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Abstract: The triggers of biennial bearing are thought to coincide with embryonic development in
apple and occurs within the first 70 days after full bloom (DAFB). Strong evidence suggests hormonal
signals are perceived by vegetative apple spur buds to induce flowering. The hormonal response is
typically referred to as the floral induction (FI) phase in bud meristem development. To determine
the metabolic pathways activated in FI, young trees of the biennial bearing cultivar ‘Nicoter’ and the
less susceptible cultivar ‘Rosy Glow’ were forced into an alternate cropping cycle over five years and
an inverse relationship of crop load and return bloom was established. Buds were collected over a
four-week duration within 70 DAFB from trees that had maintained a four-year biennial bearing cycle.
Metabolomics profiling was undertaken to determine the differentially expressed pathways and key
signalling molecules associated with biennial bearing. Marked metabolic differences were observed
in trees with high and low crop load treatments. Significant effects were detected in members of the
phenylpropanoid pathway comprising hydroxycinnamates, salicylates, salicylic acid biosynthetic
pathway intermediates and flavanols. This study identifies plant hormones associated with FI in
apples using functional metabolomics analysis.

Keywords: chemical signalling; metabolomics; apple bud; biennial bearing; Malus domestica Borkh;
plant hormones; return bloom

1. Introduction

Apple is globally one of the most valued fruit crops and is of high economic importance
to the horticultural industry [1]. Apple production, however, is significantly impacted
by biennial bearing, a phenomenon that has been studied and reported since the early
twentieth century [2]. The cause of alternate bearing is still largely unknown [3] and
typically occurs in a tree or branch that does not yield a consistent crop load every year but
alternates between a heavy and extremely light one. This common irregularity occurs in
both deciduous and evergreen trees, and is reported in nuts, temperate fruits, tropical fruits
and forest trees [2]. Fruit growers require a consistent crop load with good quality fruit
that attracts a high market value. Several different horticultural practices are implemented
to achieve a viable industry. These include crop management strategies such as application
of nutrients, pruning and seasonal chemical or hand thinning. Yet, even with the best
practices, trees can enter a biennial bearing cycle. A high crop load tree (“ON”) can result
in poor quality fruit. Fruit size, color appearance, firmness, sugars and acidity can correlate
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negatively with high crop load levels [4]. These trees would be required to be adequately
thinned to improve fruit quality for the current season but also yield a consistent crop load
for the following season. Light crop load trees (“OFF”) are associated with bigger fruit
sizes that can have storage disorders [5]. Both phases of the cycle cause a disruption in
cropping levels resulting in serious economic losses for the apple industry and can cause
significant financial strain on fruit growers.

Histological analysis has shown that the initial development of a flower bud coincides
with a developing embryo or fruitlet [6]. The developing seed in young fruitlets is believed
to repress flower induction in vegetative buds via phytohormones and removal of fruitlets
at the 3–18 mm fruit size, through thinning practices have been shown to lead to a more
consistent flower formation (return bloom) for the following season [3,7,8]. There have
been investigations of other factors that influence flower formation in apple such as stress
associated with temperature, photoperiod [9,10], water deficit as well as internal factors
associated with carbon-nitrogen ratio, hormones and interaction with other organs (leaves,
terminal shoot growth, and fruit) [3]. A recent investigation showed that return bloom
can also be influenced by cultivar and rootstock, that differentially expressed sugars and
hormones, suggesting that some cultivars and rootstocks are more susceptible to biennial
bearing [8].

Flowering in apple involves four stages: floral induction (FI), flower bud initiation,
differentiation, and floral bloom [3,6,11]. FI occurs when a chemical and/or environmental
signal causes a vegetative bud to become floral. FI corresponds to a specific time when
seeds from developing fruit are believed to emit signals to adjacent bud meristem; the
time point at which this occurs can differ in apple cultivars [12]. Floral initiation is the
period of histological changes that occur in the flower bud and the subsequent flower
differentiation stage describes the visible morphological changes occurring in buds [6,11].
In trees with high crop load, flower bud development is hypothesised to be inhibited by
chemical signals, leading to a biennial bearing cycle that is difficult to alter once the cycle is
established [13,14].

Regulation of flowering was initially thought to be driven by nutritional competition
between flower bud initiation and concurrent fruit formation [11]. An in vitro investigation
showed that flower bud development in Plumbago indica was stimulated by disaccharides
(sucrose, cellobiose or maltose) and certain plant hormone mixtures (cytokinins, adenine
and low levels of auxin), and inhibited by amino acids (glutamine, asparagine), riboflavin
and gibberellins [9,15]. More recently, genes [3], transcripts [6,16] and proteins [6] asso-
ciated with biennial bearing were identified and studies indicated that a combination of
increased carbohydrates and activation of FI genes, likely mediated by phytohormones,
either stimulated or inhibited FI [6]. Hormone-related genes were likely candidates in-
volved in biennial bearing compared to flowering genes. Moreover, transcriptomics studies
showed that hormone responses were also differentially expressed. Plant hormone re-
sponse to stress is linked to redox hub activity, such that ascorbic acid is either required for
biosynthesis of plant hormones or low-levels promote accumulation [16]. A multi-omics
investigation also indicated that thiamine, chlorogenic acid and an adenine derivative are
involved in the metabolic pathway promoting early flower bud development in apple [6].
Increased levels of flavonoids such as kaempferol derivatives were also identified in low
crop load trees.

To determine the metabolic pathways involved in FI, an untargeted metabolomics
analysis of buds was utilised for this study. Buds were collected from young apple trees
of the biennial bearing cultivar ‘Nicoter’ (marketed as Kanzi®) and the less susceptible to
biennial bearing cultivar ‘Rosy Glow’ (marketed as Pink Lady®). The collection of buds
was undertaken over eight weeks in the key time frame associated with floral induction
as identified by Milyaev et al. [6], who found floral initiation to occur 75 and 97 days
after flower bloom (DAFB) for ‘Fuji’ and ‘Gala’ with FI hypothesised to occur at least
two weeks earlier. Polar extracts of the buds were analysed using high-resolution mass
spectrometry and metabolite expression was compared across bud samples with various
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crop load treatments using multivariate and univariate analysis to identify key chemical
determinants and associated disrupted metabolic pathways involved in inhibition or
promotion of FI.

