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Abstract: Huntington’s disease (HD) is caused by the production of a mutant huntingtin (HTT) with 

an abnormally long poly-glutamine (polyQ) tract, forming aggregates and inclusions in neurons. 

Previous work by us and others has shown that an increase or decrease in polyQ-triggered aggre-

gates can be passive simply due to the interaction of proteins with the aggregates. To search for 

proteins with active (functional) effects, which might be more effective in finding therapies and 

mechanisms of HD, we selected among the proteins that interact with HTT a total of 49 pairs of 

proteins that, while being paralogous to each other (and thus expected to have similar passive in-

teraction with HTT), are located in different regions of the protein interaction network (suggesting 

participation in different pathways or complexes). Three of these 49 pairs contained members with 

opposite effects on HD, according to the literature. The negative members of the three pairs, MID1, 

IKBKG, and IKBKB, interact with PPP2CA and TUBB, which are known negative factors in HD, as 

well as with HSP90AA1 and RPS3. The positive members of the three pairs interact with HSPA9. 

Our results provide potential HD modifiers of functional relevance and reveal the dynamic aspect 

of paralog evolution within the interaction network. 
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1. Introduction 

Huntington’s disease (HD) is one of nine autosomal dominant neurodegenerative 

disorders caused by the expansion of a CAG trinucleotide repeat. For HD, this expansion 

is located in the first exon of the huntingtin gene (htt) and results in an abnormally long 

poly-glutamine (polyQ) tract within the N-terminus of the huntingtin protein [1]. Expan-

sion of CAG repeats results in the production of mutant proteins, which aggregate and 

form inclusions within neurons [2]. PolyQs with lengths above 40 amino acids cause mu-

tant HTT proteins to misfold, form aggregates, become toxic, and cause disease [3]. 

The mechanism of polyQ-mediated toxicity is still under study; however, there is 

evidence supporting aberrant protein–protein interactions in the pathogenesis of HD [4–

6]. Several lines of evidence support that expanded HTT is processed into N-terminal 

fragments that form inclusions in the cytoplasm and nucleus [7,8]. Many proteins, such 

as ubiquitin, heat shock proteins, and transcription factors, localize to polyQ inclusions 

[9–11]. 

Reports are accumulating on a variety of positive or negative effects that the expres-

sion or inhibition of multiple proteins have on HD’s progression or its effects [12–18]. 

While these positive or negative effects may be actively due to specific functions (e.g., the 

phosphorylation of particular residues in HTT [19,20]), previous work suggests that the 
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interactions of proteins with polyQ-caused aggregates can passively trigger both the in-

crease and decrease of aggregates [21,22]. 

We hypothesized that, given the large size of HTT and its large number of interactors 

[4], it should be possible to explore the relatively complex network of the interactions sur-

rounding HTT. We previously exploited this possibility to demonstrate the existence of 

multiple partners of HTT that use similar modes of interaction [23]. Here, we reasoned 

that paralogous expansions in the set of proteins interacting with HTT with divergent 

effects could be used to pinpoint active functions with relevance in HD. It is well known 

that gene duplication and speciation events, followed by mutation, can lead to functional 

changes, meaning that proteins with high sequence similarity may not have the same 

function [24,25]. In particular, several lines of work report the opposite effect of pairs of 

paralogs, revealing a functional diversity [26]. Favaro et al. found that two very similar 

proteins, PSD-93, and its paralog PSD-95, although they share similar functional domains 

and have evolved through the duplication of a single ancestral gene, have opposite roles 

in glutamatergic synapse maturation [27]. 

We assumed that the identification of pairs of paralogs interacting with HTT with 

opposite effects on HD might reveal active functions relevant to HD, under the assump-

tion that these paralogs might interact identically with HTT, but their different effect on 

HD would arise from different interactions with other functional components of the pro-

tein interaction network. To maximize the divergence in protein interactions, we would 

need to account for the entire human protein interaction network (hPIN) in an unbiased 

approach. This is facilitated by techniques that project networks in a geometric space 

where closeness means a higher connection probability. 

Since proteins are very complex machines, and their interactions with other proteins 

form a very complicated molecular system, their study as a protein–protein interaction 

network has gained traction in recent years [28]. Several algorithms and models support 

the existence of a hidden geometry underlying the structure and topology of complex sys-

tems, such as the human protein–protein interaction network [29]. The Popularity-Simi-

larity (PS) model assumes that clustering and the hierarchy of complex networks arise 

from trade-offs between node popularity and similarity [30]. Additionally, Alanis-Lobato 

et al. found that the embedding of the hPIN to hyperbolic space has biological interpreta-

tions in terms of the PS model. They realized that the radial positioning of the nodes en-

capsulates information about protein conservation and evolution, while their angular po-

sitioning captures the functional and spatial organization of proteins in the cell [29]. This 

mapping may also lead to a better understanding of complex human disorders [31]. 

Motivated by these results, we followed a step-by-step computational filtering strat-

egy, starting from a large protein–protein interaction (PPI) dataset embedded in the hy-

perbolic disc to obtain a network that consists of HTT interactors. This mapping enabled 

us to select pairs of paralogs of HTT interactors located in different regions of the hPIN. 

Proteins in each of these pairs are expected to interact similarly with HTT, but their dif-

ferent positions in the hPIN suggest their different involvement in pathways or com-

plexes. The evaluation of protein pairs with opposed effects on HD was interpreted to find 

common partners for positive or negative effectors, which we propose as potential candi-

dates for powerful effects in HD models. 

2. Results 

2.1. Human Protein Interaction Network Embedding to Hyperbolic Disc (hPIN) 

In the first step of our analysis, we created a protein–protein interaction network 

from the HIPPIE database with high-quality interactions formed with a confidence score 

of ≥0.71 [32,33]. The largest connected component (LCC) of the hPIN is comprised of 

93,140 interactions between 13,076 proteins. The resulting network was embedded into 

the two-dimensional hyperbolic plane H2 using LaBNE+HM [34–36], and the hyperbolic 
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coordinates were inferred for each protein of the network (Supplementary Table S1). We 

then proceeded to analyze the topological and geometrical properties of the hPIN. 

