approximate representation of the long range Coulomb potential
projected on a finite functional space, one can replace ψ+

k with Φk outside the scattering
volume where the potential dies off [44,45,116].

Figure 6a shows the EDCS of electrons incident in liquid water, dσe−e
el /dΩ, for several

impinging electron energies (T = 10–1000 eV), i.e., the angular distributions of the electrons
emitted at a given angle θ, integrated over the emitted energy, due to elastic collisions.
Solid lines correspond to calculations based on the ab initio approach for a cluster of six
water molecules [43], while dashed lines depict the EDCS calculated for a single water
molecule by means of the Mott theory (the latter given for the selected energies 50, 100
and 1000 eV, to avoid the figure to be too crammed). Symbols are experimental data for
water vapour (squares [117], circles [118], triangles [119] and diamond [120]). In general,
it can be seen how, for this energy range, the Mott theory for the single water molecule
gives results in very good agreement with water vapour experiments, as it is to be expected.
However, the Dirac–Hartree–Fock calculations for the cluster of six water molecules give,
for most of the energies, angular distributions which are significantly different from the
single molecule. Clear examples are the energies of 50 eV, where the cluster presents some
structure in the EDCS around 20◦ and a flatter profile around 90◦, and 1000 eV, at which
the EDCS is in general much more isotropic than for the water molecule. It should be
noted that experimental techniques actually do not discriminate the elastic cross section
from the rotationally inelastic one [24]. Rotational excitations are not accounted for in our
calculations, although their contribution are expected to only have an effect at very small
angles and, moreover, to have a small impact in the case of liquid water. At low angles, the
water molecule polarisability (which is naturally considered in the calculations) may also
have a large effect on the elastic scattering in the gas phase [24].
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Figure 6. (a) Elastic singly differential cross sections (EDCS) of electrons of energy T scattered by
water molecules and a water cluster. Solid lines correspond to ab initio calculations for a cluster of six
water molecules [43], while dashed lines are Mott theory calculations for a single water molecule.
Symbols are experimental data for water vapour [117] (squares), [118] (circles), [119] (triangles)
and [120] (diamonds). (b) Elastic free path (EMFP) for electrons in water, as a function of electron
energy T. Ab initio calculations are shown by a red solid line for a cluster of six water molecules [43],
by a green dotted line for one water molecule, and by a black dashed line for Mott theory calculations
for a water molecule. Symbols represent experimental data for water vapour: [120] (squares), [117]
(triangles), [24] (empty circles) and [27] (full circles).

After integration of the EDCS over the solid ngle dΩ around the scattering angle θ
of the emitted electron, the total elastic cross section (TECS), depending on the electron
energy T, is given by:

σe−c
el (T) =

∫
dΩ

dσe−c
el

dΩ
. (31)

Notice that from the knowledge of the total elastic cross section one can calculate the

macroscopic elastic mean free path (EMFP) for an elastic collision as λel =
1

N σe−c
el

, where

N is the molecular density of the target. In Figure 6b we show the EMFP of electrons in
liquid water as a function on their initial kinetic energy T in the range 10 eV to 20 keV.
The solid red line corresponds to the results obtained from the ab initio model for a cluster
of six water molecules [43], whereas the green dotted line has been obtained, with the
same methodology, for a single water molecule. In addition, it is shown a comparison with
experimental data for water vapour from Katase et al. [120] (squares) and Cho et al. [117]
(triangles), and with the recommendations by Itikawa and Mason [24] (empty circles)
and Song et al. [27] (full circles), as well as a comparison with the Mott theory for the
water molecule (black dashed line). All EMFP (calculated and experimental) for the water
molecule have been obtained from the molecular cross section but using liquid water
molecular density N . Clearly, the Mott theory can excellently reproduce the experimental
data on the gas phase (scaled to liquid density) in the entire energy range, at least down to
10 eV. The Dirac–Hartree–Fock calculation for the single water molecule corresponds quite
well with the Mott calculation and the scaled vapour data, which validates the approach.
However, the ab initio calculation for the cluster of six water molecules, as a proxy for
the liquid medium, shows clear deviations from the molecular behaviour, particularly in
some energy ranges such as below 30 eV or in the range 100–300 eV, which might show
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the signature of the effect of the liquid environment on the EMFP. It should be noted that,
even though the recommended data by Itikawa and Mason [24] and its later revision by
Song et al. [27] constitute, up to date, the most complete reference data with which to
compare the calculated EMFP in water, some discrepancies with these cross sections have
been identifie in a recent simulation study [121], so further research on the elastic (and
inelastic) cross sections in water needed.

2.4.3. Inelastic cross Sections of Electrons in Liquid Water

The inelastic cross sections of electrons in liquid water can be obtained from the di-
electric formalism (as it was done for carbon ions in Sections 2.2 and 2.3). However, several
factors need to be taken into account [42]. First of all, the free electron travelling in the
conduction band of the material is indistinguishable from the valence bound electrons.
This fact, together with electron exchange, have to be considered in the calculations, partic-
ularly for energies lower than ∼500 eV, where these effects are more noticeable. Second,
for electrons with energy <100 eV the first Born approximation, on which the dielectric
formalism is based, is not valid any more, and corrections must be in place to increase its
accuracy. Finally, very low energy (<30 eV) electrons are not able to ionise all the valence
shells. This fact needs to be considered in order to estimate the mean binding energy of the
outer-shell electrons, which determines the ionisation and excitation probabilities.

Starting from Equation (13) for ions, the expression for the direct scattering inelastic
doubly differential cross section (IDDCS) for electrons, within the FBA, is obtained by just
using the electron mass (i.e., taking M = m) and having into account that [Z− ρq(k)]2 = 1,
as the projectile is a point charge. However, as explained in more details in Ref. [42], an extra
exchange term needs to be added for electron projectiles, so IDDCS = IDDCSFBA+ IDDCSxc.