The main objective of the present study was to contribute towards the largely unknown
physiological mechanisms of biennial bearing in apple, thereby to better understand the
underlying pathways and triggers of FI that might facilitate intervention opportunities for
controlling apple crop load and thus ensuring stable apple production.

2. Results

Strong inverse relationships between crop load in the 2018/2019 season and the
number of flower clusters in the 2019/2020 season were found for variable crop load
trees of both ‘Nicoter’ and ‘Rosy Glow’, as shown in Figure 1. For the constant crop load
treatments, ‘Rosy Glow’ showed a similarly strong correlation to the variable treatment
trees whereas ‘Nicoter’ showed a poor correlation. This was thought to be due to poor
yield despite high crop load treatments (150% and 200%) and replacement trees due to
disease at the beginning of the 2017/2018 and 2018/2019 seasons. For this reason, this
study only focused on the variable crop load trees.
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Figure 1. Flower clusters counted on trees in the 2019/2020 season against the crop loads (fruit/cm2

tree’s trunk cross sectional area (TCSA)) of those trees in the 2018/2019 season for: (A) ‘Nicoter’;
(B) ‘Rosy Glow’. Each point is the average of three trees with standard error bars.

To investigate the physiological mechanisms of biennial bearing in apples, variable
crop load treatments were applied and apple buds collected once a week over 8 weeks
post-treatment were analysed using ultra-high performance liquid chromatography–high
resolution mass spectrometry (UHPLC-HRMS).

Evaluation of the metabolomic data of ‘Nicoter’ and ‘Rosy Glow’ revealed a total of
908 compounds in positive ionisation mode and 668 compounds in negative ionization
mode. Putative (Level 3) identification of 436 metabolites in the positive mode and 265
in the negative mode, provided valuable information on the complex composition of the
apple bud, including plant hormones, lipids, amino acids, vitamins and phenols.

Prior to statistical analysis of UHPLC-HRMS results, principal component analysis
(PCA) plots were generated to assess the reproducibility of the pooled biological quality
control (PBQC) samples for intensity drifts along the batch and no corrections were required.
PCA plots of ‘Rosy Glow’ and ‘Nicoter’ (Figure 2) apple bud extracts revealed separation
of the two cultivars in the positive (Figure 2A) and negative (Figure 2B) ionisation modes,
indicating that the metabolomes of the individual cultivars are distinct. Although, crop
load regulation is thought to be similar in cultivar [6], the PCA model indicates that the
metabolome between the two cultivars may have differences and were thus explored
individually. Furthermore, there may be differences in stress-induced pathways associated
with apple trees treated with a variable crop load.
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Figure 2. Principal component analysis (PCA) score plot showing ‘Nicoter’ (n = 35) and ‘Rosy
Glow’ (n = 33) apple spur bud extracts evaluated on (A) ESI+ UHPLC-HRMS and (B) ESI- UHPLC-
HRMS with a pooled biological quality control (PBQC) and categorised by (A1,B1) variety and
(A2,B2) collection date.

Initially, RV and NV datasets revealed no clear separation between treatment groups
for RV (RVHIGH, RVMID, RVLOW) and NV (NVHIGH, NVMID, NVLOW) (Figure S1); however,
some separation was observed between high and low treatment groups for each cultivar,
particularly in the strong biennial cultivar ‘Nicoter’.

Thus, an orthogonal projection to latent structure discriminant analysis (OPLS-DA)
model was applied to ‘Nicoter’ and ‘Rosy Glow’ high and low treatment groups for positive
and negative whole datasets. The OPLS-DA score plot revealed discrimination between
treatment groups in the positive and negative mode datasets.

The positive mode evaluation of model performance was well described with good
predictive performance for NVLOW and NVHIGH (Q2 = 0.601, R2Y = 0.724), as shown
in Figure 3A. The model was significant, as indicated by 100 different model permuta-
tions (Q2 = 0.807, p < 0.01 and R2Y = 0.983). The negative mode evaluation for NVLOW

and NVHIGH, shown in Figure 3B, revealed good predictive performance (Q2 = 0.568,
R2Y = 0.709). The model was significant indicated by 100 different model permutations
(p value < 0.01, Q2 = 0.816 and R2Y = 0.934). Compounds significantly responsible for
the separation in OPLS-DA models were ascertained using the variable importance in
projection (VIP) scores. A VIP > 1.5 was used as a cut-off for variable selection, resulting in
a total of 72 significant metabolites in the positive mode and 69 metabolites in the negative
mode. To further confirm the discrimination observed between the treatment groups, a
linear model (y (metabolite response) ~ return bloom) was applied to the ‘Nicoter’ variable
(NVHIGH, NVMID, NVLOW) for both positive and negative datasets. The return bloom data
were treated as a covariate for each cultivar. The Benjamini–Hochberg (BH) correction was
used to adjust the significance (p value) of each of the variables for the ‘Nicoter’ dataset,
and the subsequent adjusted p value was referred to as a Q-value. The majority of signifi-
cant metabolites in the apple spur buds showed higher levels in NVHIGH treatments than
NVLOW, as indicated in Tables 1 and 2.
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Table 1. Metabolites identified in UHPLC-HRMS ESI+ data that were significant (VIP > 1.5) in the OPLSDA model between NVHIGH compared to NVLOW apple
spur buds with associated effect size. Benjamini–Hochberg adjusted p values (Q-values) indicate those metabolites that are significant in the linear model with the
(y ~ return bloom) for NVLOW, NVMID and NVHIGH.