2.2. Identification of Protein Clusters in the Angular Dimension 

The similarity component of the PSM (angular coordinates of the nodes in H2) ab-

stracts the characteristics that make a node similar to others [29]; neighboring proteins 

play a role in similar biological processes [31]. To explore the biological meaning of the 

angular dimension, we identified big gaps between consecutive inferred angles and de-

termined 12 protein clusters in the hPIN (Figure 1; Supplementary Figure S1; see Section 

4 for details). From the biological point of view, the angles capture the functional organi-

zation of the cell, supported by the GO term annotations of the proteins in each cluster. 

As an example, the overrepresented biological process of cluster 1 is protein lipidation. Pro-

teins agglomerate in similarity-based clusters since each of them is enriched in different 

aspects of the GO BP terms. 

 

Figure 1. Human protein–protein interaction network embedded in the hyperbolic disc. Protein 

clusters in different colors were identified by big gaps separating groups of proteins in the angular 

dimension of the hyperbolic space. The overrepresented biological function in each cluster was 
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determined via GO enrichment analysis (BP: Biological Process). Each cluster was assigned a nu-

meric identifier (1–12). For each protein cluster, the number of proteins that are associated with the 

GO BP terms and the number of proteins in each cluster are shown. 

2.3. HTT-Interactors in the Hyperbolic Disc 

Starting from a large human protein interaction network with 13,076 proteins, we 

performed an interaction network filtering procedure in order to limit the dataset to a 

relatively small network, focusing on the HTT protein and its interactors (HttPIN). We 

observed, in this network, 382 proteins that are directly linked to HTT (Figure 2; Supple-

mentary Table S2). 

 

Figure 2. HTT interactors in the H2. The different clusters were identified by big gaps separating 

groups of proteins in the angular dimension of the hyperbolic space. Each cluster was assigned a 
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numeric identifier (1–17). The number of proteins/genes that are associated with the GO BP terms 

and the number of proteins/genes in each cluster are shown. 

To reveal the functional modularity of the HTT interactors, following the procedure 

used above to cluster the hPIN, we partitioned the angular dimension of the nodes of the 

HttPIN into several sectors according to large gaps between the consecutive inferred an-

gles of the HTT interactors (Supplementary Figure S2; see Section 4 for details). As it is 

shown in Figure 2, proteins agglomerate into 17 sectors. The overrepresented biological 

function in each cluster was determined through GO enrichment analysis and points to 

the heterogeneity of the clusters, since no common GO BP terms were observed between 

the sectors. 

2.4. Paralog Pairs of HTT Interactors 

To further investigate our hypothesis, we looked for HTT interactors with paralogs 

having opposite effects on HD. Previous computational analysis in yeast highlighted the 

value of studying protein–protein interaction networks to examine the functional diver-

gence among duplicated gene products [37,38]. From all 382 HTT interactors, we obtained 

87 paralogous pairs (Supplementary Table S3). Considering that the geometrical proper-

ties of the hyperbolic disc capture biologically relevant features, such as function, we spec-

ulated that paralogous proteins in different clusters could have divergent effects on the 

disease. Therefore, we selected paralog pairs of proteins detected in different clusters 

(Supplementary Table S4). Figure 3 shows this network, which consists of 74 nodes and 

49 paralog pairs. Overall, 87 paralog pairs interact with HTT (Supplementary Table S3); 

49 of them are located in different clusters, while 38 are in the same cluster. 
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Figure 3. Paralog pairs of HTT interactors in different clusters. Nodes in different colors display 

protein agglomeration in angular similarity-based sectors. The nodes with the Gene Symbol repre-

sent the 49 paralog pairs located in different clusters. Paralog pairs are connected by an edge. Red 

edges indicate the three pairs of paralogs with opposite effects on HD (see text for details). 

2.5. Effects of Paralog Pairs on HD 

We then reviewed the literature to find paralog pairs with opposite effects on HD 

(Supplementary Table S4). More specifically, DNAJC21 and its paralogs: DNAJC11, 

DNAJC4, DNAJA1, and DNAJA3 are all members of the DnaJ heat shock protein family 

(Hsp40). Previous studies in animal models have shown that Hsp40 chaperones are pro-

tective of neurodegeneration [39]. The overexpression of Hsp40 proteins can suppress 

polyQ aggregation, and, hence, they are critical for cell survival [40,41]. In addition, CCT8 

and CCT6A, which are paralog proteins of HSPD1, have a protective role on HD. In fact, 

the upregulation of CCT8 has been linked to a mechanism that protects from polyQ ag-

gregation, while the knockdown of CCT6A led to stimulating the aggregation of ex-

panded polyglutamine and mutant huntingtin in cellular models [42,43]. Moreover, an 

increase in the UBQLN1 expression protects against HTT-polyQ-induced cell death and 

toxicity. Likewise, UBQLN2 significantly decreases in both wild-type and polyglutamine-

expanded full-length HTT levels in cellular and animal models [12]. Finally, the TUBB 
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protein interacts more strongly with mutant HTT than with the wild-type. This event 

blocks intracellular transport, suggesting a pathogenetic mechanism in HD [16]. 

We next focused on pairs of paralogs located in different regions of the hPIN and 

with opposite effects on HD according to the literature (Table 1). 

Table 1. List of paralog pairs with opposite effects on HD. 

Genes Proteins Effects on HD References 

MID1/PML 

E3 ubiquitin-protein lig-

ase Midline-1/Protein 

PML 

Mutant HTT recruits MID1 

protein complex resulting in 

overproduction of polyQ 

HTT; PML plays a protective 

role against neuronal toxicity 

associated with polyQ pro-

teins. 

[13,44–46] 

IKBKB/IKKA(CHUK)

Inhibitor of nuclear fac-

tor kappa B kinase sub-

unit beta/Inhibitor of 

nuclear factor kappa-B 

kinase subunit alpha 

Inhibition of IKBKB may pro-

mote neuronal survival in 

HD; IKKA has a protective 

role in preventing HTT pro-

teolysis. 

[47] 

IKBKG/OPTN 
NF-kappa-B essential 

modulator/Optineurin 

Inhibition of IKBKG activity 

reduces HTT-polyQ toxicity; 

OPTN has a protective effect 

on polyQ neurotoxicity asso-

ciated with mutant HTT. 

