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Abstract: Protein–protein interactions is a longstanding challenge in cardiac remodeling processes
and heart failure. Here, we use the MetaCore network and the Google matrix algorithms for prediction
of protein–protein interactions dictating cardiac fibrosis, a primary cause of end-stage heart failure.
The developed algorithms allow identification of interactions between key proteins and predict new
actors orchestrating fibroblast activation linked to fibrosis in mouse and human tissues. These data
hold great promise for uncovering new therapeutic targets to limit myocardial fibrosis.
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1. Introduction

Cardiovascular disease, a class of diseases that impact the cardiovascular system, is
responsible for 31% of all deaths and remains the leading cause of mortality worldwide [1].
Myocardial fibrosis is central to the pathology of cardiovascular complications that leads to
human failure and death [2]. Cardiac fibrosis results from uncontrolled fibroblast activity
and excessive extracellular matrix deposition [2]. Although a number of factors have been
implicated in orchestrating the fibrotic response, tissue fibrosis is dominated by a central
mediator: transforming growth factor-β (TGF-β) [3]. Sustained TGF-β production leads to a
continuous cycle of growth factor signaling and deregulated matrix turnover [3]. However,
despite intensive research, the factors that orchestrate fibrosis are still poorly understood
and, as a result, effective strategies for reversing fibrosis are lacking [2,4]. Considering
the complex heterogeneity of fibrosis, research strategy on a system-level understanding
of the disease using mathematical modeling approaches is a driving force to dissect the
complex processes involved in fibrotic disorders. Recently, we have reproduced the clas-
sic hallmarks of aberrant cardiac fibroblast activation leading to fibrosis, and provided a
powerful toolbox for fully characterizing cardiac fibroblast transcriptome [5]. Although
the pathogenesis of fibrotic remodeling has not been well identified, accumulated evi-
dence suggests that multiple genes/proteins and their interactions play important roles in
disease scenarios [6].

Traditional research has been performed to reveal the involvement of a particular gene
or protein in fibrosis physiopathology [5,7]. Although these studies generated invaluable
data, they still provide a small amount of evidence that is insufficient to clarify the complex
nature of interactions between multiple genes or proteins simultaneously. Consequently,
it is essential to develop new, multitiered approaches for global analysis of molecular
interactions defining cell functional status in pathological conditions. In this context,
protein–protein interactions (PPI) represent a highly promising, although challenging,
class of potential targets for therapeutic development. The PPI control key functions and
physio(patho)logical states of the cells. In fibrotic tissue remodeling, PPI form signaling
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nodes and hubs that transmit pathophysiological cues along molecular networks to achieve
an integrated biological output, thereby promoting fibrosis [6]. Thus, pathway perturbation,
through disruption of PPI critical for fibrosis, offers a novel and effective strategy for
curtailing the transmission of profibrotic signals. Deciphering of fibrosis-specific PPI would
uncover new mechanisms of fibrotic signaling for therapeutic interrogation.

In this study, we propose a Google matrix-based approach for the prediction of PPI
linked to myocardial fibrosis using MetaCore network database. The present work is based
on the recent results presented in [5] which allowed determination of the protein profibrotic
responses as a feedback on TGF protein stimulation, which is known to play an important
role in tissue fibrosis [3]. These experiments identify proteins with most positive and most
negative response in cardiac fibroblasts.

To sum up, from the experimental results reported in [5], we select 40 proteins, includ-
ing the top 20 positive and top 20 negative responses. The protein profile is given in Table 1
marked by indexes Ku = 1, 2, . . . , 20; Kd = 1, 2, . . . , 20. These proteins are ordered mono-
tonically from the strongest Ku = 1 to to weakest Ku = 20 positive responses; the same
monotonic ordering is performed by modulus of negative response with strongest Kd = 1
to weakest Kd = 20 responses. An additional group of 4 TGF-β-associated proteins with
indexes Kt = 1, 2, 3, 4 was integrated in the primary list of factors used in experiments [5].
These 44 proteins form the internal selected fibrosis group. For the analysis of PPI charac-
terizing fibrosis, we added a group of 10 external proteins with indexes Kx = 1, 2, . . . , 10.
The choice of these 10 proteins is explained below in detail, but in short, these external pro-
teins are those which affect, according to our network analysis, the internal proteins in the
strongest manner. Thus, in total we have the PPI fibrosis network with 54 proteins (nodes).
They are ordered by their global index Kg = 1, 2, . . . , 54 in Table 1 (first 4 Kt, then 20 Ku,
20 Kd and 10 Kx).

Table 1. Table of the subset of Nr = 54 selected fibrosis proteins (nodes). Here, Kg represents the
global index of this group, Kt,u,d,x represent the index of the four subgroups of 4 TFG-β proteins,
20 up-proteins, 20 down-proteins and 10 additional X-proteins; K (K∗) represents the local PageRank
(CheiRank) index obtained from the reduced Google matrix GR (GR

∗) for this group of 54 proteins;
KM (K∗M) indexes represent the PageRank (CheiRank) index for the global MetaCore network of
N = 40,079 nodes; the last column gives the associated protein names.

Kg Kt,u,d,x K K∗ KM K∗
M Protein

1 Kt = 1 30 37 10,780 26,299 TGF-β 0
2 Kt = 2 9 14 235 5690 TGF-β 1
3 Kt = 3 13 33 968 25,073 TGF-β 2
4 Kt = 4 20 45 4726 29,508 TGF-β 3
5 Ku = 1 46 35 28,737 25,928 ADAMTS16
6 Ku = 2 17 34 3478 25,137 FGF21
7 Ku = 3 52 39 40,048 28,152 TNFSF18
8 Ku = 4 16 26 2467 19,160 ACAN
9 Ku = 5 14 31 1489 24,511 RPH3A

10 Ku = 6 42 46 26,600 29,559 ADAMTS8
11 Ku = 7 51 47 34,769 39,960 MEGF6
12 Ku = 8 40 38 26,295 27,326 SV2B
13 Ku = 9 44 48 27,111 36,021 C1QTNF3
14 Ku = 10 50 49 34,616 39,841 ANO4
15 Ku = 11 32 24 12,696 16,566 IL11
16 Ku = 12 43 30 26,624 23,640 CDH10
17 Ku = 13 26 50 7263 30,243 HTR2B
18 Ku = 14 19 16 4647 6551 LAMA1
19 Ku = 15 28 36 8342 26,295 LAMA1
20 Ku = 16 18 17 4021 8252 RAPGEF4
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Table 1. Cont.

Kg Kt,u,d,x K K∗ KM K∗
M Protein

21 Ku = 17 48 51 29,945 36,964 DNER
22 Ku = 18 36 18 22,159 8569 GALNT3
23 Ku = 19 47 23 29,145 15,531 ACSBG1
24 Ku = 20 37 20 24,786 8735 OLFM2
25 Kd = 1 35 40 19,039 28,262 CLEC3B
26 Kd = 2 41 41 26,477 28,290 SCARA5
27 Kd = 3 39 22 26,109 11,185 SLC10A6
28 Kd = 4 24 44 6360 29,204 CXCL5
29 Kd = 5 33 19 14,952 8729 MYOC
30 Kd = 6 22 28 5961 22,288 IFITM1
31 Kd = 7 21 13 5599 4483 ANGPTL4
32 Kd = 8 38 25 25,538 17,434 SELENBP1
33 Kd = 9 34 52 18,938 33,179 FMO1
34 Kd = 10 49 53 34,080 39,427 GPR88
35 Kd = 11 23 27 6276 22,141 HMGCS2
36 Kd = 12 53 43 37,060 28,328 LGI2
37 Kd = 13 29 11 9162 2485 PTN
38 Kd = 14 11 15 513 5974 ADORA2A
39 Kd = 15 27 29 7789 22,652 GFRA1
40 Kd = 16 25 21 6718 8844 IL1R2
41 Kd = 17 54 42 35,446 28,306 IL1R2
42 Kd = 18 31 12 12,148 3444 PEG10
43 Kd = 19 45 54 27,829 36,195 FMO2
44 Kd = 20 15 32 1973 24,994 COX4I2
45 Kx = 1 1 4 3 13 β-catenin
46 Kx = 2 2 1 4 6 p53
47 Kx = 3 3 2 11 10 ESR1
48 Kx = 4 4 5 13 25 STAT3
49 Kx = 5 5 3 22 11 RelA
50 Kx = 6 6 6 38 82 PPAR-γ
51 Kx = 7 7 8 111 767 IKK-β
52 Kx = 8 8 7 179 198 SNAIL1
53 Kx = 9 10 9 237 1520 MMP-14
54 Kx = 10 12 10 578 2123 Flotillin-1