Identity Retention
Time (min)

Mass (m/z)
[M + H] +

Molecular
Formula

Mass
Error (ppm)

VIP
Score

Effect
Size * Q-Value (BH

Adjusted p Value) MS2 Ions
Metabolite

Level

chlorogenic acid 3.68 355.1019 C16H18O9 −1.41 2.5 2.1 ↑ 1.4 × 10−6 163.0390, 145.0287,
135.0443, 117.0339 2

hydroxycoumarin 3.68 163.0389 C9H6O3 −0.43 2.5 2.0 ↑ 1.4 × 10−6 135.0442, 107.0495,
95.0498, 79.0391 2

coumaranone 3.68 135.0440 C8H6O2 −0.41 2.5 2.0 ↑ 1.5 × 10−6 117.0339, 107.0491,
89.0386 2

chlorogenic acid derivative I 3.67 728.1708 - - 2.3 2.0 ↑ 8.9 × 10−5 374.0763, 551.1243,
747.1460, 163.0393, 4

chlorogenic acid derivative II 3.67 559.1093 - - 2.3 1.9 ↑ 2.5 × 10−5 188.0710, 163.0394,
145.0287, 135.0444 4

chlorogenic acid derivative III 3.67 382.0613 - - 2.3 1.7 ↑ 2.0 × 10−5 163.0393, 135.0446,
89.0392 4

chlorogenic acid derivative IV 3.71 645.1810 - - 2.3 2.5 ↑ 2.5 × 10−4 291.0858, 163.0392,
139.0393 4

hydroxibenzoisochromanquinone
derivative 4.15 230.0572 C13H9O4 −0.70 2.2 1.4 ↑ 9.3 × 10−5 147.0442, 119.0495,

91.0545 3

chlorogenic acid derivative V 3.68 551.1230 - - 2.2 1.7 ↑ 1.3 × 10−4
163.0394, 145.0289,
135.0445, 117.0339,

89.0391
4

afzelechin 7-apioside 5.59 407.1336 C20H22O9 −0.14 2.1 1.3 ↑ 4.1 × 10−3 257.0814, 205.0495,
181.0498, 107.0497 2

chlorogenic acid derivative VI 3.68 217.5414 - 2.1 1.8 1.6 × 10−4 163.0392, 135.0442,
117.0337, 89.0388 4

3-O-acetyl-2-O-coumaroyl-
hexopyranose 4.66 369.1180 C17H20O9 −0.02 2.1 1.6 ↓ 9.0 × 10−3 119.0494, 91.0547,

85.0289 2

(R)-shinanolone 4.66 193.0860 C11H12O3 0.40 2.0 1.5 ↓ 6.3 × 10−3 193.0861, 91.0546,
57.0340 2
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Table 1. Cont.

Identity Retention
Time (min)

Mass (m/z)
[M + H] +

Molecular
Formula

Mass
Error (ppm)

VIP
Score

Effect
Size * Q-Value (BH

Adjusted p Value) MS2 Ions
Metabolite

Level

7-hydroxy-2-(4-hydroxyphenyl)-
4-oxo-3,4-dihydro-2H-chromen-

5-yl
β-D-glucopyranoside

5.43 435.1284 C21H22O10 −0.39 1.8 1.3 ↑ 1.7 × 10−2 271.0615, 151.0028,
119.0493, 107.0128 2

1-O-feruloylglucose 4.19 357.1176 C16H20O9 −1.14 1.7 1.6 ↓ 3.5 × 10−2 177.0546, 147.0443,
137.0598, 119.0495 2

3,4 dihydroxybenzaldehyde 4.04 139.0389 C7H6O3 −0.51 1.7 1.2 ↑ 3.4 × 10−2 111.0444, 93.0339,
83.0496 2

naringenin 5.43 273.0757 C15H12O5 −0.18 1.6 1.3 ↑ 3.6 × 10−2 231.0662, 153.0184,
147.0443, 119.0495 2

kaempferol-3-O-α-L-
rhamnopyranoside 5.30 433.1125 C21H20O10 −0.98 1.6 1.3 ↑ 1.1 × 10−2 287.0556, 271.0603,

85.0289, 71.0497 2

kaempferol 5.24 287.0547 C15H10O6 −1.10 1.6 1.3 ↑ 2.9 × 10−2 213.0549, 153.0182,
121.0284 2

salicylaldehyde 4.04 123.0440 C7H6O2 −0.46 1.6 1.2 ↑ 4.8 × 10−2 95.0496, 77.0391,
67.0547, 53.0381 2

* ↑ = up-regulated in NVHIGH, ↓ = down-regulated in NVHIGH.
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Table 2. Metabolites identified in UHPLC-HRMS ESI- data that were significant (VIP > 1.5) in the OPLSDA model between NVHIGH compared to NVLOW apple
spur buds with associated effect size. Benjamini–Hochberg adjusted p values (Q-values) indicate those metabolites that are significant in the linear model with the
(y ~ return bloom) for NVLOW, NVMID and NVHIGH.

Identity Retention
Time (min)

Mass (m/z)
[M − H] −

Molecular
Formula

Mass
Error (ppm)

VIP
Score

Effect
Size * Q-Value (BH

Adjusted p Value) MS2 Ions Metabolite
Level

quinic acid 3.68 191.0556 C7H12O6 −2.68 2.4 2.4 ↑ 1.4 × 10−8 191.0556, 173.0449,
127.0391, 82.0284 2

chlorogenic acid 3.68 353.0882 C16H18O9 1.12 2.3 2.4 ↑ 4.8 × 10−8 191.0556, 353.0886,
173.0450 2

4-acetyl-3-hydroxy-5-
methylphenyl

β-D-glucopyranoside
3.52 327.1092 C15H20O8 2.02 2.2 1.8 ↑ 8.3 × 10−7

165.0548, 147.0449,
163.0392, 121.0646,

119.0493
2

chlorogenic acid derivative VII 3.71 643.1680 - - 2.2 2.8 ↑ 7.7 × 10−6 191.0567, 353.0878 4

quinic acid isomer 4.15 191.0556 C7H12O6 −2.68 2.2 2.1 ↑ 6.8 × 10−6 191.0556, 173.0449,
127.0391, 82.0284 2

Methyl salicylate glycoside
derivative 4.33 461.1670 C20H30O12 1.19 2.1 1.8 ↓ 6.1 × 10−4