[48–50] 

We detected three paralog pairs with opposite roles on HD. Notably, MID1/PML, 

IKBKB/IKKA(CHUK), and IKBKG/OPTN are paralogous pairs with experimental evi-

dence suggesting their different effect on HD. MID1 leads to an aberrant overproduction 

of the mutant polyglutamine protein, inhibition of IKBKB has a protective effect on neu-

rodegeneration, and IKBKG binds mutant HTT contributing to HD neurotoxicity 

[46,49,51]. The potential participation of IKBKB and IKBKG in the pathogenesis of HD 

was discussed in a computational analysis [52]. Differently, several lines of evidence sup-

port that PML, IKKA, and OPTN play a protective role against neuronal toxicity associ-

ated with HD [45,48–50]. 

2.6. Common Interactors between Positive and Negative Paralogs 

Finally, we hypothesized that the existence of common interaction partners of the 

three negative paralogs could reveal functions that negatively influence HD and whose 

inhibition could have therapeutic effects. The three negative paralogs are IKBKB, IKBKG, 

and MID1. Using the HIPPIE database, we obtained their common interactors, besides 

HTT. Filtering interactions with a confidence score of ≥0.71 resulted in only PPP2CA. At 

a confidence score of ≥0.63, TUBB, HSP90AA1, and RPS3 were also found (see Figure 4). 
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Figure 4. Positive and negative effectors on HD and closely connected components. (a) Position of 

the positive and negative paralogs and their common interacting partners in the hyperbolic disc. 

(b) Red nodes represent the negative paralogs, and the nodes surrounded by the red ellipses are 

their common interactors. Green nodes represent the positive paralogs, and the node surrounded 

by the green ellipse represents their common interactor. 

We used the same approach with all three positive partners to find proteins that 

might be effective as a therapy for HD. The three positive paralogs are OPTN, PML, and 

CHUK. Using the HIPPIE database and a confidence score of ≥0.49, besides HTT, only one 

partner was found, chaperon HSPA9 (also known as mortalin), which is not a direct in-

teractor of HTT (Figure 4). 

Finally, we checked the connectivity of the common interacting partners of the pa-

ralogs with HTT. All five (including RPS3 and HSPA9, which do not bind directly to HTT) 

rank very high on the list of human proteins ordered by the number of interactions with 

HTT-interactors (among the top 4% of 10,914 ranked proteins; Table 2). 

Table 2. Common interacting partners between negative and positive paralogs. 

Paralogs 
Effect on 

HD 

Common Interac-

tors between Pa-

ralogs 

Confidence 

Score 

Interaction of 

Common Interac-

tors with HTT 

Ranking by # 

of Interac-

tions with 

HTT-Interac-

tors * 

MID1, 

IKBKB, 

IKBKG 

Negative 

PPP2CA ≥0.72 Yes 402 (20) 

TUBB ≥0.63 Yes 81 (41) 

HSP90AA1 ≥0.63 Yes 51 (47) 

RPS3 ≥0.63 No 295 (23) 

PML, OPTN, 

CHUK 
Positive HSPA9 ≥0.49 No 47 (48) 

* Out of 10,914 proteins. Number of interactions with HTT interactors indicated in parentheses. 
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3. Discussion 

The two-dimensional hyperbolic embedding of the human protein interaction net-

work has been shown to be both relevant and useful. We previously showed (i) that the 

radial coordinates of nodes (proteins) correlate with protein age, with older proteins oc-

cupying more central positions, and (ii) that proteins with related biological functions and 

cellular localizations cluster together along the angular coordinates [29]. The reason for 

these distributions, in terms of the protein interaction network, is that older proteins have 

more interactions, and their corresponding nodes are shifted towards the center of the 

map, while proteins with similar functions tend to be part of the same complexes and 

pathways and, therefore, because they interact or have common interactors, they tend to 

be pulled together towards the same region of the map. 

In this paper, the latent geometry of the hPIN proves useful, namely in the network-

based analysis of huntingtin’s interactors. Considering pairs of paralogs that (a) both in-

teract with huntingtin, (b) are located in different regions of the hPIN, and (c) have oppo-

site effects on HD, we found three pairs that correspond to these criteria. Particularly, 

MID1 is an aberrant interaction partner of HTT. Its binding leads to the induction of an 

aberrant translation of the mutant HTT mRNA. MID1 assembles a protein complex with 

its interaction partners, PP2A and 40S ribosomal S6 kinase (S6K), and recruits this com-

plex to the mutant HTT mRNA. This recruitment induces translation in a CAG repeat 

length-dependent manner, resulting in a toxic gain of function [46]. The translational in-

duction by MID1 has also been found in models of other CAG repeat diseases [53]. Heinz 

and colleagues found that blocking the interaction between MID1 and the mutant HTT 

mRNA is a promising therapeutic approach [13]. On the other hand, the MID1 paralog 

protein, PML, can associate directly with polyQ proteins and preferentially with the path-

ogenic form, recognizing structures or regions that are commonly found in misfolded pro-

teins [45]. Misfolded nuclear proteins that are selectively recognized by PML are marked 

with poly-SUMO2/SUMO3 chains. RNF4, which is a SUMO-dependent E3 ubiquitin lig-

ase, binds to the poly-SUMO2/SUMO3 chains via tandem SUMO interacting motifs (SIM) 

and ubiquitylates, the protein, which leads to its proteasomal degradation [44]. This relay 

system likely provides a critical link between misfolded proteins and may play an im-

portant role in protecting against neurodegeneration. 

Another paralog pair with opposite effects on HD is IKBKB/CHUK(IKKA). Most of 

the IKKA and IKBKB molecules in the cell are part of IKK complexes. The IKK complex 

also contains a regulatory subunit called IKKγ or NEMO [54]. Concurrently, DNA dam-

age is an important factor in the development of neurotoxicity and a potential regulator 

of HD pathology [55]. It was shown that the induction of DNA damage has opposite ef-

fects on this paralog pair, increasing the activity of IKBKB while decreasing the activity of 

IKKA in the neurons [47]. The increased activity of IKBKB is also involved in several neu-

rodegenerative disorders, including HD, Alzheimer’s disease (AD), and Parkinson’s dis-

ease (PD) [49,56,57]. The IKBKB activation by the DNA damage promotes HTT cleavage, 

and by increasing IKKA or reducing IKBKB, blocks this event. In the context of neuronal 

DNA damage, IKBKB activation is deleterious, and its inhibition may be protective in HD 

and potentially in other neurodegenerative disorders where DNA damage plays a role 

[47]. Moreover, the inactivation of IKBKB prevents the development of metabolic abnor-

malities induced by mutant HTT in the hypothalamus [58]. 

