
SUPPLEMENTARY METHODS 

 

Weighted gene co-expression analysis 

Weighted gene co-expression network analysis (WGCNA) frameworks helps in identifying 

clusters of co-expressed genes [1] based on pairwise-correlations between gene expression profiles 

across all samples (eq. 1). For each expression dataset used, a signed weighted adjacency matrix 

is computed based on co-expression similarities between the genes (eq. 2) as shown below: 

𝑺𝒊𝒋 = 𝟏 𝒄𝒐𝒓(𝒊,𝒋)𝟐     (1) 

𝒂𝒊𝒋 = 𝒑𝒐𝒘𝒆𝒓 𝒔𝒊𝒋,  𝜷 = |𝒔𝒊𝒋|𝜷   (2) 

where 𝑐𝑜𝑟(𝑖, 𝑗) is the Pearson correlation coefficient between the expression profiles of a pair of 

genes 𝑖 & 𝑗: 

𝒄𝒐𝒓(𝒊, 𝒋) = ∑ ( )̅( ̅)∑ ( )̅ ∑ ( ̅)     (3) 

where 𝚤 and 𝚥  ∈ 𝑅  are the respective expression vectors (𝑛 = number of samples). The parameter 𝛽 in the power adjacency function (eq. 2) is chosen based on the scale-free topology criterion [1]. 

These adjacencies are further used to compute topological overlaps between two genes which 

reflect their level of interconnectedness in the co-expression network (eq. 4). 

 

𝑻𝑶𝑴𝒊𝒋(𝑨) =  ∑ 𝒂𝒊𝒌𝒂𝒌𝒋  𝒂𝒊𝒋𝒌 𝒊,𝒋𝒎𝒊𝒏 (∑ 𝒂𝒊𝒌, ∑ 𝒂𝒋𝒌) 𝟏  𝒂𝒊𝒋𝒌 𝒋𝒌 𝒊    (4) 

Average linkage hierarchical clustering is then performed on TOM-based dissimilarities to detect 

modules of highly correlated genes across the samples.  

 



Consensus network analysis 

WGCNA consensus module analysis can be used to find highly connected gene modules from 

multiple transcriptomic studies [2]. It involves constructing co-expression networks for each 

dataset and then identifying consensus modules among them, consisting of genes closely 

connected in all networks. These modules are hypothesized to represent pathways or biological 

processes shared among the different studies under analysis. Topological similarity matrices are 

constructed for each dataset and then scaled to bring their distributions closer. In this study, we 

considered the consensus network to be the component-wise minimum of the individual networks 

i.e., the topological similarity matrices from each of the two datasets (eq. 5 and eq. 6). These 

individual TOM matrices were scaled such that their 95th percentiles are the same. 

 𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔  𝑻𝑶𝑴 𝑨𝑮𝑺𝑬𝟒𝟕𝟒𝟔𝟎), 𝑻𝑶𝑴( 𝑨𝑮𝑺𝑬𝟓𝟑𝟖𝟒𝟓  = 𝑴𝒊𝒏𝒊𝒋  𝑻𝑶𝑴(𝑨𝑮𝑺𝑬𝟒𝟕𝟒𝟔𝟎), 𝑻𝑶𝑴 𝑨𝑮𝑺𝑬𝟓𝟑𝟖𝟒𝟓    (5) 

𝑫𝒊𝒔𝒔𝒊𝒎 𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔 𝑻𝑶𝑴(𝑨𝑮𝑺𝑬𝟒𝟕𝟒𝟔𝟎), 𝑻𝑶𝑴 𝑨𝑮𝑺𝑬𝟓𝟑𝟖𝟒𝟓 = 𝟏 −  𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔  𝑻𝑶𝑴 𝑨𝑮𝑺𝑬𝟒𝟕𝟒𝟔𝟎),𝑻𝑶𝑴( 𝑨𝑮𝑺𝑬𝟓𝟑𝟖𝟒𝟓        (6) 

This consensus similarity matrix is used as input to average linkage hierarchical clustering to 

obtain co-expressed gene modules. WGCNA employs an adaptive branch pruning of hierarchical 

clustering dendrograms [3]. 

 

Prioritizing consensus modules 

WGCNA identified modules can be ranked and prioritized by relating them with external sample 

information such as clinical traits and phenotype status. A representative summarizing the module 

expression profile is chosen and correlated with the traits of choice. In general, the first principal 

component, referred to as module eigengene, is used as the representative of the entire co-



expression module. Disease-related consensus modules are selected based on the eigengene 

significance 𝑀𝐸𝑆( ) (eq. 7) across the individual datasets. 