To analyze the properties of this PPI fibrosis network, we use the developed com-
mercial MetaCore network database of Clarivate [8]. This network database has been
shown to be useful for analysis of various specific biological problems (see, e.g., [9,10]).
At present, the MetaCore network has N = 40,079 nodes with N` = 292,191 links (with-
out self-connections) with on average n` = N`/N ≈ 7.3 links per node [11]. The nodes
are given mainly by proteins but there are also certain molecules and molecular clusters
catalyzing the interactions with proteins. This MetaCore PPI network is directed and
nonweighted. In addition, its network links mark the bifunctional nature of interactions
leading to the activation or the inhibition of one protein by another one. For some nodes,
link action is neutral or unknown. Thus, overall, the MetaCore network is a network with
activation or inhibition directed links showing that a protein A acts on protein B. We note
that this network is based on a detailed analysis of world literature describing experimental
results of how one protein acts on another one. The construction of this network has been
performed during several years and is now continued at Clarivate [8]. Scientific biological
results obtained with this MetaCore network can, for example, be found at [9,10]. This
MetaCore network represents a commercial product actively used by the world’s leading
pharmaceutic companies [8].

We note that at present, new types of computational methods are actively being
developed, e.g., using DeepMind methods [12], with new possibilities of predicting new
structures and interactions between proteins. Such methods appear to be very promising.
Indeed, they can add new interaction links between proteins in the MetaCore network.
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However, the creation of such a global PPI network as MetaCore with almost all proteins
requires long work of gathering all available interactions between proteins and representing
these interactions in a format of directed network which is very useful for scientific analysis
of multiple PPI. We note that there are also other types of PPI networks developed by
other companies and research groups (e.g., TRANSPATH [13], REACTOME [14]). Here, we
present a universal mathematical analysis based on Google matrix methods which can be
also applied to other PPI networks, such as [13,14]. However, here, we present the analysis
only for the MetaCore network available to us.

For the investigation of fibrosis PPI network, we use the Google matrix algorithms
developed for the analysis of the World Wide Web [15,16] and other directed networks,
such as Wikipedia networks, world trade networks, and others (see review [17]). Such an
approach to network characterization is based on the concept of Markov chains invented
by Markov in an article published in 1906 in the proceeding of the Kazan University [18].

The important method for analysis of directed networks is the reduced Google matrix
(REGOMAX) algorithm developed and described in detail in [19,20]. The REGOMAX
algorithm has been applied to PPI networks of SIGNOR database as reported in [21,22].
However, the number of nodes in the SIGNOR database is approximately ten times smaller
than in the MetaCore network. Thus, the SIGNOR network can only be considered as a
test bed for the numerical algorithms and its conceptional base. A first description of the
statistical properties of the global MetaCore network, including PageRank, CheiRank, and
REGOMAX characteristics, was presented in [11]. However, this work only represents a
statistical study of the MetaCore network without any applications to a concrete biological
problem. In this work, we apply the REGOMAX analysis to the specific biological problem
of fibrosis.

The important feature of the REGOMAX algorithm is that it constructs the Google
matrix of a selected subset of nodes Nr � N (here, we have Nr = 54) taking into account
not only direct links between these Nr nodes but also all indirect pathways connecting them
via the global MetaCore network of much larger size N. The efficiency of the REGOMAX
approach was demonstrated for various applications concerning the Wikipedia and world
trade networks [23–26], and we also expect that this method will provide useful and new
insights in the context of fibrosis protein–protein interactions using the MetaCore network.

The paper is constructed as follows: Section 2 describes the datasets and Google
matrix algorithms, Section 3 presents the obtained results of the reduced Google matrix
and sensitivity analysis for the particular group of 54 proteins (of Table 1) we consider here,
and Section 4 provides the discussion of the results and the conclusion. In Appendix A,
we provide additional figures and a simple analytical estimate for the sensitivity matrix to
which we refer in the main part of the work; more detailed and additional numerical data
obtained from the Google matrix computations are available at [27].

2. Datasets and Methods
2.1. Network Datasets

The global MetaCore PPI network contains N = 40,079 nodes with N` = 292,191
links (without self connections). The number of activation/inhibition links is N`+/N`− =
65,157/49,321 ' 1.3 and the number of neutral links is N`n = N − N`+ − N`− = 177, 713.
Here, we mainly present the results without taking into account the bifunctional nature of
links. However, a part of the results takes into account this bifunctionality of links using the
Ising Google matrix approach described in [11,22]. The subset of selected Nr = 54 fibrosis
proteins (nodes) is given in Table 1; these nodes are represented by 4 TGF-β proteins/nodes
(Kt = 1, 2, 3, 4), 20 “up-proteins” (Ku = 1, . . . , 20), 20 “down-proteins” (Kd = 1, . . . , 20),
both obtained from experiments [5] (as described above), and 10 new “X-proteins” (or “X-
nodes”; Kx = 1, . . . , 10) whose selection is explained later. The TGF-β 4 nodes correspond
to different isoforms of this protein. In Table 1, we show four groups of proteins and we
consider that it is useful to use a specific index for each group: TGF-β proteins with index
Kt = 1, 2, 3, 4; up-proteins with a strongest positive response noted by index Ku = 1, · · · , 20
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(ordered by the positive response with the strongest response for Ku = 1); down-proteins
with a strongest negative response noted by index Kd = 1, · · · , 20 (ordered by the modulus
of negative response with the strongest response modulus for Kd = 1); external proteins
noted by index Kx ordered by their local PageRank index (strongest PageRank probability
of these 10 proteins is at Kx = 1; see more details below). All these 54 proteins have their
global index Kg = 1, · · · , 54 as is shown in Table 1.

The Google matrix approach used in this work is explained in detail in [15–17], and
the related REGOMAX algorithm is described in [11,19,20,22]. Below, we present a short
description of these methods following mainly the presentation given in [11], keeping the
same notations.

2.2. Without Formulas: Methods, Characteristics, and Expected Network Results

Here, we present qualitative explanations without formulas of the mathematical
methods and characteristics described in the next subsections. Our aim here is to give a
global view of our approach for a common reader.

We use the MetaCore directed network [8] which represents an action of a protein A
on protein B in a form of a directed link (edge) for N = 40,079 proteins forming the network
nodes (proteins). Such links are obtained on the basis of careful and detailed analysis of
scientific literature about thousands of experiments of various research groups that allowed
collection of information about PPI and thus generated a network database with N = 40,079
nodes and N` = 292,191 links.

The universal mathematical methods to analyze such networks are generic and based
on the concept of Markov chains [18] and Google matrix [15–17]. The validity of these
methods has been confirmed for various directed networks from various fields of science.
Therefore, since the Google matrix analysis is based on a generic mathematical foundation,
we expect that this analysis will also work efficiently for PPI networks.

The Google matrix of the global MetaCore PPI network G is constructed with specific
rules described in [15–17], and the mathematical aspects of this construction are given in
Section 2.3. The important property of G is that its application (multiplication) to an initial
vector v preserves the probability and the normalization of this vector (sum of all vector
elements) remains constant (taken to be unity). As a result of multiple multiplications of
v by G, any initial vector converges in the long time limit to the steady-state distribution
given by the PageRank vector P. The components of this vector represent the probabilities
of each node (protein) in this limit. The nodes with the highest probabilities are the most
influential nodes of the network (all nodes are monotonically ordered by decreasing values
of the PageRank components which provides the “PageRank index” K such K(j) = 1, 2, . . .
for nodes j with largest values P(j)). These nodes have typically many ingoing links and
it is likely that some of these ingoing links come from other nodes that also have large
PageRank values.

It is also useful to consider the same network but with the inversed direction of links.
For this inverse network, the corresponding PageRank is called CheiRank vector P∗ [17]
with the highest probabilities P∗(j) for nodes j with the CheiRank index K∗(j) = 1, 2, . . .
being the most communicative nodes with typically many outgoing links.