IKBKG, which is the regulatory module of the IKK complex, binds to mutant HTT 

through polyQ and polyP regions. This binding activates the IKK complex and promotes 

the activation and nuclear localization of the nuclear factor kappa (NF-κB) [49]. Activated 

NF-κB is involved in neuronal injury and in pathological conditions, such as HD [59,60]. 

The inhibition of NF-κB may have a protective effect on excitotoxicity, apoptosis, and neu-

rodegeneration and, therefore, NF-κB inhibitors may deserve investigation for their po-

tential role in HD [51]. Optineurin (OPTN) is one of a number of HTT-interacting proteins 

[4] that promotes neuronal survival by counteracting the glutamate-induced neurotoxi-

city in diseases, demonstrating its neuroprotective role [48,61]. Shen and colleagues also 
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showed that OPTN decreased the misfolded protein aggregates, mainly through 

polyUbK63-linked autophagy, while OPTN mutations lead to diseases by altering the pro-

tein quality control and degradation machinery [50]. 

We next focus on common partners of the three negative proteins: TUBB, PPP2CA, 

HSP90AA1, and RPS3. It is interesting to note that TUBB is part of our paralog interacting 

set with a negative effect [16]. Furthermore, PPP2CA, HSP90AA1, and RPS3 are involved 

in the pathogenesis of another polyQ disease named SCA1. These proteins are members 

of a protein–protein interaction network, which is affected by the gradual aggregation of 

the relevant polyQ-expanded protein, ataxin-1, and the degeneration of Purkinje neurons 

in animal models [62]. HSP90AA1 interacts with the N-terminal of HTT and recruits the 

deubiquinating enzyme USP19 [13]. Additionally, this protein participates in a chaperome 

network, safeguarding proteostasis, and is repressed in the brain of patients with neuro-

degenerative diseases, including HD [63]. 

PPP2CA is an interesting candidate because it dephosphorylates S421 in HTT and, 

blocking its activity, was found to protect striatal neurons from NMDA-induced cell death 

[64]. This protein not only regulates translation of HTT mRNAs through the MID1-PP2A 

complex [46] but may also induce apoptotic cell death through the activation of the 

mTOR/PI3K/Akt pathway [65]. The selection of the ribosomal protein RPS3 in this net-

work suggests a new avenue for exploration. Ribosomal proteins preferentially interact 

with the mutant HTT [66], suggesting the participation of the protein translation machin-

ery in the pathogenesis of polyQ diseases [67]. The shuttling of RPS3 from the cytoplasm 

to the nucleus can be induced by toxic DNA damage [68] and to mitochondria by in-

creased ROS levels [69]. Using the same approach with the three positive proteins, we 

found only one common partner: chaperone HSPA9 (also known as mortalin), which is 

not a direct interactor of HTT. However, its positive effect may be mediated by other 

members of the heat shock protein 70 family, including HSPA8, which was previously 

shown to preferentially interact with HTT [66]. The interactions of HSPA9 with OPTN, 

PML, and CHUK are reported by non-specific works [70–72] but could also suggest a pos-

itive effect. One high-throughput non-specific interaction study links it also to the nega-

tive HD modifiers, IKBKB, IKBKG, and TUBB [71]. We take recent work linking HSPA9 

to roles in the control of peroxisomal function [73] and neuronal stress detection [74] and 

its downregulation in animal models of Alzheimer’s disease and patient’s brains [75] as a 

suggestion that this could be a relevant protein for the control of HD. 

4. Materials and Methods 

4.1. Construction of the hPIN 

The hPIN is a subset of the Human Integrated Protein–Protein Interaction rEference 

(HIPPIE) [32,33]. HIPPIE retrieves interactions between human proteins from major ex-

pert-curated databases and calculates a score for each one, reflecting its combined exper-

imental evidence. This score is a combination of the number of studies that detect an in-

teraction, the quality of experimental techniques used to measure an interaction, and the 

number of non-human organisms in which an interaction was reproduced. The raw ver-

sion of this network is available in the Download section of the HIPPIE database [32,33]. 

In this study, only interactions with a confidence score of ≥0.71 that belong to the largest 

connected component (LCC) in release 2.2 were considered (N = 13,076 nodes and L = 

93,140 edges). The 0.71-network was preferred because it has a high percentage of edges 

supported by more than one experiment (70%). 

4.2. Mapping the hPIN to Hyperbolic Space 

In order to embed the hPIN into the two-dimensional hyperbolic plane, we used the 

R package “NetHypGeom,” which implements the LaBNE + HM algorithm [35]. This al-

gorithm combines manifold learning [34,35] and maximum likelihood estimation [36] to 

uncover the hidden geometry of complex networks. The PS model has a geometrical 
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interpretation in hyperbolic space (H2), where nodes that join the system connect with the 

existing ones that are hyperbolically closest to them [30,36,76]. The N nodes of the network 

lie within a hyperbolic disc with a radius of R~N, where the radial coordinate of a node, 

ri, represents the popularity dimension with nodes that joined the system first being close 

to the disc’s center. The angular coordinate, θi, represents the similarity dimension. The 

network was embedded in the two-dimensional hyperbolic plane using the LaBNE + HM 

algorithm to infer the hyperbolic coordinates of each protein, with parameters γ = 2.74, T 

= 0.8, and w = 2π. 