191.0555, 251.0773,
149.0455, 131.0340,

415.1611
2

* ↑ = up-regulated in NVHIGH, ↓ = down-regulated in NVHIGH.
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The OPLS-DA score plot of ‘Rosy Glow’ Variable UHPLC-HRMS ESI+ data with an
associated 95% confidence ellipses demonstrates distinction between RVHIGH and RVLOW with
lower predictive performance (Q2 = 0.231, R2Y = 0.647), as shown in Figure 4A. The model
was significant indicated by 100 different model permutations (p value < 0.01, Q2 = 0.757, and
R2Y = 0.985). The OPLS-DA score plot of ESI- with an associated 95% confidence ellipses
demonstrating distinction between RVHIGH and RVLOW, as shown in Figure 4B, revealed poor
predictive performance (Q2 = 0.071, R2Y = 0.593). The model was significant indicated by 100
different model permutations (p value < 0.01, Q2 = 0.785 and R2Y = 0.983). A VIP > 1.5 cut-off
was also applied to the ‘Rosy Glow’ variable and resulted in a total of 109 significant metabolites
in the positive mode and 54 metabolites in the negative mode. A linear model (y (metabolite
response) ~ return bloom) was applied to ‘Rosy Glow’ variable (RVHIGH, RVMID, RVLOW) to
confirm the significance of the compounds. The return bloom data were treated as a continuous
variable (covariate) for each cultivar. p values were only reported for the ‘Rosy Glow’ datasets as
no significant Q values were obtained. The majority of significant metabolites in the apple spur
buds showed higher levels in RVHIGH treatments than RVLOW, as indicated in Tables 3 and 4.
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mode with an associated 95% confidence ellipses (Q2 = 0.601, R2Y = 0.724) and (B) ESI- mode with an
associated 95% confidence ellipses (Q2 = 0.568, R2Y = 0.709). Both models were significant indicated
by 100 different model permutations for (A) (p < 0.01, Q2 = 0.807 and R2Y = 0.983) and (B) (p < 0.01,
Q2 = 0.816 and R2Y = 0.934).

MS or MSn fragmentation of parent ion confirmed the identification of differentially
expressed metabolites for ‘Nicoter’ (Tables 1 and 2) and ‘Rosy Glow’ (Tables 3 and 4)
variable treatments. Level 3 identification or above is required for putative identifi-
cation of compounds in accordance with the Metabolomics Standards Initiative and
Schrimpe-Rutledge et al. [17,18]. Most metabolites in Tables 1–4 had level 2 identification—
i.e., compounds that have matching fragmentation pattern with metabolite MS/MS libraries.
Level 4 identification requires a unique molecular formula and level 3 requires the pre-
cursor m/z to match with a metabolite database. Thus, chlorogenic acid derivatives were
assigned level 4 identification as some of the MS/MS ions matched the chlorogenic acid
fragmentation data, although the precursor m/z did not match a database.
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Table 3. Metabolites identified in UHPLC-HRMS ESI+ data that were significant (VIP > 1.5) in the OPLSDA model between RVHIGH compared to RVLOW apple
spur buds with associated effect size. P values indicate those metabolites that are significant in the linear model with the (y ~ returnbloom) for RVLOW, RVMID

and RVHIGH.

Identity Retention
Time (min)

Mass (m/z)
[M + H] +

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p Value

Linear Model MS2 Ions
Metabolite

Level

D-(-)-mannitol 1.23 183.0862 C6H14O6 −0.65 2.3 1.3 ↑ 5.2 × 10−3 181.0712, 101.0239,
89.02338, 71.0128 2

chlorogenic acid derivative VIII 3.68 775.1544 - 2.2 1.2 ↑ 4.5 × 10−1 709.0716, 532.0876,
421.0622, 163.0393 4

chlorogenic derivative IX 3.68 551.1230 - 1.9 1.6 ↑ 5.9 × 10−2 585.1142, 374.0770,
255.0183, 163.0394 4

kaempferol 5.24 287.0547 C15H10O6 −1.09 1.9 1.3 ↑ 2.9 × 10−2 213.0549, 153.0182,
121.0284 2

3-caffeoyl-1,5-quinolactone 4.17 337.0915 C16H16O8 −0.87 1.8 1.5 ↑ 3.2 × 10−3 163.0411, 145.0304,
135.0460, 117.0351 2

chlorogenic derivative X 3.67 728.1708 - 1.8 1.5 ↑ 2.8 × 10−1 551.1243, 374.0763,
163.0393 4

chlorogenic acid 3.68 355.1019 C16H18O9 −1.29 1.6 1.4 ↑ 1.3 × 10−1 163.0390, 145.0287,
135.0443, 117.0339 2

hydroxycoumarin 3.68 163.0389 C9H6O3 −0.43 1.6 1.3 ↑ 1.1 × 10−1 135.0442, 107.0495,
95.0498, 79.0391 2

coumaranone 3.68 135.0440 C8H6O2 −0.41 1.5 1.3 ↑ 1.4 × 10−1 117.0339, 107.0491,
89.0386 2

* ↑ = up-regulated in RVHIGH ↓ = down-regulated in RVHIGH.
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Table 4. Metabolites identified in UHPLC-HRMS ESI- data that were significant (VIP > 1.5) in the OPLSDA model between RVHIGH compared to RVLOW apple
spur buds with associated effect size. p values indicate those metabolites that are significant in the linear model with the (y ~ returnbloom) for RVLOW, RVMID

and RVHIGH.

Identity Retention
Time (min)

Mass (m/z)
[M − H] −

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p Value MS2 Ions

Metabolite
Level

L-histidine 1.14 154.0613 C6H9N3O2 −5.84 3.1 2.8 ↓ 1.7 × 10−3 154.0614, 137.0348,
93.0448, 80.0691 2

L-aspartate 1.20 132.0292 C4H7NO4 −7.81 2.0 1.3 ↓ 5.5 × 10−2 - 3
aspartyl-histidine 1.21 269.0881 C10H14N4O5 −3.88 2.7 1.3 ↑ 2.1 × 10−3 - 3

2,5-dihydroxybenzoic acid
2-O-β-D-glucoside 2.96 315.0730 C13H16O9 2.7 1.8 1.4 ↑ 3.2 × 10−2 - 3

dihydro-trans-o-coumaric acid
2-glucoside 3.52 327.1092 C15H20O8 2.02 2.2 1.2 ↑ 2.6 × 10−2 181.0714, 165.0550,