If we are interested in a specific selected, typically rather small, group of Nr nodes
(Nr � N), then the reduced Google matrix (REGOMAX) algorithm (described in Section 2.4
and Equations (2)–(5)) allows us to obtain a “reduced Google matrix” GR which describes
effective interactions between these Nr nodes, taking into account both direct links but
also all indirect links due to pathways through the complementary network of the other
N − Nr � Nr nodes. In our study, the group of 44 nodes, given in Table 1, is selected on
the basis of the experimental results for fibrosis responses obtained in [5]. In addition to
these 44 fibrosis internal proteins (1 ≤ Kg ≤ 44 in Table 1), we determine a special group of
10 external proteins (45 ≤ Kg ≤ 54 in Table 1). These external proteins are found numer-
ically with the following procedure: outside of the 44 proteins, we take those proteins
which have at least one ingoing link to the top five positive response proteins (5 ≤ Kg ≤ 9,
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1 ≤ Ku ≤ 5) and the top five negative response proteins (25 ≤ Kg ≤ 29, 1 ≤ Kd ≤ 5). There
are 122 such external proteins, so that in total we have a group of 44 + 122 = 166 proteins
(44 internal and 122 external ones). With the REGOMAX algorithm we obtain the reduced
Google matrix for these 166 proteins. Then, we apply small variations of the transition
matrix elements from the external 122 proteins to the 5 + 5 = 10 (top response) internal
proteins with the above Kg index values. We select the 10 external proteins which have
the strongest PageRank probability changes induced by such variations (this provides a
quantity called “sensitivity” which is formally defined in Section 2.6; see also the detailed
procedure described in Section 2.7). In this way, we obtain the group of Nr = 54 proteins of
Table 1 (with 1 ≤ Kg ≤ 44 being internal and 45 ≤ Kg ≤ 54 being external proteins).

For this group of 54 proteins, we again compute the reduced Google matrix GR
and the associated sensitivity matrix from which we numerically determine which of the
10 external proteins affect in the strongest way (highest sensitivity values) the PageRank
probabilities of internal proteins participating in the fibrosis process, as found in [5].

Our REGOMAX-conjecture is that these newly discovered external proteins (which
mostly affect the PageRank probabilities of internal nodes) will actually produce signif-
icant effects on the fibrosis process. We point out that such a conjecture has been well
confirmed in different contexts for Wikipedia networks, world trade networks, and other
networks [23–26]. However, this REGOMAX-conjecture for PPI networks is still to be
verified experimentally.

The possibility to take into account the bifunctional nature (activation or inhibition) of
links in the MetaCore PPI network is described in Section 2.5.

Finally, we note that the validity of the REGOMAX algorithms has been confirmed for
various directed networks: the world trade network from the United Nations COMTRADE
and World Trade Organization databases [25,26], world influence and impact of infectious
diseases and cancers from Wikipedia networks [23,24], and PPI SIGNOR networks [21,22].
Since the REGOMAX method is based on the generic and universal mathematical features
of the concept of Markov chains and Google matrix, it can be applied to various fields of
science involving directed networks. Here, we apply the REGOMAX analysis to the very
rich and advanced MetaCore network, taking into account the protein response results
reported in [5], and we predict new potential proteins which may affect significantly the
fibrosis process.

Below, we present the more formal and mathematical aspects of the REGONAX
analysis qualitatively outlined above.

2.3. Google Matrix Construction, PageRank and CheiRank

First, we construct the Google matrix G of the MetaCore network for the simple case
where the bifunctional nature of links is neglected. Furthermore, the directed links are
nonweighted. First, one defines an adjacency matrix with elements Aij being equal to
1 if node j points to node i, and equal to 0 otherwise. In the next step, the stochastic
matrix S describing the node-to-node Markov transitions is obtained by normalizing each
column sum of the matrix A elements to unity. For dangling nodes j corresponding to zero
columns of A, i.e., Aij = 0 for all nodes i, the corresponding elements of S are defined by
Sij = 1/N. The stochastic matrix S describes a Markov process on the network: a random
surfer jumps from node j to node i with the probability Sij, therefore following the directed
links. The column sum normalization ∑i Sij = 1 ensures the conservation of probability.
The elements of the Google matrix G are then defined by the standard form

Gij = αSij + (1− α)/N (1)

where α = 0.85 is the usual damping factor [15,16]. The Google matrix is also column
sum normalized and now the random surfer jumps on the network in accordance with
the stochastic matrix S with a probability α and with a complementary probability (1− α),
to an arbitrary random node of the network. The damping factor allows escape from
possible isolated communities and ensures that the Markov process converges for long
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times rather quickly to a uniform stationary probability distribution. The latter is given by
the PageRank vector P, which is the right eigenvector of the Google matrix G corresponding
to the leading eigenvalue, here, λ = 1. The corresponding eigenvalue equation is then
GP = P. According to the Perron–Frobenius theorem, the PageRank vector P has positive
elements and their sum is normalized to unity. The PageRank vector element P(j) gives
the probability to find the random surfer on the node j at the stationary state of the Markov
process. Thus, all nodes can be ranked by a monotonically decreasing PageRank probability.
The PageRank index K(j) gives the rank of the node j with the highest (lowest) PageRank
probability P(j) corresponding to K(j) = 1 (K(j) = N). The PageRank probability P(j) is
proportional, on average, to the number of ingoing links pointing to node j. However, it
also takes into account the “importance” (i.e., PageRank probability) of the nodes having a
direct link to j.

We note that multiple checks, described in [16,17,23] and carried out for a variety of
directed networks, including PPI networks [21,22], showed that the PageRank probabilities
are stable with respect to variation of α in the range (0.5, 0.95). Here, we use the traditional
value α = 0.85 used in [15,16,21,22].

It is also useful to consider a network obtained by the inversion of all link directions.
For this inverted network, the corresponding Google matrix is denoted G∗ and the corre-
sponding PageRank vector, called the CheiRank vector P∗, is defined such as G∗P∗ = P∗.
A detailed statistical analysis of the CheiRank vector can be found in [28,29] (see also [17]).
Similarly to the PageRank vector, the CheiRank probability P∗(j) is proportional, on av-
erage, to the number of outgoing links going out from node j. The CheiRank index K∗(j)
is also defined as the rank of the node j according to decreasing values of the CheiRank
probability P∗(j).

2.4. Reduced Google Matrix (REGOMAX)

The concept of the REGOMAX algorithm was introduced in [19] and a detailed
description of the first applications to groups of political leaders having articles in Wikipedia
networks (different language editions) can be found in [20]. This algorithm determines
effective interactions between a selected subset of Nr nodes enclosed in a global network of
size N � Nr. These interactions are determined taking into account direct and all indirect
transitions between Nr nodes via all the other Ns = N − Nr nodes of the global network.
We note that, quite often in certain network analyses, only direct links of a subset of elected
Nr nodes are taken into account, and their indirect interactions via the global network are
omitted, thus clearly missing the important interactions.

On a mathematical level, the REGOMAX approach uses ideas similar to those of
the Schur complement in linear algebra (see, e.g., [30]) and quantum chaotic scattering
in the field of quantum chaos and mesoscopic physics (see, e.g., [31,32]). The Schur
complement was introduced by Issai Schur in 1917 (see history in [30]) and found a
variety of applications. In the context of Markov chains, this approach was discussed
in [33]. However, there are new elements, developed in [19,20], related to a specific
matrix decomposition of the Schur complement which allows one to understand its new
features and to compute efficiently (numerically) the three related matrix components
in the framework of the reduced Google matrix approach for very large networks (e.g.,
N ∼ 5× 106 as for English Wikipedia).