4.3. Clustering in the Similarity Dimension 

To cluster proteins in the similarity dimension, we sorted the nodes increasingly by 

their angular coordinates and computed the difference between θi and θi+1 to identify large 

gaps between groups of proteins. The gap size, g, that was chosen to separate protein 

clusters produces sectors with a minimum of ten components (g = 0.011344, see Supple-

mentary Figure S1). Then, we applied an ad hoc rule, where clusters with less than 100 

proteins were merged clockwise with the consecutive one to avoid redundancy. We then 

carried out Gene Ontology (GO) enrichment analysis [77] for the proteins in each sector 

of the hPIN, using the nodes of the hPIN as our background set. Only GO Biological Pro-

cess (BP) terms enriched at the 0.05 significance level (p-value) were kept. 

4.4. HTT Interactors in the Hyperbolic Space 

We then obtained the list of human HTT interactors from the HIPPIEv2.2 database 

[32,33] and identified their position in the hyperbolic disc. We created groups of proteins 

in the HttPIN based on the angular similarity dimension of the HTT interactors. To deter-

mine the start and the end of each group, proteins were sorted increasingly by their in-

ferred angular coordinate, θ, and the difference between θi and θi+1 was computed. The 

gap size = 0.059198 was chosen (Supplementary Figure S2). The enriched GO BP terms for 

each group were determined and the ones enriched at the 0.05 significance level (p-values) 

were extracted. 

4.5. Paralog Pairs and Common Interacting Partners 

From the HTT interacting proteins dataset, we detected pairs of paralogs. This infor-

mation was derived from the Ensembl BioMart database [78], using the human genome 

assembly, GRCh38.p13. We focused on pairs of paralogous proteins located in different 

clusters in the H2 to explore functional interpretations based on the angular similarity di-

mension. We then conducted a literature review to identify pairs with opposite effects on 

HD. For the latter analysis, we used the HIPPIEv2.2 database [32,33] to obtain common 

interacting partners between pairs of paralogs with negative and positive effects on HD, 

applying different confidence scores. 

5. Conclusions 

We approached the heterogeneity of the measurements of the effects of various pro-

teins in HD models by providing a common framework for evaluation. Our hypothesis is 

that strong HD modifiers should produce collective effects through multiple pathways 

and complexes. These strong functional effectors may be obscured by the supposedly 

abundant but weaker effects of proteins that influence HD aggregates by their passive 

interaction with HTT. To avoid this problem, we focused on pairs of HTT interactor pa-

ralogs occupying divergent positions in the protein interaction network mapped to H2 

and found pairs with opposite effects on HD. We then explored the components closely 

connected to the positive or negative effectors. Our findings confirm proteins with rele-

vant effects in HD and suggest RPS3 and HSPA9 as non-direct interactors of HTT that 

could have a negative and positive effect in HD, respectively. With our approach, we have 

shown how the interaction network connects the effects of HD modifiers to the literature, 
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and the finer details of each experiment can ultimately be examined to make sense of these 

results and select or discard ideas for experimental work. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/ijms23105853/s1. 

Author Contributions: Conceptualization, A.-C.V., P.M., and M.A.A.-N.; methodology, A.-C.V. and 

M.A.A.-N.; software, A.-C.V.; validation, A.-C.V. and M.A.A.-N.; formal analysis, A.-C.V.; investi-

gation, A.-C.V.; writing—original draft preparation, A.-C.V. and M.A.A.-N.; writing—review and 

editing, A.-C.V., P.M., S.P., and M.A.A.-N.; supervision, M.A.A.-N. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: We thank Gregorio Alanis-Lobato for fruitful discussions and comments on the 

manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Macdonald, M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromo-

somes. Cell 1993, 72, 971–983. 

2. Ordway, J.M.; Tallaksen-Greene, S.; Gutekunst, C.-A.; Bernstein, E.M.; Cearley, J.A.; Wiener, H.W.; Dure, L.S.; Lindsey, R.; 

Hersch, S.M.; Jope, R.S.; et al. Ectopically Expressed CAG Repeats Cause Intranuclear Inclusions and a Progressive Late Onset 

Neurological Phenotype in the Mouse. Cell 1997, 91, 753–763. 

3. Kaminosono, S.; Saito, T.; Oyama, F.; Ohshima, T.; Asada, A.; Nagai, Y.; Nukina, N.; Hisanaga, S.I. Suppression of Mutant 

Huntingtin Aggregate Formation by Cdk5/p35 through the Effect on Microtubule Stability. J. Neurosci. 2008, 28, 8747–8755. 

4. Harjes, P.; Wanker, E.E. The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem. Sci. 

2003, 28, 425–433. 

5. Kaltenbach, L.S.; Romero, E.; Becklin, R.R.; Chettier, R.; Bell, R.; Phansalkar, A.; Strand, A.; Torcassi, C.; Savage, J.; Hurlburt, A.; 

et al. Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLoS Genet. 2007, 3, e82. 

6. Li, S.-H.; Li, X.-J. Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet. 2004, 20, 146–154. 

7. DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of Huntingtin in Neuronal 

Intranuclear Inclusions and Dystrophic Neurites in Brain. Science 1997, 277, 1990–1993. 

8. Hoffner, G.; Island, M.L.; Djian, P. Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad 

range of N-terminal fragments of expanded huntingtin and insoluble polymers: Huntingtin fragments and polymers in inclu-

sions. J. Neurochem. 2005, 95, 125–136. 

9. Boutell, J.M.; Thomas, P.; Neal, J.W.; Weston, V.J.; Duce, J.; Harper, P.S.; Jones, A.L. Aberrant Interactions of Transcriptional 

Repressor Proteins with the Huntington’s Disease Gene Product, Huntingtin. Hum. Mol. Genet. 1999, 8, 1647–1655. 

10. Nucifora, F.C.; Sasaki, M.; Peters, M.F.; Huang, H.; Cooper, J.K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, 

V.L.; et al. Interference by Huntingtin and Atrophin-1 with CBP-Mediated Transcription Leading to Cellular Toxicity. Science 

2001, 291, 2423–2428. 

11. Suhr, S.T.; Senut, M.-C.; Whitelegge, J.P.; Faull, K.F.; Cuizon, D.B.; Gage, F.H. Identities of Sequestered Proteins in Aggregates 

from Cells with Induced Polyglutamine Expression. J. Cell Biol. 2001, 153, 283–294. 