145.0287, 119.0494 2

quinic acid 3.68 191.0556 C7H12O6 −2.68 1.5 1.4 ↑ 1.1 × 10−1 191.0556, 173.0449,
127.0391, 82.0284 2

chlorogenic acid 3.68 353.0882 C16H18O9 1.12 1.8 1.4 ↑ 7.9 × 10−2 191.0556, 353.0886,
173.0450 2

phlorisobutanophenone
glycoside 3.70 357.1193 C16H22O9 0.54 2.0 1.2 ↑ 4.5 × 10−2 311.0544, 289.0723,

195.0659 2

1-O-feruloylglucose 3.97 355.1041 C16H20O9 1.82 1.6 1.4 ↑ 9.5 × 10−2 177.0546, 147.0443,
137.0598, 119.0495 2

* ↑ = up-regulated in RVHIGH ↓ = down-regulated in RVHIGH.
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The majority of the differentially expressed metabolites were elevated in buds that
were harvested from trees with high return bloom compared to low return bloom in
both ‘Nicoter’ and ‘Rosy Glow’. In ‘Nicoter’, many of the phenylpropanoid pathway
intermediates increased, comprising chlorogenic acid and its derivatives (I-VI) and pre-
cursor molecule quinic acid, coumarins (7-hydroxycoumarin, coumaranone), salicylates
(3,4 dihydroxybenzaldehyde, salicylaldehyde) and a glycosidic derivative (4-acetyl-3-
hydroxy-5-methylphenyl β-D-glucopyranoside), flavanols (afzelechin-7-apioside, narin-
genin, kaempferol) and flavanol glycosides (7-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-
dihydro-2H-chromen-5-yl β-D-glucopyranoside; kaempferol-3-O-α-L-rhamnopyranoside).
Few compounds including the flavanol (R)-shinanolone, glycosides of hydroxycinnamic
acid derivatives 1-O-feruloylglucose and 3-O-acetyl-2-O-coumaroyl-hexopyranose and
a methyl salicylate glycoside derivative showed significant decreases in ‘Nicoter’. Simi-
larly, ‘Rosy Glow’ showed increased levels of phenylpropanoid pathway intermediates
chlorogenic acid and its derivatives (VIII, IX and 3-caffeoyl-1,5-quinolactone) and precursor
molecule quinic acid; coumarins and related derivatives (hydroxycoumarin; coumaric
acid; dihydro-trans-o-coumaric acid 2-glucoside, coumaranone), glycosidic derivative of
salicylate (2,5-dihydroxybenzoic acid 2-O-β-D-glucoside) and related phenolic glycoside
(phlorisobutanophenone glycoside) and flavanol (kaempferol). Sugar alcohol D-(-)-mannitol
also increased. The amino acids L-histidine and L-aspartate decreased in ‘Rosy Glow.’
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Figure 4. Orthogonal partial least squares discriminant analysis (OPLS-DA) of RVLOW and RVHIGH

extracts acquired in UHPLC-HRMS. RVLOW (+) and RVHIGH (∆) OPLS-DA score plot of (A) ESI+
mode with an associated 95% confidence ellipses (Q2 = 0.231, R2Y = 0.647) and (B) ESI- mode with an
associated 95% confidence ellipses (Q2 = 0.071, R2Y = 0.593). Both models were significant indicated
by 100 different model permutations for (A) (p < 0.01, Q2 = 0.757 and R2Y = 0.985) and (B) (p < 0.01,
Q2 = 0.785 and R2Y = 0.983).

Pathway enrichment analysis showed that compounds benzoate, 1-O-feruloyl-β-D-
glucose, kaempferol and trans-5-O-caffeoyl-D-quinate (chlorogenic acid) belong to the
phenylpropanoid derivative biosynthesis and this pathway is significantly disrupted
(p = 0.005) (Figure 5). Increased levels of chlorogenic acid indicate significant disruption in
the chlorogenic acid biosynthesis II pathway (p = 0.04) and the identification of unknown
chlorogenic acid derivatives further increases its relevance.
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Figure 5. Compounds associated with the PAL (Phenylalanine Ammonia-Lyase) pathway to salicylic
acid, including (A) hydroxycinnamates, (B) salicylates and (C) flavanols, show significant effects in
‘Nicoter’ and ‘Rosy Glow’ variable treatments associated with meristem bud formation.

Plant hormones including cytokinins, gibberellins and auxins are believed to partici-
pate in floral development in many plant species including apple [19,20]. To investigate
the effect of crop load on selected phytohormones and their structural derivatives, rel-
ative abundances were measured for the cytokinin precursors, adenine and adenosine,
auxins (2-oxindole-3-acetic acid (OxIAA), indole-3-acetic acid (IAA) indole-3-acetonitrile,
methyl-indole-3-acetic acid (MeIAA) and precursors tryptophan (Trp) and tryptamine,
gibberellic acid (GA), salicylic acid (SA), methyl jasmonate and abscisic acid (ABA). A line
graph showing the effect of individual treatments on the compounds is shown for ‘Nicoter’
(Figure S2) and ‘Rosy Glow’ (Figure S3).

A linear model (y (metabolite response) ~ return bloom) was applied to ‘Rosy Glow’
(RVHIGH, RVMID, RVLOW) and ‘Nicoter’ (NVHIGH, NVMID, NVLOW) together with t-tests
and fold change in high and low treatments. However, statistics tests revealed there was no
significant differences for the selected compounds in ‘Nicoter’ (Table S1) and ‘Rosy Glow’
(Table S2).

Together these data show that increased biosynthesis of phenylpropanoid pathway
intermediates, including hydroxycinnamates (chlorogenic acid, coumarates, ferulates),
coumarins, salicylates and flavanols, increased in response to low crop loads.
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3. Discussion

This study investigated the metabolic pathways of FI in apple using ESI LCMS
metabolic profiling on apple buds collected within the critical 70 DAFB time period. In
this investigation, levels of hydroxycinnamic acid derivatives, flavonoids and salicylates
were significantly increased in buds collected from trees with low crop load (“OFF”) that
expressed high return bloom in the following season. Although previous multi-omics
investigations have identified differentially expressed genes associated with plant hormone
signal transduction and significant metabolites such as flavanols and chlorogenic acid in
“OFF” trees, there are no direct reports on the type of plant hormones regulating early
flower bud development in apple [3,6,16].