Both for electronic excitations and ionisations, Ochkur developed convenient approxi-
mations for the exchange factors which retain the FBA component for the direct-scattering
amplitude, based on first order Born–Oppenheimer perturbation theory [122–125]. We
have implemented these Born–Ochkur exchange factors for excitations and ionisations [42].

However, the direct FBA expression needs to be corrected for low energy electrons,
which was done in Ref. [42] using a simple Coulomb-field approximation [126], so
IDDCS = IDDCScorr+ IDDCSxc. In practice, the Coulomb-field correction consists on re-
placing, for the FBA cross section, the electron energy T by an energy T′ = T + 2Bα, where
Bα is the binding energy of the target electron involved in the excitation [126]. This change
takes into account the potential energy gained by the incident electron in the field of the
target molecule. In the context of our approximate model for ionisation of liquid water,
Bα = B = 13.7 eV for the ionisation of the outer-shell electrons, while Bα corresponds to
the oxygen K-shell binding energy for the inner-shell ionisation. For the excitation of the
outer-shell electrons, the binding energy is approximated as the threshold for electronic
excitations, Bα = Eth = 7 eV.

Finally, as anticipated above, very low energy electrons (<30 eV) cannot ionise all the
outer-shells of the target. As a consequence, at low energies, the mean binding energy for
the valence shells becomes energy dependent, B = B(T). In Ref. [42], B(T) was estimated
for several biological targets. For liquid water, it evolves from 10.79 eV (first binding
energy) to 13.71 eV (high-energy limit) following a logistic function in the energy range
0–32.3 eV. This correction has a noticeable impact both in the ionisation and (much more
remarkably) excitation cross sections below ∼30 eV.
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Having into account all these considerations, and integrating the IDDCS over momen-
tum transfer, the energy spectrum of secondary electrons (ionis-SDCS) for electron impact
becomes [42]:

dσe−e
ionis(T, W)

dW
=

dσe−e
ionis(T, W)

dW

∣∣∣∣∣
corr

+
dσe−e

ionis(T, W)

dW

∣∣∣∣∣
xc

=
me2

πh̄2N

{
1

T + 2B(T)

∫ k+,out

k−,out

dk
k

Im
[

−1
ε(k, W + B(T))

]
outer

+ ∑
j

1
T + 2Bj

∫ k+,j

k−,j

dk
k

Im

[
−1

ε(k, W + Bj)

]
j

+
1
T

∫ k+,out

k−,out

dk
k

Fionis
xc (T, k, W)Im

[
−1

ε(k, W + B(T))

]
outer

+
1
T ∑

j

∫ k+,j

k−,j

dk
k

Fionis
xc (T, k, W)Im

[
−1

ε(k, W + Bj)

]
j

 , (32)

where the first term (’corr’) corresponds to the Born-corrected direct ionis-SDCS, whereas
the second term (’xc’) accounts for the exchange ionis-SDCS; the superscript ’e-e’ stands for
electron-electron interaction. The Born–Ochkur exchange factor for ionisation is given by

Fionis
xc (T, k, W) = − k2/2m

T−W +
(

k2/2m
T−W

)2
. The integration limits in momentum transfer for the

Born-corrected terms are [127]:

h̄k±,α =
√

2m(T + 2Bα)±
√

2m[(T + 2Bα)− (W + Bα)] , (33)

while for the exchange terms are:

h̄k±,α =
√

2mT ±
√

2m(T − E) =
√

2mT ±
√

2m(T −W − Bα) , (34)

with E = W + Bα, where α = outer/j for the outer/inner-shells.
The integration over energy of the previous expression gives the ionisation total cross

section (ionis-TCS) [42]:

σe−e
ionis(T) = σe−e

ionis(T)
∣∣
corr + σe−e

ionis(T)
∣∣
xc

=
me2

πh̄2N

{
1

T + 2B(T)

∫ W+,out

W−,out
dW

∫ k+,out

k−,out

dk
k

Im
[

−1
ε(k, W + B(T))

]
out

+ ∑
j

1
T + 2Bj

∫ W+,j

W−,j

dW
∫ k+,j

k−,j

dk
k

Im

[
−1

ε(k, W + Bj)

]
j

+
1
T

∫ W+,out

W−,out
dW

∫ k+,out

k−,out

dk
k

Fionis
xc (T, k, W)Im

[
−1

ε(k, W + B(T))

]
out

+
1
T ∑

j

∫ W+,j

W−,j

dW
∫ k+,j

k−,j

dk
k

Fionis
xc (T, k, W)Im

[
−1

ε(k, W + Bj)

]
j

 . (35)

The limits in the integral over the kinetic energy of the emitted electron are W−,α = 0,
which represents the ionisation threshold, either for outer (Bα = B(T)) or inner shells
(Bα = Bj), and W+,α = (T − Bα)/2 limits the amount of energy that the primary electron
can lose, originating from the electron indistinguishability: since now both primary and
secondary electrons are indistinguishable particles moving in the conduction band, the
primary particle cannot end up with less energy than the secondary electron.
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On the other hand, electronic excitations can only be produced (within the assumptions
of our model) for energy transfers E between the excitation threshold Eth and the mean
binding energy of the outer shell electrons B(T), as any larger transfer will lead to ionisation.
So the excitation total cross section (excit-TCS) will be given by [42]:

σe−e
excit(T) = σe−e

excit(T)
∣∣
corr + σe−e

excit(T)
∣∣
xc

=
me2

πh̄2N

{
1

T + 2Eth

∫ E+

E−
dE

∫ κ+

κ−

dk
k

Im
[
−1

ε(k, E)

]
outer

+
1
T

∫ E+

E−
dE

∫ k+,out

k−,out

dk
k

Fexcit
xc (T, k)Im

[
−1

ε(k, E)

]
outer

}
, (36)

where E− = Eth and E+ = min[B(T), T]. As the primary electron moves in the conduc-
tion band and the excited target electron is promoted to a lower discrete energy level,
indistinguishability does not impose any limit to the amount of energy loss of the for-
mer and the maximum energy that it can lose is T. The limits in the momentum transfer
h̄k±,out are given by Equation (34) and h̄κ± =

√
2m(T + 2Eth)±

√
2m(T + 2Eth − E). The

Born–Ochkur exchange factor for excitation is given by Fexcit
xc (T, k) = − k2/2m

T +
(

k2/2m
T

)2
.