We write the full Google matrix G of the global network in the block form

G =

(
Grr Grs
Gsr Gss

)
(2)

where the label “r” refers to the nodes of the reduced network, i.e., the subset of Nr nodes,
and “s” to the other Ns = N − Nr nodes which form the complementary network, acting
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as an effective “scattering network”. The reduced Google matrix GR acts on the subset of
Nr nodes and has the size Nr × Nr. It is defined by

GRPr = Pr . (3)

Here, Pr is a vector of size Nr, its components are the normalized PageRank probabili-
ties of the Nr nodes, Pr(j) = P(j)/ ∑Nr

i=1 P(i). The REGOMAX approach allows one to find
an effective Google matrix for the subset of Nr nodes, keeping fixed the relative ranking
probabilities between these nodes. The reduced Google matrix GR has the form [19,20]

GR = Grr + Grs(1− Gss)
−1Gsr. (4)

Furthermore, it satisfies the relation of Equation (3), and it is also column sum nor-
malized. The reduced Google matrix GR can be represented as the sum of three compo-
nents [19,20]:

GR = Grr + Gpr + Gqr. (5)

Here, the first component, Grr, corresponds to the direct transitions between the Nr
nodes; the second component, Gpr, is a matrix of rank 1 with all the columns being pro-
portional (actually approximately equal to the reduced PageRank vector Pr); the third
component, Gqr, describes all the “interesting indirect pathways” passing through the
global network of G matrix. Without going into the details, we mention here that math-
ematically (and also numerically), Gpr is obtained from Equation (4) by extracting the
contribution of the leading eigenvector of Gss (which is very close to the PageRank of the
complementary scattering network of Ns nodes) whose eigenvalue is close to unity but
it is not exactly unity, as Gss is not column normalized and there is a small escape proba-
bility from the Ns scattering nodes to the selected subset with Nr nodes. This eigenvector
therefore dominates the matrix inverse in Equation (4) and its contribution produces the
rank 1 matrix Gpr, and the remaining contributions of the other eigenvectors of Gss to
the matrix inverse provide the matrix Gqr which can be efficiently computed by a rapid
convergent matrix series (see [19,20] for details). This point is crucial since it allows for a
highly efficient numerical evaluation of all three components of GR also for the case where
a direct numerical computation of the matrix inverse of (1− Gss) is not possible due to
very large values of N (note Gss has the size Ns × Ns with Ns ≈ N � Nr). While Gpr,
being typically numerically dominant, has a very simple rank 1 structure, the matrix Gqr
contains the most nontrivial information related to indirect hidden transitions. Actually,
mathematically, both components Gpr and Gqr arise from indirect pathways through the
scattering nodes (represented by the matrix inverse term in Equation (4)) but Gpr can
be viewed as a uniform background generated by the long time limit (i.e., the leading
eigenvector of Gss) of the effective process in the complementary scattering network. The
component Gqr gives the deviations from this background and in the following when we
speak of “contributions from indirect pathways”, we refer essentially to the contributions of
Gqr. It is possible that certain matrix elements of Gqr are negative, and if this happens, this
is also important information as it indicates a reduction from the uniform background for
certain links (matrix elements of GR, Grr, and Gpr are always positive due to mathematical
reasons).

Furthermore, we also define the matrix G(nd)
qr which is obtained from the matrix Gqr by

setting its diagonal elements to zero (these elements correspond to indirect self-interactions
of nodes). We consider that this matrix contains the most interesting link information, direct
links, and “relevant” indirect links describing the deviations from the uniform background
due to Gpr. The contribution of each component is characterized by their weights WR, Wpr,

Wrr, Wqr (W(nd)
qr ), respectively, for GR, Gpr, Grr, Gqr (G(nd)

qr ). The weight of a matrix is given
by the sum of all the matrix elements divided by its size Nr (WR = 1 due to the column
sum normalization of GR). Examples of interesting applications and studies of reduced
Google matrices associated with various directed networks are described in [21–24].
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2.5. Bifunctional Ising MetaCore Network

To take into account the bifunctional nature (activation and inhibition) of MetaCore
links, we use the approach proposed in [22] with the construction of a larger network,
where each node is split into two new nodes with labels (+) and (−). These two nodes can
be viewed as two Ising-spin components associated with the activation and the inhibition of
the corresponding protein. In the construction of the doubled “Ising” network of proteins,
each element of the initial adjacency matrix is replaced by one of the following 2 × 2
matrices:

σ+ =

(
1 1
0 0

)
, σ− =

(
0 0
1 1

)
, σ0 =

1
2

(
1 1
1 1

)
(6)

where σ+ applies to “activation” links, σ− to “inhibition” links, and σ0 when the nature
of the interaction is “unknown” or “neutral”. For the rare cases of multiple interactions
between two proteins, we use the sum of the corresponding σ-matrices which increases the
weight of the adjacency matrix elements. Once the "Ising" adjacency matrix is obtained,
the corresponding Google matrix is constructed in the usual way, as described above. The
doubled Ising MetaCore network corresponds to NI = 80,158 nodes and NI,` = 939,808 links
given by the nonzero entries of the used σ-matrices.

Now, the PageRank vector associated with this doubled Ising network has two com-
ponents P+(j) and P−(j) for every node j of the simple network. Due to the particular
structure of the σ-matrices (Equation (6)), one can show analytically the exact identity,
P(j) = P+(j) + P−(j), where P(j) is the PageRank of the initial single PPI network [22].
The numerical verification shows that the identity P(j) = P+(j) + P−(j) holds up to the
numerical precision ∼ 10−13.

As in [22], we characterize each node by its PageRank “magnetization”, given by

M(j) =
P+(j)− P−(j)
P+(j) + P−(j)

. (7)

By definition, we have −1 ≤ M(j) ≤ 1. Nodes with positive M are mainly activated
nodes and those with negative M are mainly inhibited nodes.

In this work, the results are mainly presented for the simple network without taking
into account the bifunctional nature of links. However, for an illustration, we also present
some results for the bifunctional network, keeping for further studies a more detailed
analysis of this case.

2.6. Sensitivity Derivative

The reduced Google matrix GR of the fibrosis network describes effective interactions
between Nr nodes, taking into account all direct and indirect pathways via the global
MetaCore network.

As in [11], we determine the sensitivity of PageRank probabilities with respect to a
small variation of the matrix elements of GR. The PageRank sensitivity of the node j with
respect to a small variation of the link b→ a is defined as

D(b→a)(j) =
1

Pr(j)
dPrε(j)

dε

∣∣∣∣
ε=0

= lim
ε→0

1
εPr(j)

[Prε(j)− Pr(j)] . (8)

Here, for fixed values of a and b, Prε(j) is the PageRank vector computed from a
perturbed matrix GRε where the elements are defined by GRε(a, b) = GR(a, b)(1 + ε)/[1 +
εGR(a, b)]; GRε(c, b) = GR(c, b)/[1 + εGR(a, b)] if c 6= a and GRε(c, d) = GR(c, d) if d 6= b
and for arbitrary c (including c = a). In other words, the element GR(a, b), corresponding
to the transition b → a, is enhanced/multiplied with (1 + ε) and then the column b is
resum-normalized by multiplying it with the factor 1/[1+ εGR(a, b)], and all other columns
d 6= b are not modified. We use here an efficient algorithm described in [34] to evaluate
the derivative in Equation (8) exactly without usage of finite differences (see also the
Appendix A for some details on this and other related points). In the following, we
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consider the case where j = a and we define the “sensitivity matrix” as Dab = D(b→a)(a).
It turns out from the numerical computations that for the cases considered here, all values
of Dab are positive: Dab > 0 which can also be analytically understood as explained in
Appendix A.

2.7. Determination of External X-Proteins

From the experimental results of [5], we have 44 nodes of our selected subset (see the
first 44 rows of Table 1). Of course, the interactions between these nodes are very important
but it is also important to determine how these 44 fibrosis proteins are influenced by external
nodes. To find the most important and influential external nodes, we take five top up- and
five down-proteins with Ku = 1, . . . , 5 and Kd = 1, . . . , 5 from Table 1. Then, we de-
termine all external nodes having direct ingoing 134 links to one of these 5 + 5 fibro-
sis proteins. There are 122 such proteins (some of them have several links to these
5 + 5 proteins providing 134 links in total). The first 44 proteins of Table 1 together
with these 122 external proteins (ordered by their PageRank index) constitute an inter-
mediary group of size 166 for which we first compute the reduced Google matrix by
Equation (4) and which we note as G(166)

R , and from this the associated sensitivity matrix

D(166)
ab (Equation (8)) (with j = a; see also Figure A3). Then, we compute the sum of

sensitivities D(5+5)
s (b) = ∑9

a=5 D(166)
ab + ∑29

a=25 D(166)
ab (a-sum over top five up- and top

five down-proteins) for b = 45, . . . 166 (new external proteins). Then, we select the
top 10 external proteins b with highest values of D(5+5)

s (b). In the following, we call
this new subgroup the subgroup of X-proteins (or X-nodes). They are given in the last
10 rows of Table 1 (for Kg = 45, . . . , 54 and Kx = 1, . . . , 10). We mention that these
10 X-proteins have index values of (1, 2, 3, 4, 6, 8, 10, 15, 27) with respect to the initial list
of 122 external proteins (which were already PageRank ordered). It turns out that this
procedure automatically selects 10 external nodes which have approximately the strongest
PageRank values. This can be understood by the fact that the matrix D(166)

ab is roughly
proportional to P(b) except for a small number of cells with strong peak values (see also
Figure A3 and Appendix A for a theoretical explanation). In this way, we obtain the full
subset of 54 fibrosis proteins given in Table 1. The REGOMAX analysis is performed for
these 54 fibrosis proteins and, unless stated otherwise, all results for GR, Dab, etc., refer to
this group of 54 proteins.