12. Gerson, J.E.; Safren, N.; Fischer, S.; Patel, R.; Crowley, E.V.; Welday, J.P.; Windle, A.K.; Barmada, S.; Paulson, H.L.; Sharkey, 

L.M. Ubiquilin-2 differentially regulates polyglutamine disease proteins. Hum. Mol. Genetics 2020, 29, 2596–2610. 

13. Heinz, A.; Schilling, J.; van Roon-Mom, W.; Krauß, S. The MID1 Protein: A Promising Therapeutic Target in Huntington’s Dis-

ease. Front. Genet. 2021, 12, 761714. 

14. Hyrskyluoto, A.; Bruelle, C.; Lundh, S.H.; Do, H.T.; Kivinen, J.; Rappou, E.; Reijonen, S.; Waltimo, T.; Petersén, Å.; Lindholm, 

D.; et al. Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degen-

eration: Involvement of the proteasome and ER stress-activated kinase IRE1. Hum. Mol. Genet. 2014, 23, 5928–5939. 

15. Min, H.J.; Ko, E.A.; Wu, J.; Kim, E.S.; Kwon, M.K.; Kwak, M.S.; Choi, J.E.; Lee, J.E.; Shin, J.-S. Chaperone-like Activity of High-

Mobility Group Box 1 Protein and Its Role in Reducing the Formation of Polyglutamine Aggregates. J. Immunol. 2013, 190, 1797–

1806. 



Int. J. Mol. Sci. 2022, 23, 5853 13 of 15 
 

 

16. Smith, R.; Bacos, K.; Fedele, V.; Soulet, D.; Walz, H.A.; Obermüller, S.; Lindqvist, A.; Björkqvist, M.; Klein, P.; Önnerfjord, P.; et 

al. Mutant huntingtin interacts with -tubulin and disrupts vesicular transport and insulin secretion. Hum. Mol. Genet. 2009, 18, 

3942–3954. 

17. Wang, H.Q.; Xu, Y.X.; Zhao, X.Y.; Zhao, H.; Yan, J.; Sun, X.B.; Guo, J.-C.; Zhu, C.-Q. Overexpression of F0F1-ATP synthase α 

suppresses mutant huntingtin aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun. 2009, 390, 1294–1298. 

18. Yang, H.; Liu, C.; Zhong, Y.; Luo, S.; Monteiro, M.J.; Fang, S. Huntingtin Interacts with the Cue Domain of gp78 and Inhibits 

gp78 Binding to Ubiquitin and p97/VCP. PLoS ONE 2010, 5, e8905. 

19. Cariulo, C.; Azzollini, L.; Verani, M.; Martufi, P.; Boggio, R.; Chiki, A.; Deguire, S.M.; Cherubini, M.; Gines, S.; Marsh, J.L.; et al. 

Phosphorylation of huntingtin at residue T3 is decreased in Huntington’s disease and modulates mutant huntingtin protein 

conformation. Proc. Natl. Acad. Sci. USA 2017, 114, E10809–E10818. 

20. Mishra, R.; Hoop, C.L.; Kodali, R.; Sahoo, B.; van der Wel, P.C.A.; Wetzel, R. Serine Phosphorylation Suppresses Huntingtin 

Amyloid Accumulation by Altering Protein Aggregation Properties. J. Mol. Biol. 2012, 424, 1–14. 

21. Petrakis, S.; Rasko, T.; Russ, J.; Friedrich, R.P.; Stroedicke, M.; Riechers, S.-P.; Muehlenberg, K.; Möller, A.; Reinhardt, A.; Vina-

yagam, A.; et al. Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1. PLoS 

Genet. 2012, 8, e1002897. 

22. Petrakis, S.; Schaefer, M.H.; Wanker, E.E.; Andrade-Navarro, M.A. Aggregation of polyQ-extended proteins is promoted by 

interaction with their natural coiled-coil partners. BioEssays 2013, 35, 503–507. 

23. Kastano, K.; Mier, P.; Andrade-Navarro, M.A. The Role of Low Complexity Regions in Protein Interaction Modes: An Illustra-

tion in Huntingtin. Int. J. Mol. Sci. 2021, 22, 1727. 

24. Jensen, L.J.; Ussery, D.W.; Brunak, S. Functionality of System Components: Conservation of Protein Function in Protein Feature 

Space. Genome Res. 2003, 13, 2444–2449. 

25. Zallot, R.; Harrison, K.J.; Kolaczkowski, B.; De Crécy-Lagard, V. Functional Annotations of Paralogs: A Blessing and a Curse. 

Life 2016, 6, 39. 

26. Serlidaki, D.; van Waarde, M.A.W.H.; Rohland, L.; Wentink, A.S.; Dekker, S.L.; Kamphuis, M.J.; Boertien, J.M.; Brunsting, J.F.; 

Nillegoda, N.B.; Bukau, B.; et al. Functional diversity between HSP70 paralogs caused by variable interactions with specific co-

chaperones. J. Biol. Chem. 2020, 295, 7301–7316. 

27. Favaro, P.D.; Huang, X.; Hosang, L.; Stodieck, S.; Cui, L.; Liu, Y.-z.; Engelhardt, K.-A.; Schmitz, F.; Dong, Y.; Löwel, S.; et al. An 

opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol. 2018, 16, e2006838. 

28. Gosak, M.; Markovič, R.; Dolenšek, J.; Slak Rupnik, M.; Marhl, M.; Stožer, A.; Perc, M. Network science of biological systems at 

different scales: A review. Phys. Life Rev. 2018, 24, 118–135. 

29. Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M. The latent geometry of the human protein interaction network. Bioinformatics 

2018, 34, 2826–2834. 

30. Papadopoulos, F.; Kitsak, M.; Serrano, M.Á.; Boguñá, M.; Krioukov, D. Popularity versus similarity in growing networks. Nature 

2012, 489, 537–540. 

31. Härtner, F.; Andrade-Navarro, M.A.; Alanis-Lobato, G. Geometric characterisation of disease modules. Appl. Netw. Sci. 2018, 3, 

10. 

32. Alanis-Lobato, G.; Andrade-Navarro, M.A.; Schaefer, M.H. HIPPIE v2.0: Enhancing meaningfulness and reliability of protein–

protein interaction networks. Nucleic Acids Res. 2017, 45, D408–D414. 