Figure 7 shows by solid (dotted) lines the ionis-SDCS for electrons of different energies
T (denoted by labels) impinging on liquid water, as a function of the secondary electron
energy W, as obtained from the LR-TDDFT (or MELF-GOS) energy loss functions. Symbols
correspond to experimental data for water vapour [128]. In general, calculations agree
rather well with the entire set of experimental data, particularly for W > 10 eV, reproducing
the primary peak appearing when W ' T due to primary-secondary electron indistin-
guishability. Experimental data are systematically larger than calculations for W < 10 eV,
which could be due to phase effects, or to the difficulty to obtain reliable experimental
determinations at this low energy range. Results for the ionis-SDCS based either on LR-
TDDFT and MELF-GOS energy loss functions are in general rather similar, with differences
being only observed for W < 10 eV, where the LR-TDDFT calculations are slightly larger
than the MELF-GOS ones.
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Figure 7. Energy distributions (ionis-SDCS) of electrons generated in water by an initial electron with
energy T, as a function of their emitted energy W. Solid (dotted) lines are calculations obtained with
the ELF of liquid water from the LR-TDDFT (MELF-GOS) approach. Symbols are experimental data
for water vapour [128].
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The integration over the secondary electron energy W of the ionis-SDCS gives place
to the ionisation total cross section (ionis-TCS) or to the related ionisation mean free path
(ionis-MFP), whose calculated results are depicted in Figure 8a by a solid (dotted) line as
obtained from the LR-TDDFT (MELF-GOS) energy loss function. Again, symbols represent
experimental data, only available for water vapour [128–130] (scaled with liquid water
density to obtain the ionis-MFP), which, despite potential phase-effects, are in excellent
agreement with the theoretical calculations. Experimental data are slightly lower than
calculations; this is to be expected for the ionis-MFP obtained from the gas-phase cross
section as compared to the liquid: the liquid water microscopic cross section is lower than
for the vapour due to electronic screening, resulting in a larger ionis-MFP trhough the

relation λionis =
1

N σe−e
ionis

, whereN is the molecular density of the target. For ionisation, the

use of the LR-TDDFT or MELF-GOS energy loss function has an almost negligible influence.
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Figure 8. (a) Ionisation mean free path (ions-MFP) of electrons in water, as a function of the incident
energy T. Red solid (dotted) lines are calculations using the LR-TDDFT (MELF-GOS) model for
liquid water. Symbols are experimental data for water vapour [129] (blue squares), [128] (black
triangles) and [130] (green circles). (b) Excitation mean free path (excit-MFP) of electrons in water, as
a function of the incident energy T. Red solid (dotted) lines are calculations using the LR-TDDFT
(MELF-GOS) model for liquid water. Symbols are experimental data for water vapour [131] (black
squares), [132] (green circles), [133] (blue triangles) and [134] (magenta starts); empty and full symbols
represent raw and scaled experimental data, respectively, as explained in the text. (c) Mean free path
for the production of ·OH radicals as a function of the incident energy T. The red solid line represents
a weighting of ionisations and excitations, as explained in the text, based on the MELF-GOS model
for liquid water; symbols are experimental data for water vapour [135].

The results for the calculated excitation mean free path (excit-MFP) are shown by
solid (dotted) lines in Figure 8b as obtained from the LR-TDDFT (MELF-GOS) energy loss
function. Contrary to ionisation, the ELF has a strong impact in the excit-MFP, as in this case
the low energy transfers are more relevant and, as can be seen in Figure 1, the differences
between the ELF models are most significant for energy transfers below 50 eV. The compar-
ison with experimental information for excitation is even more complicated. Not only the
available measurements correspond to gas phase water [131–134], but also each of these
datasets is limited to one or a few particular excitation channels and do not refer to the total
excitation probability. In Ref. [42], a scaling procedure was suggested to estimate the total
excitation cross section from each source of experimental data, based on the most complete
available study available for water up to date [25]. Open symbols in Figure 8b correspond
to the excit-MFP coming from the original measurements, while full symbols depict the
scaled results. Again, the excit-MFP for liquid water is obtained from the microscopic cross



Int. J. Mol. Sci. 2022, 23, 6121 24 of 39

section through λexcit =
1

N σe−e
excit

, where the liquid water molecular density is used. As can

be seen, scaled experimental data agree rather well with the calculations, which reinforces
the theoretical approach and moreover gives support to the scaling procedure applied to
the experimental data. The scattered nature of the experimental points makes it difficult to
determine the accuracy of these two calculations, but in general it seems that the LR-TDDFT
results provide a shape closer to that obtained from the experimental data, being this a
fact that one would expect having into account that this ELF is closer to the experimental
one [36,63] at low excitation energies than the one provided by the MELF-GOS approach.
Experimental excit-MFP are slightly lower than the calculated ones in the entire energy
range (even for T > 100 eV, where the dielectric formalism is expected to be more reliable),
which may indicate some phase-effect differences between the data for a gas and a liquid
target, as already discussed above for the ionis-MFP.