3. Results

In this section, we present the results of Google matrix analysis of fibrosis protein–
protein interactions.

3.1. Fibrosis Proteins on PageRank–CheiRank Plane

As in [11], we determine the density distribution of all proteins of the MetaCore
network on the PageRank–CheiRank plane of logarithms (ln K, ln K∗) of indexes (K, K∗),
which is shown in Figure 1. The whole plane is divided on 100× 100 logarithmically
equidistant cells and the density is defined as the number of proteins in a given cell divided
by a total possible nodes in a given cell (this approach is discussed in more detail, e.g.,
in [29]). The highest density is located at top indexes K, K∗, but in this region there is a
relatively small number of proteins. The positions of fibrosis proteins of Table 1 are marked
by crosses of three colors: red for 10 external X-proteins (Kx = 1, . . . , 10), pink for 4 TGF-β
proteins (Kt = 1, 2, 3, 4), and white for the 40 up- and down-proteins (Ku, Kd = 1, . . . , 20).
We see that X-proteins have highest rank positions; two of the TGF-β proteins approximately
follow after Kx values of PageRank and two others have significantly lower K-rank positions
(positions in K∗-rank are rather low); proteins Ku and Kd have, on average, rather low rank
positions (very large K, K∗ values). Therefore the X-proteins have the highest network
influence and communicativity (small K, K∗ values).



Int. J. Mol. Sci. 2022, 23, 67 11 of 29

The presentation of Figure 1 uses the global MetaCore rank index values (in the
following, these values are noted as KM, K∗M; see also Table 1). For the selected subset of
54 fibrosis proteins, we note their local rank indexes in this group as K, K∗, which are also
given in Table 1. The distribution of these 54 local rank indexes on the PageRank–CheiRank
plane of size 54× 54 is given in Appendix A Figure A1.

Figure 1. Density of nodes W(KM, K∗M) on PageRank–CheiRank plane (KM, K∗M) averaged over
100× 100 logarithmically equidistant grids for 0 ≤ ln KM, ln K∗M ≤ ln N (1 ≤ KM, K∗M ≤ N = 40, 079);
the density is averaged over all nodes inside each cell of the grid, the normalization condition is
∑KM,K∗M W(KM, K∗M) = 1. Color varies from blue at zero value to red at maximal density value. In
order to increase the visibility, large density values have been reduced to (saturated at) 1/16 of
the actual maximum density and typical green cells correspond to density values of ∼ 1/28 of the
(reduced) maximum density. The x-axis corresponds to ln KM and the y-axis to ln K∗M with KM (K∗M)
being the global PageRank (CheiRank) index for the full MetaCore network. The crosses mark the
positions of the 54 proteins of Table 1 with colors: red for the X-proteins, pink for the TGF-β subgroup,
and white for the up- and down-protein subgroups.

3.2. Reduced Google Matrix of Fibrosis

The reduced Google matrix GR of 54 fibrosis proteins and its 3 matrix components
Gpr, Grr, Gqr are shown in Figure 2. The weights of these matrices are: Wpr = 0.9522,

Wrr = 0.0228, Wqr = 0.0250, (W(nd)
qr = 0.0211), and WR = 1 (due to the column sum

normalization of GR). Thus, the weight of Gpr is significantly higher compared to the two
other components. This behavior is quite typical and was also observed for Wikipedia
networks (see, e.g., [20,23,24]). The physical reason for this is that Gpr is obtained from the
contribution of the leading eigenvector of the matrix Gss whose eigenvalue is close to unity
and dominates, numerically, the matrix inverse in Equation (4) (see also the discussion in
the last section and [19,20] for details). Furthermore, Gpr has a very simple structure since
it is of rank one, i.e., all columns are exact multiples of the first column. Furthermore, these
columns are approximately equal to the local PageRank vector. Therefore, the component
Gpr does not provide any new interesting information about possible interactions other
than that it trivially reproduces the PageRank vector.
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Figure 2. Color density plots of the matrix components GR, Gpr, Grr, Gqr for the group of Table 1; the
x-axis corresponds to the first (row) index (increasing values of Kg) from top to down) and the y-axis
corresponds to the second (column) index of the matrix (increasing values of Kg from left to right).
The outside tics indicate multiples of 10 of Kg. The numbers in the color bar correspond to

√
|g|/gmax,

with g being the value of the matrix element and gmax being the maximum value. In order to increase
the visibility for the cases of GR, Grr, Gqr , the maximum value has been reduced (saturated) to
the value of the third largest value of g for each case, and the cells corresponding to the first and
second largest values are reduced to the saturation value. In particular, GR(45, 15) (GR(46, 13))
has been reduced from 0.876387 (0.297512) to GR(49, 3) = 0.208777; Grr(45, 16) (Grr(29, 24)) has
been reduced from 0.850004 (0.121432) to Grr(29, 54) = 0.019322 (same third value also for the
other three cells in column 54); Gqr(49, 3) (Gqr(40, 41)) has been reduced from 0.240629 (0.062024) to
Gqr(46, 32) = 0.041108. For the matrix Gqr, there are some negative values, and here, we show their
absolute values (see text).

Numerically, GR is dominated by Gpr (with its high weight Wpr = 0.9521). However,
the other two components give us important additional information about direct interac-
tions between the 54 fibrosis proteins (Grr) , and, even more importantly, about all indirect
interactions (Gqr) between these proteins via the global MetaCore network performing an
effective summation over all indirect pathways (see [19,20] for details). The weights of the
components of Grr and Gqr are comparable. We also see that nearly all direct transitions
visible in Grr are from X-proteins to other proteins (all subgroups), which is not astonishing
due to the selection rule that any X-node must have at least one direct link to the first
five top- or first five up-proteins and also due to the fact that they have rather high PageR-
ank but also CheiRank positions (according to Table 1, Figure 1 and Appendix A Figure A1).
Since the PageRank probabilities are higher for X-proteins (see Figure 1), there are rather
strong transitions to these X-proteins well visible for GR, Gpr, and, to a lesser extent, also in
Gqr. We note that the component Gqr has a small number of nonvanishing diagonal matrix
elements which appear due to the possibility that a pathway over the global MetaCore
network can return to an initial protein.

It should be noted that a few matrix elements of Gqr have negative values. Such a sit-
uation has been already found for other directed networks, e.g., Wikipedia networks
studied in [20]. To be more precise for Gqr and Grr + G(nd)

qr , there about 340 out of
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2916 negative values (≈11%). Most of them are very small. However, there are 10 values
between −0.00668 and −0.00334 for both matrices corresponding to 5–10% of the red-color
saturation value used for Gqr. However, in Figure 2, only the modulus of matrix elements
is shown in order to have a uniform style for all components (the 10 strongest negative
values of Gqr correspond to green color with color bar values of 0.3 to 0.4 and after taking
the modulus). Of course, the matrix elements of GR, Grr, and Gpr are always positive due
to strict mathematical properties.

Figure 3 shows the effective matrix of transitions for direct links and relevant indirect
pathways (without self-interactions) which is obtained as the sum of the two components
Grr + G(nd)

qr . There are also some cells with cyan color for negative matrix elements (cor-
responding to −0.3 to −0.2 in units of the color bar for the strongest 10 negative values).
Most links are due to the interactions from Kx to Kt, Ku, Kd proteins, but there are also some
other significant transitions between the other members of the group of 54 proteins.