 𝑴𝑬𝑺(𝒒) = 𝑪𝒐𝒓 𝑬(𝒒), 𝑻       (7) 

𝑀𝐸𝑆( ) is simply defined as correlation between the module eigengene 𝐸( ) of the specific module 

and disease-status denoted by the vector 𝑇. Candidate modules are determined based on the 

strength and significance of these module correlations.  

 

Module preservation analysis 

Module preservation analysis in WGCNA [4] can be used to obtain the preservation status of 

prioritized candidate modules in independent test cohorts. It considers the identified module 

memberships as supervised labels and computes different statistical metrics associated with 

conservation status of the modules. These include both density-based and connectivity-based 

metrics. Then, individual Z statistics are computed for these metrics using permutation tests where 

the module assignments are randomly permuted. These Z statistics are aggregated into a composite 

score (𝑍 ) which is then used to assess the preservation status for each module. These 

composite preservation statistics have been shown to efficiently distinguish the preserved from the 

non-preserved gene modules. Empirical evidence from simulation studies [4] have shown that 

modules with 𝑍 > 10 are strongly preserved while those with 2 < 𝑍 < 10 can 

be considered to be moderately preserved. Finally, if 𝑍 < 2, then there is no statistical 

evidence that the module is preserved. 

 

Identifying intramodular hubs 



Intramodular hubs in disease-related candidate modules are often shown to be of high clinical 

importance. They are generally chosen by considering connectivity-based and/or trait-based 

significance measures.  Module membership score for a specific gene is computed as Pearson 

correlation between its expression profile and the specific module eigengene (eq. 8) and signifies 

the connectivity-based importance of the gene within a module of interest 

 

𝒌𝑴𝑬𝒊(𝒒) = 𝑪𝒐𝒓(𝒙⃗, 𝑬𝒒)     (8) 

where 𝒙⃗ is the expression profile of gene 𝑖 and 𝐸  is the eigengene of module q. Similarly, a trait-

based gene significance is measured as the correlation between the expression profile and the 

clinical trait (eq. 9). 𝑮𝑺𝒊𝑻  = 𝑪𝒐𝒓 𝒙 ,⃗𝑻      (9) 

where 𝒙⃗ again is the expression profile of the 𝑖  gene and 𝑇 is clinical trait [5]. In this study we 

used the phenotype status of samples in both the cohorts along with DLCO and FVC lung function 

traits from GSE47460 in calculating trait-based gene significances. In case of consensus modules, 

we considered the weighted average 𝑘𝑀𝐸  (eq. 8) for each gene 𝑖 in the corresponding module, 

across the input data sets. The weight from each data set is proportional to number of samples in 

the dataset [6]. Finally, we defined a  𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒  for each gene as the 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑒𝑎𝑛 of both 

connectivity-based and trait-based significances defined above (eq. 10). 

 

𝑯𝒖𝒃𝑺𝒄𝒐𝒓𝒆𝒊 = 𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝑴𝒆𝒂𝒏(𝒌𝑴𝑬𝒊(𝒒), 𝑮𝑺𝒊𝑷𝒉𝒆𝒏𝒐𝒕𝒚𝒑𝒆, 𝑮𝑺𝒊𝑫𝑳𝑪𝑶, 𝑮𝑺𝒊𝑭𝑽𝑪)     (10) 

Hence, hub genes identified using the above score are hypothesized to be network hubs, strongly 

associated with the phenotypic traits of choice. 



 

Consensus gene modules in IPF 

Normalized gene expression profiles from whole lung tissues from two training cohorts, 

GSE47460 and GSE53845 [7], were extracted from the NCBI GEO [7] repository. Prior to 

applying the preprocessing steps, sample characteristics and traits were retrieved from the raw 

expression matrix files. Additionally, the LTRC dataset (GSE47460) was further filtered to retain 

only the IPF samples (n=160) and controls (n=108). Expression profiles of 15,180 genes found in 

both the datasets were used as inputs to the WGCNA consensus analysis. Signed pairwise Pearson 

correlations (eq. 3) were computed individually in each dataset and converted into weighted gene-

gene adjacencies using the power adjacency function (eq. 2). The estimated value of the single 

parameter 𝛽  was chosen based on the scale-free topology criterion (Supplementary Figure S1a). 