Another aspect regarding electronic excitation of water must be stressed. While it
is widely assumed that all ionising collisions lead to the dissociation of water molecules
in the liquid phase [18,136], not all excitations can fragment them. From the study of
Ref. [25], it can be estimated that the excitation channels that contribute to water molecule
dissociation constitute around 40% of the total. The dissociation of water molecules leads
to a great extent to the production of ·OH radicals. The cross section for ·OH production by
electron impact in water molecules was experimentally measured in a wide energy range
by Harb et al. [135], whose results for the MFP are presented by symbols in Figure 8c. The
MELF-GOS-calculated ionisation and excitation MFP for liquid water are represented in the
figure by dashed and dotted lines, respectively. As expected, the ionis-MFP resembles very
much the ·OH production MFP for T > 30–40 eV, while they depart for lower energies, due
to the excitation contribution to water fragmentation. The solid line in the figure represents
the MFP calculated from the sum of the theoretical ionisation cross section and 40% of the
excitation cross section. Remarkably, this line matches very well the experimental ·OH
production MFP, which confirms that ∼40% of the electronic excitations leading to severe
effects is a correct estimation. This information will be later used for evaluation of DNA
damage by Monte Carlo simulations in the next section. It should be stressed at this point
that, even though according to the recommended ionisation data for water molecules [24]
not every ionisation event leads to fragmentation, it is customary to assume so in the case
of liquid water [18,136]. In any case, the large error bars from the data by Harb et al. [135]
prevent us from further considerations on how many ionisations lead to ·OH production,
but allow us to support our assumptions regarding dissociative excitations.

2.5. Monte Carlo Simulation of Secondary Electron Transport around the Carbon Ion Path

When the carbon ions move through the liquid water target, they generate secondary
electrons that deposit energy around the carbon ion path, which results in a carbon ion track
structure. We have simulated the transport of these secondary electrons, interacting with
the target electrons, with the event-by-event MC code SEED (Secondary Electron Energy
Deposition) [43,137,138]. Apart from the elastic and inelastic cross sections explained in pre-
vious sections, SEED also implements the electron-phonon interaction and electron-polaron
trapping, accounted for by the Fröhlich [139,140] and the Ganachaud and Mokrani [141]
models, respectively. These interactions become increasingly more relevant at very low
electron energies, and the parameters for the models have been set so MC simulations repro-
duce the experimentally determined secondary electron yields from liquid water [142–146].
The Ganachaud-Mokrani inverse mean free path for an electron with energy W is given
by λ−1

trap = Ctrap exp(−γtrapW), where Ctrap = 0.1 nm−1 and γtrap = 0.1 eV−1, while the
phonon energy entering the Frölich theory is Wph = 0.1 eV. Additionally, very low energy
electrons can also damage biomolecules by means of dissociative electron attachment
(DEA). In order to account for DEA, its cross section for the water molecule has been taken
from recommendations from experimental data [24].
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Finally, simulations were typically performed having into account a large amount
of electron trajectories, in order to minimise statistical noise, particularly for the damage
cluster simulations (to be discussed in the next section). For each carbon kinetic energy T,
1200 ion paths of 50 nm length were simulated, with different random seeds at each ion
shot to determine the ionisation sites and secondary electron energy and ejection angle. The
ion path length was chosen so that virtually all the secondary electrons generated along the
carbon ion track can reach the sensitive volume (having dimensions of a DNA-like target),
while keeping simulation times within reasonable limits. To achieve an acceptable trade-off
between computational cost and low signal-to-noise ratio, 1000 electrons were assumed
to be generated initially along the path at each collision between the carbon ion and the
water target (this number bearing a purely statistical, and not physical, interpretation). In
average, carbon ions undergo 30 (1 GeV) to 1000 (0.2 MeV/u) collisions; thus, each ion
shot produces on average 105–106 electrons. These electrons produce an average number
of 100 further electrons each one, due to further ionisations along their paths. Current
simulations are equivalent then to assess 4 to 100 billion electron trajectories per ion energy.

3. Results and Discussion

Once the energy and angular distributions of the secondary electrons produced by
carbon ion impact on liquid water have been reliably obtained (Section 2.3), together
with the relevant elastic (Sections 2.4.1 and 2.4.2) and inelastic (Section 2.4.3) scattering
cross sections for electron transport (particularly relevant for low energy electrons), it is
possible to perform detailed simulations of the carbon-ion track-structures (Section 2.5).
There are two relevant aspects connected to this point, namely: (i) the radial dose arising
from energy deposition around the ion’s path and (ii) the clustering of damaging events
being produced in nanometric volumes (mimicking DNA targets) located at different
distances from the ion’s path. While the former has been long used as a key input for
semiempirical radiobiological models such as the Local Effect Model (LEM) [147], the
latter provides much more detailed information, which has proved to be fundamental
for the theoretical evaluation of RBE within the MultiScale Approach (MSA) for radiation
biodamage induced by ions [5,19,20]. In Section 3.1, the radial doses around carbon ions
in liquid water are analysed, while the clustering of damaging events on the nanoscale is
assessed in Section 3.2.

3.1. Simulation of the Radial Dose in Liquid Water around the Carbon Ion Path

At macroscopic level the most important quantity in radiation therapy is the absorbed
dose, which is the mean energy deposited in a mass element of tissue by the ionising
radiation. The radial dose is an approximation to a microscopic equivalent of the dose, in
which the space around the ion path is divided in concentric cylindrical shells of differential
width (in the current simulations, dr = 1 Å), and the amount of energy deposited in each
volume element by secondary electrons is scored and divided by the mass of such element.
In this section, we use a detailed Monte Carlo simulation [137,138] to evaluate the influence
of different physical events on the radial dose, namely, the effect of different descriptions of
the elastic and inelastic cross sections, or the consideration of the carbon ion charge states.