To elucidate the metabolic pathways and key repressors and promotors of FI, young
apple trees were forced into biennial bearing. Return bloom response for the 2019/2020
season was coupled to metabolomics profiling of apple spur buds collected in the previ-
ous 2018/2019 season using positive and negative ESI LCMS analysis to determine the
physiological pathways disrupted during bud meristem development. Our results show
that trees exhibiting an “OFF” season triggered metabolome changes that not only corrob-
orated with previous studies but also identified novel candidates for FI belonging to the
salicylate group of phytohormones and metabolites within the SA biosynthetic pathway.
Biosynthetic production of SA occurs via isochorismate or phenylalanine in the model plant
Arabidopsis thaliana [21]. Several metabolites were significantly disrupted by biennial bear-
ing treatments imposed in this study, particularly those represented in Figure 5, providing
evidence that the phenylalanine ammonia-lyase (PAL) pathway is likely triggered in the
biosynthesis of SA and modification can render SA inactivate (e.g. glycosylation) or confer
complementary properties such as activation of stress response via hydroxylation [21].

Guitton et al. described that the differentially expressed transcripts of apple trees
in “ON” and “OFF” years showed that the redox and hormonal statuses are likely to
contribute to FI in apple trees [16]. Disruption in the redox status of the plant is largely
caused by reactive oxygen species (ROS) which are known to be toxic by-products of
metabolic processes in normal conditions [22,23]. Under abiotic and biotic stress, there is
a boost in production of ROS species which is believed to activate defense genes and the
biosynthesis of SA for the activation of a defense response [22,24,25]. Redox homeostasis is
maintained by enzymes and metabolites, and ascorbic acid is in the main line of defense
for the detoxification of ROS species and leads to the biosynthesis of plant hormones,
including SA [24]. Moreover, flavonoids are also considered as radical scavengers due
to their antioxidative properties. In this study, increased levels of flavonoids kaempferol,
naringenin and afzelechin were observed in “OFF” trees of the biennial bearing cultivar
’Nicoter’. Increased levels of kaempferol were also observed in ’Rosy Glow’. The sugar
alcohol D-Mannitol can also function as a radical scavenger and was augmented exclusively
in “OFF” trees of ’Rosy Glow‘. Sugar alcohols are produced in plants in response to abiotic
and biotic stress and can provide plants with salinity tolerance, efficient growth and
pathogen resistance [26].

The regulation of redox potential via antioxidants is involved in the signalling net-
works in both spatial and temporal dimensions of plant growth and development. ROS are
strongly linked to the response to environmental factors, particularly stress and crosstalk
with plant hormonal signalling pathways such as salicylates which are known to regulate
floral transition [27,28]. Induction of early flowering ensures survival under stress [29].

The high-levels of hydroxycinnamic acid derivatives represented as chlorogenic acid,
coumarate and ferulate derivatives in “OFF” trees indicated disruption in the phenyl-
propanoid biosynthesis pathway which was consistent with a previous study conducted
by Milyaev et al. [6]. A gene homologue to caffeic acid metabolism, a likely metabolic
precursor to the chlorogenic acid pathway, were also down-regulated in “ON” olive trees
in a transcriptomic study [30]. Levels of salicylates were also observed to increase accord-
ingly in the biennial cultivar ‘Nicoter’, resulting from decarboxylation of cinnamates. The
elevated levels of chlorogenic acid and its derivatives suggest it is likely a key intermediate
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in FI, although it may not directly induce flowering [31]. Increased levels of salicylates are
known to impact the flowering process in model plants such as duckweeds [27,28,31,32]
and Arabidopsis thaliana [33,34], suggesting that a stress activation pathway is likely exerted
in the bud, although benzoic acid was shown to elicit a more effective flower induction
response than SA in duckweed [27]. Although SA (2-hydroxybenzoic acid) was not differ-
entially expressed in this study, the closely related derivatives 3,4 dihydroxybenzaldehyde
and salicylaldhehyde showed significantly increased levels in the biennial bearing cultivar
‘Nicoter’ and 2,5-dihydroxybenzoic acid 2-O-β-D-glucoside in ‘Rosy Glow’.

The metabolite 4-hydroxycoumarin is also known to promote flowering in duckweed,
and both cultivars ‘Nicoter’ and ‘Rosy Glow’ showed a significant increase in a hydrox-
ycoumarin (unknown position of hydroxy group) [35]. Although there are no reports of
flower-inducing activity of the closely related compound coumaranone, it may play an
important role in FI, due to its significance and effect size reported in both cultivars.

‘Rosy Glow’—the less susceptible cultivar to biennial bearing—showed low levels of
amino acids histidine and aspartate in “OFF” trees, which are likely consumed to produce
the dipeptide aspartyl-histidine which subsequently increased. In Arabidopsis thaliana,
Histidine-to-Aspartate phosphorelays are involved in signal transduction induced by cy-
tokinin and other environmental stimuli [36]. Cytokinins are a group of phytohormones
that influence growth and the stimulation of cell division and are abundant in the root tip,
shoot apex and all plant tissue. Although, cytokinins were not differentially expressed in
this study, the significantly increased levels of aspartyl-histidine suggest that the His-Asp
phosphorelays are likely a downstream effect of the perceived cytokinin signal [36]. Cy-
tokinins are also responsible for activating the biosynthetic pathway for SA in plants [37]
and when applied to apple buds post bloom at the time of fruit bud initiation, an increase in
the amount of return bloom occurs [20,38]. The participation of the cytokinin class of phy-
tohormones also corroborates with gene expression studies conducted by Milyaev et al. [6].
It is worth noting that, although no significant effects were observed in the auxin indole
acetic acid (IAA) and gibberellic acid (GA), it is possible that phytohormone signalling
cross-talk is occurring through mobile signals from the developing fruitlet seed or stem.
Studies have indicated that fruit presence stimulates IAA transport in citrus and olive
stem [39] and possibly induces GA biosynthesis. In apple, fruitlet seeds are rich in GA’s
and application of GA is known to inhibit flowering [12,40].

Using ESI LCMS profiling, and MSMS fragmentation techniques, only 14% of the differ-
entially expressed metabolites in ‘Nicoter’ and ‘Rosy Glow’ cultivars were identified. Albeit
these were the most significant, further annotation of the “unknown” metabolites would be
required to characterise the full extent of the metabolic pathways driving biennial bearing.