This weighted adjacency matrix now represents the gene co-expression network with the signed 

Pearson correlations raised to the chosen power 𝛽 = 8, as edge weights. Using these co-expression 

networks, topological overlap-based similarities (eq. 4) are calculated for each pair of genes 

reflecting their relative interconnectedness in each network. Further, these topological similarities 

are quantile transformed before combining them, forming the consensus network. Finally, 

hierarchical clustering is performed on the consensus dissimilarities (1 − 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑠𝑖𝑚) with 

the dynamic tree cut method [3] used to identify gene modules. The cluster sensitivity parameter 

(deepSplit) was set to the default value of 2 to achieve balanced clusters with respect to the gene 

counts. Subsequently, from the set of 15,180 commonly found genes, we identified 32 consensus 

gene modules. Genes within these modules are hypothesized to be co-expressed in samples from 

both the studies. Sizes of these consensus modules have been observed to be anywhere in between 

100 – 2000 genes.  



 

    Then, module preservation analysis was applied on two independent test cohorts, GSE134692 

[8] and GSE150910 [9] and the summarized preservation statistics (𝑍 ) are computed for 

each consensus module by aggregating both density-based and connectivity-based measures. 

Specifically, connectivity-based preservation statistics quantify how close the connectivity of 

genes from a given module is between a designated reference network and a test network. Since 

the modules in this study come from two different training networks, we repeated the analysis 

using two different reference studies (Supplementary Figure S2). Before the aggregation step, Z 

statistics are computed for each metric using 200 random permutations of each individual test 

network. Finally, composite 𝑍  scores are used to identify candidate consensus modules 

that are not only associated with the phenotype status and lung function traits but also conserved 

across different studies (Figure S1). All the pre-processing and analysis steps described above were 

implemented using the WGCNA R package [10].  

 

Regularized logistic regression models with elastic net penalty 

In this study, we filtered novel candidate hub genes from the consensus modules by designing and 

training several regularized logistic regression models with the regularization parameter 𝜆. In all 

these models, the gene expression levels are used as continuous predictor variables to predict the 

phenotype status (outcomes). Elastic net penalty linearly combines and controls both L1 and L2 

regularization penalties using a mixing parameter 𝛼. It bridges the gap between lasso regression (𝛼 = 1) and ridge regression (𝛼 = 0) models. In all our experiments, we employed a grid search 

over different values of the 𝛼 parameter ranging between 0 and 1, over increments of 0.05. For 

each 𝛼 value, we further tested different values of the 𝜆 parameter, ranging between 0.001 and 100 



and identified the best value using 3-fold cross validation on the training data. All these 

experiments were implemented using the cv.glmnet method in the glmnet R package [11]. Finally, 

we evaluated these models (associated with each 𝛼 value) on independent test cohorts or partitions 

using different evaluation metrics. Randomized trials were conducted to assess the significance of 

these evaluation metrics by randomly choosing the gene predictors and computing false discovery 

rates (FDR) of the observed scores. To choose the best-performing models (i.e., the best 𝛼 value), 

we not only considered the test evaluation metrics and their significance but also the number of 

significant genes/features used as predictors. The idea was to identify “lean” models that also 

performed well in our evaluations to avoid any potential overfitting. 

    Our first set of experiments were designed to identify candidate genes capable of classifying 

IPF samples from healthy controls. We trained binary logistic regression models on 268 LGRC 

samples (160 IPF samples and 108 controls) and evaluated them on two independent test cohorts 

(GSE134692 -> 46 IPF, 26 controls and GSE150910 -> 103 IPF, 103 controls). For evaluation, we 

constructed precision-recall (PR) curves and computed the area under the curve (AUC) scores. We 

further assessed the observed PRAUC scores using 10,000 times randomized trials for each trained 

model. 

    The next set of models we trained were to identify potential biomarkers that can be used to 

distinguish IPF from chronic hypersensitive pneumonitis (CHP). We have used 160 IPF and 30 

CHP models from the LGRC study to train our models and evaluated them on 103 IPF and 82 

CHP samples from GSE150910. We again used the PRAUC scores to compare the models and 

computed their FDR-based significance statistics. All our experiments described in this section 

were repeated using three different gene sets (170 intramodular hubs, 103 novel candidates and 26 

secreted proteins) identified in our study. 
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