Figure 9 shows the results of radial dose simulations in liquid water around carbon
ions of several energies in the range from 0.2 MeV/u to 1 GeV. While initial energies of
hundreds of MeV/u are typical in clinical carbon ion beams (so they present ranges of
the order of tens of centimetres in tissue), the ions progressively lose their energy while
traversing the body, going down to energies of hundreds of keV/u and several MeV/u
around the Bragg peak region [148]. On the one hand, 0.2 MeV/u corresponds to a
particularly relevant energy of carbon ions around the Bragg peak region, where their
biological effects are most severe, as the maximum stopping power occurs at this energy.
On the other hand, 1 GeV corresponds to a situation closer to the plateau region of the
depth-dose curve. Such energetic carbon ions can also be found in cosmic radiation [149],
which represents an important handicap for manned space missions [3].



Int. J. Mol. Sci. 2022, 23, 6121 26 of 39

10-1 100 101 102
10-1

101

103

105

107

10-1 100 101 102 103 0.0 0.5 1.0 1.5
0

5

10

15

20

25

30

0

2

4

6

8

10
(b)

 radial distance (nm)

 Water molecule, Mott
 Water cluster, ab initio

20 MeV/u

1 GeV
6 MeV/u

2 MeV/u

 

 

D
os

e 
(G

y)

T=0.2 MeV/u

 

 radial distance (nm)

 TDDFT ELF
 MELF-GOS ELF

20 MeV/u

1 GeV
6 MeV/u

2 MeV/u

 

 

T=0.2 MeV/u T=6 MeV/u

 

 

radial distance (nm)

 TDDFT ELF
 MELF-GOS ELF

T=0.2 MeV/u

(c)

 D
os

e 
(G

y)
·1

06

 

 

 TDDFT ELF
 MELF-GOS ELF

(a)

Figure 9. Dose deposited by a carbon ion in liquid water, as a function of the distance from the ion
path, for several ion energies T. (a) Effect of the elastic scattering models when using Mott’s theory
for a single water molecule (dashed lines) and ab initio calculations for a cluster of six water molecules
(solid lines). (b) Effect of the inelastic scattering models. (c) Detail for the different inelastic models
at short radial distances. Solid (dotted) curves correspond to simulations using input data from the
LR-TDDFT (MELF-GOS) energy loss function. See the text for further details.

The influence of the electron elastic scattering cross section model is analysed in
Figure 9a, where dashed lines depict simulations performed using the Mott cross section
for a single water molecule, whereas solid lines show results from the use of the cross
section calculated ab initio for a molecular cluster. In both cases, the inelastic cross sections
obtained from the LR-TDDFT ELF are used. As can be clearly seen, the choice of the elastic
scattering model has a large influence on the radial doses, with sizeable differences at very
low radial distance (below 2 nm), but also with large differences at large distances as the
ion energy increases.

The influence of the electron inelastic scattering cross section model is studied in
Figure 9b. Here, the elastic cross section for the cluster of six water molecules is used in
all cases, and results using the inelastic cross sections coming from the LR-TDDFT ELF
(solid lines) and from the MELF-GOS ELF (dotted lines) are presented. Although here
the differences are not so easily appreciated in the double logarithmic scale, they can be
better seen in linear scale in Figure 9c, where the cases of 0.2 and 6 MeV/u carbon ions are
shown. Even though the general shape of the curves, their extension in space and their
low-dose tail are very similar, still considerable differences in the doses at very short radial
distances (<1 nm) can be observed. These can be, locally, as large as 106 Gy or up to 25% in
relative terms.

Another aspect which can importantly affect the energy deposition patterns around
ion paths is the charge state distribution of the ions. This is especially relevant for carbon,
as it can have many different charge states at the energies characteristic of the Bragg peak
region. Figure 10a depicts the radial doses for 0.2 MeV/u carbon ions, simulated assuming
that the carbon ion has a definite charge state from q = 2 to q = 5 (for the possible charge
states of carbon at this energy, see Figure 2), or calculated as a convolution of all the charge
states weighted by their corresponding charge fractions. Even though their shape is always
similar, the absolute scale of the dose is rather different (except for large radial distances),
due to the increasing number of secondary electrons produced by the more charged ions.
Some models and simulations in the literature approximately account for this fact by scaling
the inelastic cross sections by the square of an energy-dependent effective charge q2

eff(T).
In Figure 10b, the simulated radial doses have been divided by the square of each charge
state, in order to assess if the differences are exclusively due to the charge-square scaling
in the ejection of secondary electrons. Even though some of the curves converge by this
normalisation, not all of them do. This fact remarks that, for carbon ion track-structure
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simulations, it is important to take into account the detailed charge state distribution of
the ion.
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Figure 10. (a) Dose deposited by 0.2 MeV/u carbon ions in liquid water, as a function of the radial
distance from the ion path, for different charge states q of the ion, obtained with the LR-TDDFT
model of the ELF. (b) The same quantity, divided by the square of the ion charge, in arbitrary units.

Finally, all three previously described features are taken into account together in
Figure 11, where the simulated radial dose for 2 MeV/u carbon ions in liquid water can
be compared with several other calculated [150,151] and simulated results [152–154]. Our
simulations (which are performed with the cross sections derived from ab initio calculations,
both for elastic and inelastic scattering) are rather consistent with other recent simulations,
such as those by Liamsuwan et al. [153] or from Geant4-DNA [154], except for some
differences at very large radial distances. However, large differences can be observed at
short distances with respect to the classical simulations by Waligorski et al. [152] or from
the analytical calculations from de Vera et al. [150], which remarks the need to count with
the most accurate cross sections for conducting reliable simulations at the nanometre scale.
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Figure 11. Dose deposited by 2 MeV/u carbon ions in liquid water, as a function of the radial distance
from the ion path. Our simulation results are shown by a solid black line, corresponding to the ab initio
models for liquid water, both for elastic and inelastic collisions. Comparison with other simulations
are presented: [152] (circles), [153] (squares) and [154] (triangles). The result of an analytical model
for liquid water is also presented (dotted line) [150]. Stars are calculations from Ref. [151] (as they
appear in Ref. [152]).
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3.2. Simulation of Clustered Damage on the DNA Strand Scales

Apart from the radial doses, MC codes give access to much more detailed information
relevant for determining radiation biodamage. Particularly, the clustering of damaging
events in volumes of the dimensions of a few DNA strand twists is in the core of the
estimation of RBE by means of theoretical models, such as the MultiScale Approach [5,19,20]
or experimentally by means of nanodosimetry [21–23].