Grr+Gqr
(nd)

−1

−0.5

0

0.5

1

Figure 3. Color density plot Grr + G(nd)
qr for the group of Table 1. The matrix element at (45, 16)

((49, 3)) has been reduced from 0.849861 (0.240632) to the value 0.121433 at (29, 24); a few matrix
elements of Grr + G(nd)

qr have negative values visible as cyan color (see text). The numbers in the color
bar correspond to sgn(g)

√
|g|/gmax, with g being the value of the matrix element and gmax being

the maximum value.

3.3. Network Diagrams of Fibrosis Interactions

In this section, we discuss two types of effective networks (of most important PPI links)
obtained from the two matrices GR and Grr + G(nd)

qr , the latter containing the “interesting”
links without the uniform background generated by the component Gpr (and without
self-interactions). We remind the reader that the value of a matrix element g(a, b) (with g
being either GR or Grr + G(nd)

qr ) corresponds to the strength of the link b→ a. If this value is
sufficiently high, we say that a is a “friend” of b and b is a “follower” of a. This distinction
allows one to construct for each matrix two types of effective networks by choosing a few
number of “top nodes” and adding a certain number of the strongest friends (or followers)
according to the values of |g(a, b)| and repeating this procedure for a modest number of
depth levels.
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In Figure 4, we show four graphical representations of such effective networks for the
two cases of friend or follower networks and the two matrices GR and Grr + G(nd)

qr visible
in Figures 2 and 3. In these figures and the remainder of this subsection, we use the short
notations Tj, Uj, Dj or Xj for a protein/node where j = 1, 2, . . . is the integer value of the
subgroup index Kt, Ku, Kd or Kx, respectively, with real protein names given in Table 1.

To construct the effective network for a matrix component g (with g being either GR

or Grr + G(nd)
qr ), we first choose five initial top nodes/proteins corresponding to U1, U2

(ADAMTS16, FGF21), D1, D2 (CLEC3B, SCARA5), and X9 (MMP-14). U1, U2 (D1, D2)
have the strongest positive (negative) TGF-β response observed experimentally in [5]. The
node corresponding to X9 (MMP-14) produces the strongest sensitivity Dab (among those
elements Dab where a is an up- or down protein and b is a TGF-β or X-protein; see next
subsection for details on this). These five proteins form the set of level-0 nodes which are
placed on a large circle.

We attribute the color red to the combined subgroups of 10 external X-proteins
(Kx = 1, . . . , 10) and 4 TGF-β proteins (Kt = 1, 2, 3, 4). The transitions inside this red
group are not taken into account since we are mainly interested in the influence of this
group on the other up- and down-proteins. We attribute two colors to the up-proteins
(olive green to U1, green to U2) and two colors to the down-proteins (cyan to D1, blue
to D2). Inside the group of up-proteins, we attribute the color olive green to a protein
Uj if Uj is a stronger follower of U1 than of U2 with respect to g = Grr + G(nd)

qr , i.e., if
g(Ku = 1, Ku = j) > g(Ku = 2, Ku = j), and green otherwise. In other words, we compare
the strength of the links Uj → U1 and Uj → U2 to determine if Uj has the color olive
green of U1 or green of U2. In a similar way, by comparing the strength of the two links
from a Dj protein to either D1 or D2, we attribute the two colors cyan and blue to down-
proteins. This attribution rule, using the strongest followers with respect to Grr + G(nd)

qr
of the two top nodes inside a subgroup, ensures that for all colors there is a considerable
number of proteins and it is the same for all four network diagrams (both matrices and
both friend/follower cases).

For each of the five level-0 proteins, noted a, we first search the four strongest friends
(followers), noted b, with largest value of |g(b, a)| (or |g(a, b)|) corresponding the strongest
link a→ b (or b→ a), where the matrix g is either GR or Grr + G(nd)

qr . The new nodes b (if
not yet present in the set of level-0 nodes) form the set of new level-1 nodes and they are
placed on medium-sized circles of level 1 around the corresponding “parent” node a of
level-0. The links between the nodes a and b are drawn as thick black arrows with direction
a→ b (b→ a) for the friend (follower) case. If a node b already belongs to the set of level-0
nodes, we also draw a thick black arrow but using its already existing position on the initial
large circle. If a node b has several parent nodes a, we place it only on one medium circle,
preferably around a parent node of the same color if possible.

This procedure is repeated once: for each level-1 protein we determine the four
strongest level-2 friends (or followers) which are placed on smaller circles of level 2 around
the corresponding level-1 protein, provided that they are not yet present in the former sets
of level-0 or level-1 proteins. The links corresponding to this stage are drawn as thin red
arrows with the same directions as in the first stage (we also draw thin arrows for selected
nodes who were already previously selected and using their former positions). As already
mentioned above, links where both proteins (a and b) belong to the combined set of X-
and TGF-β proteins are not taken into account (otherwise they would strongly dominate
these diagrams). We limit ourselves to two stages of the procedure (i.e., three levels of
nodes) because otherwise the diagrams would require still smaller circles and many nodes
would be hidden by former nodes. We note that for the friend-GR diagram, a further third
stage would not add any new nodes since the strongest friends of level-2 are already in the
network. For the other cases, additional further stages would only add a few number of
new nodes with a quite rapid saturation of the network at some limit level where no new
nodes are selected.
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Figure 4. Effective friend and follower networks generated from GR and Grr + G(nd)
qr . Starting from

five top nodes, the four strongest friends/followers for each initial node are selected and links are
shown by thick black arrows. For each selected new node, further four strongest friends/followers
are selected and corresponding new links are shown by thin red arrows. In this procedure, the direct
links between two nodes belonging both to one of the two subgroups of X-proteins or TGF-β proteins
are not taken into account. The node labels Tj, Uj, Dj, Xj (with j being an integer value) correspond
to the local subgroup index Kt = j, Ku = j, Kd = j or Kx = j, respectively, which are given in Table 1.
Color attributions: 10 external proteins Kx and 4 TGF-β proteins are in red; protein Ku = 1 and its
friends are in olive green; protein Ku = 2 and its friends are in green; protein Kd = 1 and its friends
in cyan; protein Kd = 2 and its friends are in blue. Further details about precise selection rules of
links, top nodes, and colors are given in the text.

Figure 4 shows diagrams of level-2 networks for the cases of friend (top row) and fol-
lower (bottom row) diagrams and the two matrices g = GR (left column) or
g = Grr + G(nd)

qr (right column). Concerning the two cases of g = Grr + G(nd)
qr , about

15% of the shown arrows correspond to negative values of the matrix element of g (link
strength is determined by the modulus of the matrix element).

For the friend network of GR, there is a dominance of links (black arrows)
U1, U2, D1, D2 → Xj for certain X-proteins Xj which can be understood by the fact that
most Xj proteins have significantly higher PageRank probabilities than the other proteins.
Furthermore, the total number of nodes in this diagram is quite small because the strongest
friends of level-1 nodes (X1, X2, X3, U4, U5, D14) are mostly other level-1 nodes and there
is only one new level-2 node (D20). This diagram is obviously dominated by the uniform
background (of the component Gpr contributing to GR) which tends to select mostly the
“same new friends” at each level.

For the friend case of Grr + G(nd)
qr , the network structure is significantly richer, since

here, the global PageRank transitions (due to the uniform background of Gpr) do not play
a role. The group around U1 includes T2, T3, T4. Thus, we see a formation of groups of
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friends around U1, and especially U2, with many friends, and smaller groups of friends
appear around D1, D2 and X9.

For the follower network of Grr + G(nd)
qr , the largest groups of followers are again

formed around U1, U2. In the group around U1, we have only other up-proteins while
in the group around U2 we have up-, down-, and X-proteins. The third group around
X9 is composed of several up- and down-proteins as well as one TGF-β protein (T1) on
level 2. The fourth group around D1 includes D3, D20 and X5 but there are also two other
followers U7, U9 which are placed on the U1-circle. The fifth group around D2 includes
only X8 (on its own circle) and U7, U9, U10 from the U1-circle.

The follower network of GR matrix has a similar structure, since for followers the
contribution of Gpr is not so significant that several links of followers of GR and Grr + G(nd)

qr
are similar.