33. Schaefer, M.H.; Fontaine, J.F.; Vinayagam, A.; Porras, P.; Wanker, E.E.; Andrade-Navarro, M.A. HIPPIE: Integrating Protein 

Interaction Networks with Experiment Based Quality Scores. PLoS ONE 2012, 7, e31826. 

34. Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Efficient embedding of complex networks to hyperbolic space via their 

Laplacian. Sci. Rep. 2016, 6, 30108. 

35. Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Manifold learning and maximum likelihood estimation for hyperbolic net-

work embedding. Appl. Netw. Sci. 2016, 1, 10. 

36. Papadopoulos, F.; Aldecoa, R.; Krioukov, D. Network geometry inference using common neighbors. Phys. Rev. E 2015, 92, 

022807. 

37. Musso, G.; Zhang, Z.; Emili, A. Retention of protein complex membership by ancient duplicated gene products in budding 

yeast. Trends Genet. 2007, 23, 266–269. 

38. Wagner, A. The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes. Mol. Biol. 

Evol. 2001, 18, 1283–1292. 

39. Wacker, J.L.; Zareie, M.H.; Fong, H.; Sarikaya, M.; Muchowski, P.J. Hsp70 and Hsp40 attenuate formation of spherical and 

annular polyglutamine oligomers by partitioning monomer. Nat. Struct. Mol. Biol. 2004, 11, 1215–1222. 

40. Chai, Y.; Koppenhafer, S.L.; Bonini, N.M.; Paulson, H.L. Analysis of the Role of Heat Shock Protein (Hsp) Molecular Chaperones 

in Polyglutamine Disease. J. Neurosci. 1999, 19, 10338–10347. 

41. Rodríguez-González, C.; Lin, S.; Arkan, S.; Hansen, C. Co-chaperones DNAJA1 and DNAJB6 are critical for regulation of poly-

glutamine aggregation. Sci. Rep. 2020, 10, 8130. 



Int. J. Mol. Sci. 2022, 23, 5853 14 of 15 
 

 

42. Kitamura, A.; Kubota, H.; Pack, C.G.; Matsumoto, G.; Hirayama, S.; Takahashi, Y.; Kimura, H.; Kinjo, M.; Morimoto, R.; Nagata, 

K. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 2006, 8, 1163–1169. 

43. Langfelder, P.; Cantle, J.P.; Chatzopoulou, D.; Wang, N.; Gao, F.; Al-Ramahi, I.; Lu, X.-H.; Ramos, E.M.; El-Zein, K.; Zhao, Y.; et 

al. Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nat. Neurosci. 2016, 19, 

623–633. 

44. Gärtner, A.; Muller, S. PML, SUMO, and RNF4: Guardians of Nuclear Protein Quality. Mol. Cell 2014, 55, 1–3. 

45. Guo, L.; Giasson, B.I.; Glavis-Bloom, A.; Brewer, M.D.; Shorter, J.; Gitler, A.D.; Yang, X. A Cellular System that Degrades Mis-

folded Proteins and Protects against Neurodegeneration. Mol. Cell 2014, 55, 15–30. 

46. Krauß, S.; Griesche, N.; Jastrzebska, E.; Chen, C.; Rutschow, D.; Achmüller, C.; Dorn, S.; Boesch, S.M.; Lalowski, M.; Wanker, 

E.; et al. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1–PP2A protein complex. Nat. Commun. 

2013, 4, 1511. 

47. Khoshnan, A.; Ko, J.; Tescu, S.; Brundin, P.; Patterson, P.H. IKKα and IKKβ Regulation of DNA Damage-Induced Cleavage of 

Huntingtin. PLoS ONE 2009, 4, e5768. 

48. Anborgh, P.H.; Godin, C.; Pampillo, M.; Dhami, G.K.; Dale, L.B.; Cregan, S.P.; Truant, R.; Ferguson, S.S.G. Inhibition of Metabo-

tropic Glutamate Receptor Signaling by the Huntingtin-binding Protein Optineurin. J. Biol. Chem. 2005, 280, 34840–34848. 

49. Khoshnan, A.; Ko, J.; Watkin, E.E.; Paige, L.A.; Reinhart, P.H.; Patterson, P.H. Activation of the I B Kinase Complex and Nuclear 

Factor- B Contributes to Mutant Huntingtin Neurotoxicity. J. Neurosci. 2004, 24, 7999–8008. 

50. Shen, W.-C.; Li, H.-Y.; Chen, G.-C.; Chern, Y.; Tu, P.-h. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere 

with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 2015, 11, 685–700. 

51. Gupta, S.; Sharma, B. Pharmacological benefit of I1-imidazoline receptors activation and nuclear factor kappa-B (NF-κB) mod-

ulation in experimental Huntington’s disease. Brain Res. Bull. 2014, 102, 57–68. 

52. Kalathur, R.K.R.; Giner-Lamia, J.; Machado, S.; Barata, T.; Ayasolla, K.R.S.; Futschik, M.E. The unfolded protein response and 

its potential role in Huntington’s disease elucidated by a systems biology approach. F1000Research 2015, 4, 103. 

53. Griesche, N.; Schilling, J.; Weber, S.; Rohm, M.; Pesch, V.; Matthes, F.; Auburger, G.; Krauss, S. Regulation of mRNA Translation 

by MID1: A Common Mechanism of Expanded CAG Repeat RNAs. Front. Cell. Neurosci. 2016, 10, 226.  

54. Häcker, H.; Karin, M. Regulation and Function of IKK and IKK-Related Kinases. Sci. STKE 2006, 2006, re13. 

55. De Luca, G.; Russo, M.T.; Degan, P.; Tiveron, C.; Zijno, A.; Meccia, E.; Ventura, I.; Mattei, E.; Nakabeppu, Y.; Crescenzi, M.; et 

al. A Role for Oxidized DNA Precursors in Huntington’s Disease–Like Striatal Neurodegeneration. PLoS Genet. 2008, 4, 

e1000266. 

56. Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. 

Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. 

Natl. Acad. Sci. USA 2007, 104, 18754–18759. 

57. Mattson, M.P.; Culmsee, C.; Yu, Z.; Camandola, S. Roles of Nuclear Factor κB in Neuronal Survival and Plasticity. J. Neurochem. 