The SEED code [137,138], being an event-by-event MC program fed with reliable
elastic and inelastic cross sections for liquid water, allows determining the distributions
of damaging events being produced in nanovolumes similar to the dimensions of two
convolutions of the DNA molecules, namely, a strand 20 base-pair long. Such a strand is
modelled as a cylinder of 2.3 nm diameter and 6.8 nm height, whose centre is placed at
different distances (or impact parameters) from the ion path, with the symmetry axis along
the perpendicular direction, as schematically depicted in the inset of Figure 12a. DNA
molecules of such dimensions are frequently considered as relevant sensitive biological
targets in radiobiological studies.

6.8 nm

 
2.3 nm

r

C

ie

d

Figure 12. Average cluster size in a sensitive volume of liquid water having the dimension of two
DNA turns, as a function of the impact parameter r from the ion path. Results for two kinetic energies
are depicted: (a) T = 0.2 MeV/u and (b) T = 1 GeV. Symbols correspond to clusters produced by a
single type of event: ionisations (red triangles), excitations (blue circles), dissociative excitations (blue
hollow circles), dissociative electron attachments (DEA) (green diamond). The total average cluster
size including all the events is shown by black squares, while that only including the damaging
events is depicted by gray squares. The letters in the inset of panel (a) representing the sensitive
cylindrical volume refer to excitation (e), ionisation (i) and DEA (d).

By MC simulation, the average size of a cluster of damaging events can be obtained,
produced by the different direct damaging interactions, namely, ionisations, electronic
excitations and DEA. For these detailed simulations, the most advanced sets of elastic and
inelastic cross sections, based on the ab initio models described in the previous sections, are
used. The average cluster size due to the different events, for impact parameters ranging
from 0 to 100 nm, are represented in Figure 12a,b for the lowest and highest energies
studied in this work, 0.2 MeV/u and 1 GeV, respectively. Error bars, which in most cases
are smaller than the symbols size, represent the statistical uncertainties obtained from the
large number of simulations.
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As it can be seen, ionisations (triangles) typically dominate for all impact parameters,
with electronic excitations (full circles) being always close. However, it should be kept
in mind, as discussed in Section 2.4.3, that only around 40% of the electronic excitations
are capable of dissociating water molecules and, thus, of inducing severe damage. Empty
circles show the average size of these dissociative excitations clusters, clearly much smaller
than ionisation clusters. Finally, diamonds depict the average size of damaging clusters
produced exclusively by DEA events which, as can be clearly seen, are almost two orders
of magnitude smaller than ionisation clusters. Full and empty squares represent the
total average size of the clusters, taking into account all excitations or only dissociative
excitations, respectively. In general, we will only consider the latter (i.e., 40% of the
excitations) to contribute to the cluster of damaging events. For 0.2 MeV/u carbon ions,
the total damage clusters are around two orders of magnitude larger than for 1 GeV carbon
ions at the shorter impact parameters; these differences tend to disappear for the larger
distances. For example, at 1 nm the average cluster is of 31 total damaging events, while
for 1 GeV it is 0.44.

The average total sizes of clusters of damaging events (i.e., only considering dissocia-
tive excitations as damaging excitation events) are shown in Figure 13 for several energies
ranging from 0.2 MeV/u to 1 GeV and for impact parameters from 1 to 100 nm. Clearly,
these distributions follow very closely the shape of the radial doses represented in Figure 9.
For example, as not very energetic delta electrons are produced for the case of 0.2 MeV/u
carbon ions, giving place to a radial dose falling off around 30 nm, the cluster sizes abruptly
drops to zero at this distance. For other energies, the decrease is more monotonic, again
following the shape of the radial doses shown in Figure 9. For 0.2 MeV/u ions, the average
cluster sizes are significantly large (≥10) at ion-target impact parameters below 3 nm,
and are always larger than 1 for distances lower than 5 nm. Cluster-size distributions
progressively decrease at increasing ion energies, being still larger than 1 at energies below
6 MeV/u at impact parameters closer than 3–4 nm for 2 MeV/u and 2 nm for 6 MeV/u.
1 GeV ions are not capable of inducing clusters of average size larger than 1 for any impact
parameter. These behaviours clearly illustrate the different features, in terms of capacity to
induce complex damage, of ions with energies characteristic of the Bragg peak region, for
the lower ones, or of the Bragg peak plateau, for the larger ones.

In experimental nanodosimetry, frequently the only events which can be straight-
forwardly measured are ionisations. Apart from the average ionisation cluster size, it
is common to find in the literature compilations of cumulative ionisation distributions
Fionis

n , which measure the probability of inducing in a given sensitive volume a cluster of
size equal or larger than n. This quantity is relevant, as Fionis

2 is correlated to the proba-
bility of inducing DNA double strand breaks, or Fionis

3 to that of inducing more complex
lethal damage.

Remarkably, it is known that the representation of the measured Fionis
n distributions as

a function of the average ionisation cluster size yields a universal distribution independent
of the size and characteristics of the particular nanodosimeter, which can be used to predict
cell inactivation cross sections [22,23]. We check this behaviour by simulation with the
results presented in Figure 14a, where we have plotted Fionis

n versus the average ionisation
cluster size for a collection of simulations featuring different carbon ion energies and
impact parameters. In the figure, different symbols correspond to the different cumulative
distributions Fionis

n , and numbers next to each triad of symbols inform about the energy
and impact parameter used in the simulations. An increase in the ion energy naturally
leads to a decrease in the average cluster size, which is accompanied by the decrease of
the different Fionis

n distributions. These nanodosimetric quantities also decrease, for each
energy, with the increase of the impact parameter.
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Figure 13. Average cluster size in a sensitive volume of liquid water having the dimension of two
DNA turns, as a function of the impact parameter r from the ion path, for different values of the
carbon ion energy T. Ionisations, dissociative excitations and dissociative electron attachments events
are taken into account.