It should be noted that the few negative matrix elements of Gqr have a modest impact

on the network diagrams of Grr + G(nd)
qr (∼15% of links and only one stage-1 link for the

friend case).
These network diagrams allow us to obtain a qualitative graphical view on the most

significant fibrosis PPI interactions from a friend or a follower point of view.
We note that in principle it is possible to choose another initial set of five proteins

at level 0. In Appendix A Figure A2, we show the network diagrams for the modified
level-0 set: D1, D2, U9, U18 and X9. Here, the four up- and down-proteins have the highest
sensitivity with respect to X-proteins (see next section). Some features are quite similar
to the first case: the friend diagram of GR has only a modest number of nodes with a
domination of X-proteins, and generally, the groups associated with the two up-top nodes
appear somewhat larger than the groups for the two down-top nodes.

3.4. Sensitivity of Fibrosis Proteins

In addition to the matrix components GR, Gpr, Grr, Gqr and the network diagrams (of

GR and Grr + G(nd)
qr ), it is also important to analyze the sensitivity matrix Dab defined

previously in Equation (7). This matrix Dab gives the sensitivity of a protein a with respect
to a small variation of the transition matrix element of GR from protein b to a on the basis
of logarithmic derivative of the PageRank probability (see Section 2.5 and also Appendix A
for more technical details on this).

As described previously (see Section 2.6), we first compute the sensitivity matrix D(166)
ab

associated with G(166)
R being the reduced Google matrix for a larger intermediary subset

containing the 44 TGF-β, up- and down-proteins and further 122 external proteins having
direct links (of the full MetaCore network) to the first five up- (Ku = 1, . . . , 5) and the first
five down-proteins (Kd = 1, . . . , 5). This matrix is shown in Appendix A Figure A3.

Then, from the set of 122 external proteins, we select the 10 proteins b with the
largest effective sensitivity given by the sum D(5+5)

s (b) = ∑9
a=5 D(166)

ab + ∑29
a=25 D(166)

ab (see
Section 2.6) which form the group of 10 X-proteins. The 44 TGF-β, up- and down-proteins,
together with these 10 X-proteins, form our main group of 54 proteins given Table 1 and for
which we present results of the reduced Google matrix in the last subsections.

The sensitivity matrix Dab of size 54× 54 for this main group is shown in Figure 5
with zoomed parts visible in Figure 6.
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Figure 5. Color density plot of the sensitivity matrix Dab of fibrosis proteins of Table 1; the axes and
colors are defined as in Figure 2 (without saturation); the strongest top 40 sensitivity values are given
in Table 2.

(a) (b)

Figure 6. Zoomed parts of sensitivity matrix Dab of Figure 5. Both panels show a selected subregion
of Figure 5 with the index a (vertical axis from top to down) belonging to the set of up-nodes (a =

5, . . . , 24 in panel (a)) or down-nodes (a = 25, . . . , 44 in panel (b)) and the index b (horizontal axis from
left to right) corresponds to both panels to the four nodes of the TGF-β subgroup (b = Kt = 1, . . . 4 for
four left columns in each panel) and the 10 nodes of the X-proteins (b = 45, . . . 54 or Kx = 1, . . . , 10
for 10 right columns in each panel).
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Table 2. List of 40 top protein pairs (a, b) with strongest sensitivity matrix element Dab, with a
belonging to the subgroups of up- or down-proteins and b belonging to the subgroups of TGF-β

and X-proteins. The first column gives the ranking index Ks of Dab matrix elements ordered by a
decreasing value, the second to fourth columns provide the Kg, Ku,d indexes and the name of the
protein (a), the fifth to seventh columns provide the Kg, Kt,x indexes and the name of the protein
(b), and the eighth column shows the value of Dab. See also Figure 5, which shows a color density
plot for all matrix elements Dab, and Table 1 for the list of considered proteins. An ordered list of all
560 values of sensitivity influence values Dab of TGF-β or X-proteins (for “b”) on up-/down proteins
(for “a”) is available at [27].

Ks Kg(a) Ku,d(a) Protein(a) Kg(b) Kt,x(b) Protein(b) Dab

1 25 Kd = 1 CLEC3B 53 Kx = 9 MMP-14 0.263109
2 22 Ku = 18 GALNT3 46 Kx = 2 p53 0.259298
3 13 Ku = 9 C1QTNF3 50 Kx = 6 PPAR-γ 0.225877
4 26 Kd = 2 SCARA5 52 Kx = 8 SNAIL1 0.219938
5 27 Kd = 3 SLC10A6 50 Kx = 6 PPAR-γ 0.214345

6 29 Kd = 5 MYOC 54 Kx = 10 Flotillin-
1 0.200157

7 19 Ku = 15 LAMA1 46 Kx = 2 p53 0.199892
8 43 Kd = 19 FMO2 47 Kx = 3 ESR1 0.196550
9 29 Kd = 5 MYOC 45 Kx = 1 β-catenin 0.196394

10 39 Kd = 15 GFRA1 45 Kx = 1 β-catenin 0.184019
11 6 Ku = 2 FGF21 46 Kx = 2 p53 0.182339
12 20 Ku = 16 RAPGEF4 45 Kx = 1 β-catenin 0.182303
13 28 Kd = 4 CXCL5 46 Kx = 2 p53 0.181444
14 10 Ku = 6 ADAMTS8 45 Kx = 1 β-catenin 0.177848
15 42 Kd = 18 PEG10 45 Kx = 1 β-catenin 0.177726
16 35 Kd = 11 HMGCS2 45 Kx = 1 β-catenin 0.177443
17 15 Ku = 11 IL11 45 Kx = 1 β-catenin 0.177227
18 35 Kd = 11 HMGCS2 46 Kx = 2 p53 0.176906
19 21 Ku = 17 DNER 45 Kx = 1 β-catenin 0.176820
20 11 Ku = 7 MEGF6 45 Kx = 1 β-catenin 0.176612
21 36 Kd = 12 LGI2 45 Kx = 1 β-catenin 0.176606
22 7 Ku = 3 TNFSF18 45 Kx = 1 β-catenin 0.176603
23 41 Kd = 17 IL1R2 45 Kx = 1 β-catenin 0.176598
24 14 Ku = 10 ANO4 45 Kx = 1 β-catenin 0.176556
25 34 Kd = 10 GPR88 45 Kx = 1 β-catenin 0.176432
26 23 Ku = 19 ACSBG1 45 Kx = 1 β-catenin 0.176323
27 5 Ku = 1 ADAMTS16 45 Kx = 1 β-catenin 0.176315
28 12 Ku = 8 SV2B 45 Kx = 1 β-catenin 0.176264
29 17 Ku = 13 HTR2B 45 Kx = 1 β-catenin 0.176197
30 16 Ku = 12 CDH10 45 Kx = 1 β-catenin 0.176192
31 24 Ku = 20 OLFM2 45 Kx = 1 β-catenin 0.176038
32 32 Kd = 8 SELENBP1 45 Kx = 1 β-catenin 0.175939
33 33 Kd = 9 FMO1 45 Kx = 1 β-catenin 0.175776
34 33 Kd = 9 FMO1 46 Kx = 2 p53 0.175367
35 30 Kd = 6 IFITM1 45 Kx = 1 β-catenin 0.175056
36 44 Kd = 20 COX4I2 45 Kx = 1 β-catenin 0.174371
37 23 Ku = 19 ACSBG1 46 Kx = 2 p53 0.174167
38 34 Kd = 10 GPR88 46 Kx = 2 p53 0.173893
39 5 Ku = 1 ADAMTS16 46 Kx = 2 p53 0.173822
40 14 Ku = 10 ANO4 46 Kx = 2 p53 0.173770

The list of all 560 sensitivity matrix values Dab with a belonging to the subgroups
of up- or down-proteins and b belonging to the subgroups of TGF-β and X-proteins is
available at [27]. The strongest 40 Dab values of this list are shown in Table 2. Among
the top three pairs, we find that the protein MMP-14 gives the top sensitivity (influence)
on the protein CLEC3B (Dab = 0.263109), next is the protein p53 giving the sensitivity
(Dab = 0.259298) on the protein GALNT3, and the third place is for the sensitivity of
C1QTNF3 from PPAR-γ (Dab = 0.225877).
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We mention that the appearance of MMP-14 (Kx = 9) at the top position of Table 2 is
the reason why we selected this protein as one of the five top nodes in the net diagrams
discussed in the last subsection. For the net diagrams shown in Figure 4, the other four top
nodes were simply chosen as the first two up- (Ku = 1, 2) and down-proteins (Kd = 1, 2).
However, for the net diagrams shown in Appendix A Figure A2, the two top up- and down-
nodes were also chosen by the criterion of top positions in Table 2 resulting in Ku = 9, 18
and Kd = 1, 2.