In conclusion, to our knowledge, this is the first functional metabolomics analysis to
identify plant hormones associated with FI in apple. This study showed that crop load treat-
ments exerted significant effects on members of the phenylpropanoid pathway comprising
hydroxycinnamates, salicylates, salicylic acid biosynthetic pathway intermediates and
flavanols. Our findings provide evidence that the PAL salicylic acid biosynthetic pathway
was activated in response to an “OFF” year during a biennial bearing cycle. Although no
significant changes were exhibited in salicylic acid, its biosynthetic derivatives exhibited
distinct increases in “OFF” trees of ‘Nicoter’ and ‘Rosy Glow’ apples. An additional mecha-
nism of cytokinin involvement via histidine-aspartate phosphorelays’, which is also known
to activate a defense response in trees, was observed in ‘Rosy Glow’. This study for the first
time identifies the participation of the salicylate group of plant hormones in FI in apple.
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4. Materials and Methods

The experiment was conducted in a commercial farm at Three Bridges, Yarra Valley,
Victoria, Australia. Three-year-old trees of the cultivars ‘Nicoter’ (marketed as Kanzi®)
and ‘Rosy Glow’ (marketed as Pink Lady®), trained on Open Tatura trellis, were used.
Trees were managed according to the standard local practice and commercial operations.
Five crop load treatments were first applied during the 2015–2016 growing season with six
replicates, for a total of 30 trees per cultivar. Crop load treatments consisted of 1%, 50%,
100%, 150% and 200% of normal grower practice (6 fruit/cm2 for ‘Nicoter’, 8 fruit/cm2 for
‘Rosy Glow’), based on the tree’s trunk cross-sectional area (TCSA), which was measured
25 cm above the grafting union at the beginning of each growing season. In 2016–2017
and subsequent seasons, three replicates of each crop load treatment alternated between
corresponding low and high treatments (e.g., 1% became 200%, 150% became 50%), thus
forcing a biennial-type cropping behaviour on those trees (NV = ‘Nicoter’ variable crop
load; RV = ‘Rosy Glow’ variable crop load).

During each season at full bloom (i.e., 80% open flowers), the number of flower clusters
on each tree were counted manually to determine return bloom (RB). Flower clusters were
then thinned by hand in an attempt to obtain the required number of fruit per tree. Only
one flower per cluster was retained, except where insufficient clusters meant higher fruit
numbers per cluster were needed to achieve the desired number of fruit per tree. Thinning
was completed within 4 weeks of full bloom to minimize the chance of excess fruit affecting
the following year’s return bloom.

The continuous return bloom variable was converted to a categorical dataset for
‘Nicoter’ and ‘Rosy Glow’ treatments denoted as: NVHIGH (1–2 fruit/cm2 TCSA; 300–400 RB;
n = 14) and RVHIGH (1–4 fruit/cm2 TCSA; 190–240 RB; n = 13) = low crop load treat-
ments, eliciting a high RB referred to as “OFF” trees. NVLOW (6–8 fruit/cm2 TCSA;
20–41 RB; n = 14) and RVLOW (11–15 fruit/cm2 TCSA; 32–70 RB; n = 14) = high crop load
trees, eliciting a low return bloom, referred to as “ON” trees. Moderate treatments include
NVMID (4.43 fruit/cm2 TCSA; 139.7 RB; n = 14) and RVMID (8.77 fruit/cm2 TCSA; 138 RB;
n = 14).

4.1. Bud Selection and Preparation

In this study, buds were collected from the apple trees after thinning, in late spring
and early summer of the 2018/2019 growing season. Weekly collection of one bud per tree
began 4 weeks after full bloom and continued for 8 weeks. Buds were selected on spurs
growing on at least two-year-old wood on lateral branches of the trees. Buds were prepared
for molecular analysis by removing the scales from the bud using a scalpel then excising
the growing tip containing the active meristem and immediately freezing it in dry ice in
situ. Buds from each treatment were pooled into one 2 mL polypropylene mini centrifuge
tube to ensure sufficient material for analysis. On return to the laboratory, these samples
were stored at −80 ◦C until analysis.

4.2. Extraction of Metabolites from Buds

Samples collected in the first week were used for optimising the grinding and extrac-
tion methodology. Apple buds were lyophilised and subsequently one large (3.5–4.1 mm)
and two small (2.8–3.2 mm) YTZP (yttria zirconia) beads were added to each tube. Sam-
ples were placed in 24-well cryo-blocks on a Geno/Grinder 2010 (SPEX Sample Prep,
Metuchen, NJ, USA) and buds were ground at 1200 rpm for 1 min. The samples were ex-
tracted with 80% methanol/water (v/v), with extraction volumes adjusted proportionally
to the weight of the lyophilised bud. Samples were centrifuged at 13,000 rpm for 2 min
and 200 µL of the supernatant was transferred into a HPLC tube and stored at −20 ◦C until
ready for LCMS analysis.
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4.3. LCMS Methods for Untargeted and Targeted Analysis

For untargeted metabolite profiling, a Vanquish ultra-high performance liquid chro-
matography (UHPLC) system (Thermo Fisher Scientific, Bremen, Germany) with a binary
pump, autosampler and temperature-controlled column compartment, coupled with a
QExactive (QE) Plus mass spectrometer (Thermo, Bremen, Germany) with electrospray
(ESI) probe operating in both positive and negative modes, was used. For MS data acqui-
sition, positive and negative ion data were captured over a mass range of 80–1200 m/z,
with a mass resolution set at 35,000. Samples were randomised, and blanks (80% methanol)
injected every five samples. A pooled biological quality control (PBQC) was run every
10 samples. For MS2, data were acquired in full-scan MS/data-dependent MS2 (ddMS2)
mode on positive and negative ionisation modes on selected samples. MS cycles were
composed of 1 Full MS and up to 10 ddMS2. Ions within the inclusion list detected in the
full MS survey scan (intensity threshold 1.6 × 105) triggered a MS2 event at the peak apex
with an isolation window of 0.4 m/z. A 5.0 s delay was required for the same ion to trigger
a new MS2 event (dynamic exclusion). Full MS scans were acquired from m/z 100 to 1500
for the positive ionisation mode and 80 to 1200 for the negative ionisation mode with a
resolution of 35,000 (full width at half maximum, FWHM, at m/z 200); automatic gain
control (AGC) target was 3 × 106; maximum injection time (IT) 200 ms. Scans (ddMS2)
were acquired at a resolution of 17,500, the AGC target was 1 × 105 and the maximum IT
was 50 ms. Ions were fragmented with stepped collision energy (20, 40 and 60%).