10-5 10-3 10-1 101

10-5

10-3

10-1

10-2 10-1 100 101

10-3

10-2

10-1

10000000
0

1010
10

10

10

20

20
20

20

20
20

100
100

100
100

0.22610
20

83.26

0.2
26

10

20
83.26

0.2

26
10

20

83.26

2
610

20

 

 

 

io
ni

sa
tio

n 
Fio

ni
s

k

 F ionis
1

 F ionis
2

 F ionis
3

Impact
parameter
(nm)

Energy (MeV/u)

(b)

F ionis
3

F ionis
2

 

ionisation average cluster size

F ionis
1

(a)

Figure 14. (a) Simulated results for the cumulative distributions of ionisation clusters Fionis
n (n = 1, 2,

or 3), as a function of the average ionisation cluster size. Labels close to each triad of symbols denote
the corresponding impact parameter and energy of the ion used in the simulation. (b) Experimental
data compilation (symbols) for the cumulative distributions of ionisation clusters, as a function of
the average ionisation cluster size [23], compared to our simulated results (lines). Dashed lines
correspond to a nanometric cylinder similar to the dimensions of a 10-base-pair DNA convolution,
while solid lines correspond to a 20-base-pair cylinder.
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The simulated points in panel (a) of Figure 14 reproduce the universal curve observed
experimentally, as it can be seen in panel (b), where our results are directly compared
with a compilation of experimental data [22,23]. Even though these data comes from
different nanodosimeters of diverse composition, size, etc., of course different to our
simulation setup, the universality of the curve is confirmed by the rather good agreement
between simulations and experiments in a wide range of conditions. The agreement is
particularly good in the region where the largest clusters are formed, corresponding to
impact parameters lower than or around 10 nm for all simulated energies.

Finally, having into account that SEED simulations reproduce fairly well the experi-
mental ionisation cluster size distributions, and that the code can account for the damage
produced also by dissociative electronic excitations and dissociative electron attachment
(DEA), it would be interesting to assess the relative contribution of each physical mecha-
nism to the induction by carbon ions of direct radiation damage to liquid water sensitive
volumes (having the characteristics of DNA-like targets). The relative contribution (ionisa-
tion, dissociative excitations, DEA) to the average size of the damage clusters is plotted in
Figure 15 for different ion energies, as a function of the impact parameter. As can be seen,
the picture is rather similar for all energies, with only the case of 0.2 MeV/u carbon ions
slightly departing from the rest. For impact parameters ≥20 nm, the relative contributions
are rather constant, with ionisations providing around 80% of the cluster size, followed
by dissociative excitations that furnish around 15–17%, and with DEA only contributing
around 5% or less. The percentages of dissociative excitations and DEA grow for short
impact parameters (≤10 nm), presenting maxima of around 30% at 3 nm and 10–15% at
5 nm, respectively, at the expense of ionisations, which decrease to 60–65% at 3–5 nm. In
light of these results we can safely state that ionisation events make up for the largest
contribution to the clustered direct damage induced by carbon ions in liquid water DNA-
like targets, which supports the use of ionisation-based nanodosimeters. DEA, typically
regarded as a very relevant biodamage mechanism in electron-beam related processes [17],
surprisingly plays a minor role in carbon-ion induced clusters of harmful events, according
to the present simulations.
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Figure 15. Fractional contribution of different physical mechanisms (ionisations, dissociative excita-
tions, DEA) to the average cluster size in a cylinder with a dimension of two DNA turns for several
carbon-ion kinetic energies and impact parameters.
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4. Summary and Conclusions

In this work, the calculation of inelastic and elastic scattering cross sections for carbon
ions and their secondary electrons in liquid water, by means of advanced ab initio and
semiempirical methods has been reported in detail. In particular, inelastic (electronic) cross
sections for carbon ions and electrons have been obtained in the framework of the dielectric
formalism, exploiting two approaches to describe the electronic excitation spectrum of
liquid water: the MELF-GOS method based on the extension of experimental optical data
over the entire Bethe surface, and the LR-TDDFT method allowing the first principles
calculation of the excitation spectrum. Electron elastic scattering cross sections have been
obtained by means of the widely used Mott model and within the Dirac–Hartree–Fock
approach, for a single water molecule and for a water molecule cluster, in order to approxi-
mate the condensed phase of the target. Simulations of the patterns of energy deposition
and clustering of damaging events on the nanoscale have been conducted by means of
the SEED (Secondary Electron Energy Deposition) Monte Carlo code, implementing the
developed cross sections.

The calculation of the energy loss function (ELF) of liquid water has been explained in
Section 2.1. The MELF-GOS method (Section 2.1.1) has been considered a very successful
approach during the last years to approximate the excitation spectrum of liquid water, but
relies on the availability of optical experimental data. In turn, LR-TDDFT (Section 2.1.2) has
matured as a very reliable method to predict such information from first principles. We have
shown how LR-TDDFT can almost perfectly reproduce the experimental determinations
of the ELF for arbitrary momentum transfers, giving results even more accurate than the
MELF-GOS method. However, performing LR-TDDFT calculations for arbitrarily large
energy and momentum transfers is prohibitive, and hence the MELF-GOS methodology
still is required to extend ab initio determinations for energies ≥100 eV and momenta larger
than ≥2.5 a.u.