2001, 74, 443–456. 

58. Soylu-Kucharz, R.; Khoshnan, A.; Petersén, Å. IKKβ signaling mediates metabolic changes in the hypothalamus of a Huntington 

disease mouse model. iScience 2022, 25, 103771. 

59. Napolitano, M.; Zei, D.; Centonze, D.; Palermo, R.; Bernardi, G.; Vacca, A.; Calabresi, P.; Gulino, A. NF-kB/NOS cross-talk 

induced by mitochondrial complex II inhibition: Implications for Huntington’s disease. Neurosci. Lett. 2008, 434, 241–246. 

60. Yakovleva, T.; Bazov, I.; Watanabe, H.; Hauser, K.F.; Bakalkin, G. Transcriptional control of maladaptive and protective re-

sponses in alcoholics: A role of the NF-κB system. Brain Behav. Immun. 2011, 25, S29–S38. 

61. De Marco, N.; Buono, M.; Troise, F.; Diez-Roux, G. Optineurin Increases Cell Survival and Translocates to the Nucleus in a 

Rab8-dependent Manner upon an Apoptotic Stimulus. J. Biol. Chem. 2006, 281, 16147–16156. 

62. Vagiona, A.-C.; Andrade-Navarro, M.A.; Psomopoulos, F.; Petrakis, S. Dynamics of a Protein Interaction Network Associated 

to the Aggregation of polyQ-Expanded Ataxin-1. Genes 2020, 11, 1129. 

63. Brheme, M.; Voisine, C.; Rolland, T.; Wachi, S.; Soper, J.H.; Zhu, Y.; Orton, K.; Villella, A.; Garza, D.; Vidal, M.; et al. A chaperone 

subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 2014, 9, 1135–1150. 

64. Metzler, M.; Gan, L.; Mazarei, G.; Graham, R.K.; Liu, L.; Bissada, N.; Lu, G.; Leavitt, B.R.; Hayden, M.R. Phosphorylation of 

Huntingtin at Ser421 in YAC128 Neurons Is Associated with Protection of YAC128 Neurons from NMDA-Mediated Excitotox-

icity and Is Modulated by PP1 and PP2A. J. Neurosci. 2010, 30, 14318–14329. 

65. Zhou, H.; Luo, W.; Zeng, C.; Zhang, Y.; Wang, L.; Yao, W.; Nie, C. PP2A mediates apoptosis or autophagic cell death in multiple 

myeloma cell lines. Oncotarget 2017, 8, 80770–80789. 

66. Haenig, C.; Atias, N.; Taylor, A.K.; Mazza, A.; Schaefer, M.H.; Russ, J.; Riechers, S.-P.; Jain, S.; Coughlin, M.; Fontaine, J.-F.; et 

al. Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Ag-

gregation in Affected Brains. Cell Rep. 2020, 32, 108050. 

67. Laidou, S.; Alanis-Lobato, G.; Pribyl, J.; Raskó, T.; Tichy, B.; Mikulasek, K.; Tsagiopoulou, M.; Oppelt, J.; Kastrinaki, G.; Lefaki, 

M.; et al. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox 

Biol. 2020, 32, 101458. 



Int. J. Mol. Sci. 2022, 23, 5853 15 of 15 
 

 

68. Yadavilli, S.; Hegde, V.; Deutsch, W.A. Translocation of human ribosomal protein S3 to sites of DNA damage is dependant on 

ERK-mediated phosphorylation following genotoxic stress. DNA Repair 2007, 6, 1453–1462. 

69. Kim, Y.; Kim, H.D.; Kim, J. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage sur-

veillance. Biochim. Biophys. Acta BBA Mol. Cell Res. 2013, 1833, 2943–2952. 

70. Bell, R.; Hubbard, A.; Chettier, R.; Chen, D.; Miller, J.P.; Kapahi, P.; Tarnopolsky, M.; Sahasrabuhde, S.; Melov, S.; Hughes, R.E. 

A Human Protein Interaction Network Shows Conservation of Aging Processes between Human and Invertebrate Species. PLoS 

Genet. 2009, 5, e1000414. 

71. Bouwmeester, T.; Bauch, A.; Ruffner, H.; Angrand, P.O.; Bergamini, G.; Croughton, K.; Cruciat, C.; Eberhard, D.; Gagneur, J.; 

Ghidelli, S.; et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell Biol. 2004, 

6, 97–105. 

72. Miyamoto-Sato, E.; Fujimori, S.; Ishizaka, M.; Hirai, N.; Masuoka, K.; Saito, R.; Ozawa, Y.; Hino, K.; Washio, T.; Tomita, M.; et 

al. A Comprehensive Resource of Interacting Protein Regions for Refining Human Transcription Factor Networks. PLoS ONE 

2010, 5, e9289. 

73. Jo, D.S.; Park, S.J.; Kim, A.K.; Park, N.Y.; Kim, J.B.; Bae, J.E.; Park, J.H.; Shin, J.H.; Chang, J.W.; Kim, P.K.; et al. Loss of HSPA9 

induces peroxisomal degradation by increasing pexophagy. Autophagy 2020, 16, 1989–2003. 

74. Burbulla, L.F.; Schelling, C.; Kato, H.; Rapaport, D.; Woitalla, D.; Schiesling, C.; Schulte, C.; Sharma, M.; Illig, T.; Bauer, P.; et al. 

Dissecting the role of the mitochondrial chaperone mortalin in Parkinson’s disease: Functional impact of disease-related vari-

ants on mitochondrial homeostasis. Hum. Mol. Genet. 2010, 19, 4437–4452. 

75. Park, S.J.; Shin, J.H.; Jeong, J.I.; Song, J.H.; Jo, Y.K.; Kim, E.S.; Lee, E.H.; Hwang, J.J.; Lee, E.K.; Chung, J.S.; et al. Down-regulation 

of Mortalin Exacerbates Aβ-mediated Mitochondrial Fragmentation and Dysfunction. J. Biol. Chem. 2014, 289, 2195–2204. 

76. Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguna, M. Hyperbolic geometry of complex networks. Phys. Rev. E 

2010, 82, 036106. 

77. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et 

al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. 

78. Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; 

Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. 

 