Prior to data acquisition, the system was calibrated with Pierce LTQ Velos ESI Posi-
tive and Negative Ion Calibration Solution (Thermo Fisher Scientific). Mass spectrom-
etry data were acquired using Thermo Xcalibur V. 2.1 (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Nitrogen was used as the sheath, auxiliary and sweep gases at
flow rates of 28, 15 and 4 L/min, respectively. Spray voltage was set at 4000 V (positive
and negative).

A Thermo Fisher Scientific Hypersil Gold 1.9 µm, 100 mm × 2.1 mm column with
a gradient mobile phase consisting of 0.1% formic acid in H2O (A) and 0.1% formic acid
in acetonitrile (B), at a flow rate of 0.3 mL/min was used. The gradient began at 2% B,
increasing to 100% B over 11 min; followed by 4 min at 100% B before a 5 min equilibration
with 2% B.

4.4. Data Processing and Statistical Analyses

The data files obtained following LCMS analyses were processed in the Refiner MS
module of Genedata Expressionist® 12.0 with the following parameters: (1) chromatogram
chemical noise subtraction with removal of peaks with less than 4 scans, chromatogram
smoothing using moving average estimator over 5 scans and 30% quantile over 151 scans
for noise subtraction, (2) intensity thresholding using a clipping method and a threshold
of 100,000, (3) selection of positive mode data only, (4) chromatogram RT alignment using
a pairwise alignment-based tree and a maximum RT shift of 1 min, (5) chromatogram
peak detection using a 5 scan summation window, a minimum peak size of 0.1 min, a
maximum merge distance of 0.05 Da, a boundary merge strategy and a maximum gap/peak
ratio of 70% with moving average smoothing over 10 scans for peak RT splitting, (6) a
chromatogram isotope clustering using RT and m/z tolerance of 0.05 min and 0.05 Dalton,
respectively, with a maximum charge of 2 and finally (7) an adduct detection using mainly
M + H and allowable adducts (M + 2H, M + K, M + Na, M − H2O + H).

Statistical analyses were performed using the Analyst module of Genedata Expressionist®

12.0. Principal component analyses (PCA) were performed to identify tissue and treatment
differences. Overlay of the PBQC and samples allowed for the validation of the high-quality
dataset by ensuring RT variation, mass error and sensitivity changes throughout. Identi-
fication of metabolites was performed by searching experimental MS1 data through the
following databases: Plant Metabolic Network (PMN) https://plantcyc.org (accessed on
23 January 2022); Human Metabolome DataBase (HMDB) (http://hmdb.ca) (accessed on
10 June 2021); ChemSpider (http://chemspider.com) (accessed on 13 June 2021); and Lipid
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Maps® (http://www.lipidmaps.org) (accessed on 20 June 2021). MS2 data were searched
on MzCloud (https://www.mzcloud.org) (accessed on 30 June 2021). Identified signif-
icant compounds were inputted into a SmartTable in Plant Metabolic Network (PMN)
https://plantcyc.org (accessed on 23 January 2022) for pathway enrichment analysis specific
to Malus domestica.

A linear model (y (metabolite response) ~ return bloom) applied to the variable crop
load treatments of the individual ‘Nicoter’ and ‘Rosy Glow’ cultivars, revealed significant
metabolites. The Benjamini–Hochberg (BH) correction criteria were used to adjust the
significance (p value) of each of the variables, and the subsequent adjusted p value is
referred to as a Q-value.

Prior to multivariate analysis, the missing value imputation was applied and fea-
tures with >10% missing values were removed and remaining missing values imputed
by k-nearest neighbour (KNN) for each feature. Subsequently, a cube root transforma-
tion and autoscaling was applied to the data to achieve normality and homoscedasticity.
An OPLSDA model was applied to each dataset using MetaboAnalyst 3.053 [41] and
Q2 value ≥ 0.4 indicates a model with good predictability.

For targeted analysis of plant hormones and structurally related compounds as de-
scribed in Table 5, an extracted ion chromatogram (EIC) with a 5 ppm tolerance of [M + H] +
was utilised to obtain the relative abundances from the MS spectra, in LCQUAN™ Quanti-
tative Software (Thermo Fisher Scientific). All compounds were purchased from Sigma-
Aldrich (St. Louis, MI, USA). Standards were prepared in 80% water/methanol.

Table 5. The molecular formula, accurate mass, [M + H] + and retention time of individual plant
hormones and structural derivatives.

Name Molecular
Formula Acurate Mass [M + H] + Retention Time

(min)

Methyl (+/−)-
jasmonate C13H20O3 224.1412 224.1412 8.13

Gibberellic acid C19H22O6 346.1416 347.1495 4.65
Adenine C5H5N5 135.0545 136.0623 1.32

Adenosine C10H13N5O4 267.0968 268.1046 1.33
Indole-3-

acetonitrile C10H8N2 156.0687 157.0766 6.65

Indole-3-acetic
acid C10H9NO2 175.0633 176.0712 5.68

2-oxindole-3-
acetic
acid

C10H9NO3 191.0582 192.0661 4.42

Tryptophan C11H12N2O2 204.0899 205.0977 3.51
(+/−)-Abscisic

acid C15H20O4 264.1362 265.1440 5.95

SA C7H6O3 138.0317 139.0395 5.87
Methyl-indole-3-

acetic
acid

C11H11NO2 189.0790 190.0868 7.10

Tryptamine C10H12N2 160.1000 161.1078 3.82

Targeted analytes which resulted in p < 0.05 from a two-sided Student t-test and
exhibited a log10 fold change of >0.5 in high and low treatments of ‘Nicoter’ and ‘Rosy
Glow’ were regarded as significant.
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