The energy loss of carbon ions is calculated within the dielectric formalism in Section 2.2,
having into account the main particularity of this projectile, namely, the large number of
charge states (from 0 to 6) that it can present. Energy-dependent charge state fractions
have been obtained by means of the CasP semiempirical approximation, which is shown
to deliver results consistent with the scarce experimental data. While carbon ions with
energies larger than 3 MeV/u (in the range of the clinical ones) travel in liquid water as
bare C6+ ions, when they slow down and get energies more typical of the Bragg peak
region (several hundreds keV/u), the species from C2+ to C6+ coexist. This fact has been
taken into account for obtaining the “macroscopic” cross sections of carbon ions in liquid
water, namely, the inverse inelastic mean free path, the stopping power and the energy-loss
straggling. Our calculations both from the MELF-GOS and LR-TDDFT energy loss function
provide values that agree well with the most recent experimental determination around
the maximum of the stopping power curve.

The energy and angle spectra of secondary electrons produced by carbon ions in liquid
water are obtained in Section 2.3 within the dielectric formalism. They are in very good
agreement with the also scarce experimental information available, unfortunately only for
single water molecules. While the angular distributions are not affected much by the ELF
model, the energy distributions present a slightly larger contribution of electrons having
energies W < 10 eV when the LR-TDDFT ELF is used instead of the MELF-GOS one.

The modelling of the carbon ions track-structure also requires accurate cross sec-
tions for (secondary) electrons in liquid water, obtained in Section 2.4. The Mott theory
(Section 2.4.1) is applied for the elastic scattering with a single water molecule, while the
Dirac–Hartree–Fock approach (Section 2.4.2) is also used for a cluster of six water molecules.
Differential and integral cross sections for the single water molecule agree very well with
the experiments for water vapour (validating both models), with the Dirac–Hartree–Fock
method reproducing slightly better the general shape of the integral cross section. However,
sizeable differences appear when applying the Dirac–Hartree–Fock method to a water
molecule cluster. Differential cross sections become slightly less structured and more
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isotropic, and the elastic mean free path presents an intense reduction between 100 and
300 eV, and an increase below 30 eV, which seem to arise owing to the phase effects on the
elastic cross sections.

The inelastic cross sections for electrons in liquid water are obtained in Section 2.4.3
by adapting the dielectric formalism to the particularities of low energy electron projectiles.
Both the MELF-GOS and the LR-TDDFT energy loss functions give results in very good
agreement with a compilation of experimental data for electronic excitation and ionisation.
While the ionisation cross section is not much dependent on the ELF model considered,
the excitation cross section is rather sensitive. The LR-TDDFT ELF helps to increase the
excitation mean free path in the energy range 7–100 eV, further approaching the calculated
results to the experimental data. For the electronic excitation cross sections, the fraction of
them which is capable of inducing water molecule fragmentation has been estimated from
the available experimental information [25], giving place to a calculated cross section for
·OH radical production in excellent agreement with experiment.

Track-structure simulations of carbon ions in liquid water in a wide energy range, cov-
ering from the low energies characteristic of the ions in the Bragg peak region (0.2 MeV/u,
where the maximum energy loss occurs, as well as several MeV/u energies) up to high
energies typical from the Bragg curve plateau or of cosmic radiation (e.g., 1 GeV), have
been performed by the SEED code (Section 2.5). Apart from elastic and inelastic scattering,
SEED also implements dissociative electron attachment (DEA) and other quasi-elastic and
trapping events, namely, electron-phonon and electron-polaron interactions.

Radial doses deposited by secondary electrons around the carbon ion paths are simu-
lated (Section 3.1), showing how the patterns of energy deposition concentrate more and
more as the energy of the ions approaches 0.2 MeV/u (Bragg peak region). The role of
the different elastic and inelastic scattering models on the radial doses has been analysed.
While the impact of the inelastic cross sections (coming either from the MELF-GOS or
LR-TDDFT ELF) is lower, still differences of up to 25% in the amount of dose at very short
radial distances (<1 nm) can be observed. The impact of the elastic scattering model (single
water molecule versus water molecule cluster) is more visible, with noticeable changes
in the magnitude of the radial doses at all distances. The radial doses have also been
simulated for several charge states of the carbon ions. It is found that, in general, the radial
dose cannot be simply scaled by the square of the charge of the ion, which advises for an
accurate consideration of the charge states instead of resorting to simpler approaches such
as energy-dependent effective charges.

The most accurate set of cross sections (coming from the ab initio approaches) have
been used to assess the clustering of damaging ionisations, dissociative excitations and DEA
on nano-cylinders mimicking 20-base-pair DNA strands around the ion paths (Section 3.2).
The trends of the average cluster size distribution resembles that of the radial doses, with
the higher energy ions (T > 6 MeV/u) not being capable of producing clusters of sizes
larger than 1 for most of the impact parameters, and with the ions with energies close to the
Bragg peak region inducing clusters of tens of events at close enough impact parameters
(<10 nm). The universal relation (independent of the energetic ion and nanodosimeter used)
between the cumulative distributions of ionising events and the average ionisation cluster
size observed experimentally [22,23] has been confirmed by our simulations, which agree
with the experimental data fairly well in a wide range of energies and impact parameters.

Finally, even though experimentally ionisations remain the only event to be straightfor-
wardly measured, our simulations allow to assess the relative contribution of the different
physical mechanisms to the induction of direct clustered damage by carbon ions. It is
found that, indeed, ionisations contribute between 60% and 80% to the average cluster size,
almost independently of the ion energy and impact parameter analysed. They are followed
by dissociative excitations, which contribute between 15% and 30%. Surprisingly, DEA only
have a limited role (around 3% to 15%) in the induction of direct clustered damage by car-
bon ions. These results provide reassurance on the use of ionisation-based nanodosimeters
for the estimation of direct clustered damage produced by carbon ion beams.
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