We also computed the effective TGF-β sensitivity on up- or down-proteins (noted a)
defined by the sum D(TGF−β)

s (a) = ∑4
b=1 Dab. Ordering these values in decreasing order,

we obtain the ranking index K(TGF−β)
s = 1, . . . , 40 whose dependence on Ku and Kd is

visible in Appendix A Figure A4. We see that for the up-proteins we have 14 ranking values
located at K(TGF−β)

s ≤ 20 and for the down-proteins only 6 values at K(TGF−β)
s ≤ 20 (with

3 values at K(TGF−β)
s = 18, 19, 20). This shows that the overall influence of TGF-β proteins

is somewhat stronger on the up-proteins, compared to the down-proteins.
However, we mention that the different values of D(TGF−β)

s (a) used to determine this
ranking have only modest size variations in the interval 0.0250 to 0.0465 with most values
between 0.040 and 0.043. Furthermore, overall, the external X-proteins have a much higher
influence (on up- and down-proteins) than the TGF-β proteins. For instance, in Table 2,
the TFG-β proteins do not appear at all (in the three “b” columns), and in the full list of
560 entries, the first appearance of a TFG-β protein is at the ranking position Ks = 319.

Both of these points can be explained by the approximate expression Dab ≈ [1−
Pr(a)]Pr(b) ≈ Pr(b) which is derived in the appendix for a simplified model of a rank 1
GR matrix but which also holds approximately for arbitrary GR matrices due to the strong
numerical weight of the rank 1 component Gpr. This behavior is also confirmed, for a

“uniform background”, by Figures 5 and 6 for Dab and Appendix A Figure A3 for D(166)
ab .

However, there are typically some exceptional peaks at a few values of the (a, b) index pair
where strong deviations from this simple expression are possible and which are due to the
components of Grr and Gqr in GR.

Essentially, Dab ∼ Pr(b) does not (strongly) depend on a, explaining that the values of
the partial sum D(TGF−β)

s (a) = ∑4
b=1 Dab show only modest size variations. Furthermore,

Table 2, containing the largest Dab values (with b being either an X or a TGF-β protein and a
being an up- or down protein), is dominated by X-proteins which have mostly larger Pr(b)
values than the TGF-β proteins.

We also determine the global influence on the whole group of fibrosis up- and down-
proteins by computing the sum D(u/d)

s (b) = ∑44
a=5 Dab (i.e., the a-sum is over up- and down-

proteins) for each X or TGF-β protein b. The resulting values of this quantity are provided
in Table 3. According to the simple expression for Dab, we have a linear dependence
of D(u/d)

s (b) on Pr(b), and due to the a-su,m the effect of exceptional peaks is strongly
reduced. This linear dependence is clearly visible in Table 3 and Appendix A Figure A5.
A simple linear fit D(u/d)

s (b) = ηPr(b) provides the value η = 39.5± 1.4 for the coefficient
and a more general power law fit D(u/d)

s (b) = η̃[Pr(b)]κ results in a similar coefficient
η̃ = 41.9± 4.3 and an exponent κ = 1.017± 0.028 close to unity.
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Table 3. Values of the sum D(u/d)
s (b) = ∑44

a=5 Dab (i.e., the a-sum is over up- and down-proteins) for
b belonging to the TGF-β or the X-proteins subgroups. The list is ordered with respect to decreasing

D(u/d)
s (b) values with the first column giving the corresponding ranking index; the second and third

columns giving the Kg, Kt,x indexes; the fourth and fifth columns containing the local PageRank index

K and the name of the protein b; and the sixth and seventh columns giving the values of D(u/d)
s (b)

and the local PageRank probability Pr(b). Both K and Pr(b) correspond to the group of 54 fibrosis
proteins of Table 1.

Rank Kg(b) Kt,x(b) K Protein
(b) D(u/d)

s (b) Pr(b)

1 45 Kx = 1 1 β-catenin 6.809993 0.175768
2 46 Kx = 2 2 p53 6.789229 0.171249
3 47 Kx = 3 3 ESR1 4.513399 0.113285
4 48 Kx = 4 4 STAT3 4.109638 0.104088
5 49 Kx = 5 5 RelA 3.343309 0.085443
6 50 Kx = 6 6 PPAR-γ 3.086237 0.070668
7 51 Kx = 7 7 IKK-β 1.696330 0.043249
8 52 Kx = 8 8 SNAIL1 1.477019 0.034269
9 53 Kx = 9 10 MMP-14 1.368302 0.029121

10 2 Kt = 2 9 TGF-β 1 1.081828 0.029166
11 54 Kx = 10 12 Flotillin-1 0.787569 0.016863
12 3 Kt = 3 13 TGF-β 2 0.333981 0.012451
13 4 Kt = 4 20 TGF-β 3 0.159633 0.004157
14 1 Kt = 1 30 TGF-β 0 0.081261 0.002090

However, Table 3 also shows that at the ranking positions 9 (Kx = 9 for MMP-14) and
10 (Kt = 2 for TGF-β 1), there is one ranking inversion between D(u/d)

s (b) and Pr(b). The
value of D(u/d)

s (Kx = 9) is roughly 30% larger than D(u/d)
s (Kt = 2), while the PageRank

value of the former is very slightly (0.15%) smaller than the value of the latter (both
PageRank values are nearly identical). In Appendix A Figure A5, both of these proteins
correspond to two data points with a certain visible (vertical) difference for D(u/d)

s (b) but
with no visible (horizontal) difference for Pr(b).

We argue that the obtained high sensitivity values shown in Figures 5 and 6 and
Table 2 can be tested in experiments similar to those reported in [5]. The global influence
D(u/d)

s from Table 3 also gives us a prediction of the globally stronger influence of the
X-proteins than the TGF-β proteins. These results open new perspectives for external
proteins influence on fibrosis.

3.5. Bifunctionality of Fibrosis Network

Here, we present in short certain results for the bifunctional MetaCore network.
The doubled Ising MetaCore network has NI = 80,158 nodes and NI,` = 939,808 links. We
compute the reduced Google matrix GR for the doubled number of nodes 2× 54 = 108
(by attributing (+) and (−) labels to each node) for the fibrosis proteins of Table 1. Here,
we present only some selected characteristics; all data for the Ising Google matrix are
available at [27].

In Figure 7, we show the magnetization M(j) = (P+(j)− P−(j))/(P+(j) + P−(j)) of
proteins of Table 1 with their location on the PageRank–CheiRank plane (K, K∗). Remember
that P±(j) is the PageRank value of the node j with label (±) and that the sum satisfies
P(j) = P+(j) + P−(j) where P(j) is the PageRank value of the node j of the simple network.
The magnetization is positive for nodes which are more likely to be activated, or in other
words, which have on average more incoming activation links (and/or coming from other
nodes with larger PageRank values) than inhibition links, while negative values correspond
to nodes being more likely to be inhibited by other nodes.

According to Figure 7, the majority of proteins have values of M being close to
zero (neutral action on average coming from other nodes), but there are also some nodes
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with with significant positive values such as RAPGEF4 (at K = 18, K∗ = 17, Kg = 20,
Ku = 16, M = 0.690937) corresponding to the only red box (maximum value of 1 in units
of the color bar) and HMGCS2 (at K = 23, K∗ = 27, Kg = 35, Kd = 11, M = 0.550286) with
an orange-brown box (value of 0.8 in units of the color bar). There are about a further
nine proteins with various degrees of green color (M values between 0.2 and 0.4 corre-
sponding to 0.3 to 0.6 in units of the color bar). The two proteins with strongest negative
values of M are CLEC3B (at K = 35, K∗ = 40, Kg = 25, Kd = 1, M = −0.463912) with a light
cyan box (value of −0.7 in units of the color bar) and ACAN (at K = 16, K∗ = 26, Kg = 8,
Ku = 4, M = −0.342585) with a cyan box (value of −0.5 in units of the color bar). There are
about five further proteins with various degrees of cyan color (M values between −0.28
and −0.17 corresponding to −0.4 to −0.25 in units of the color bar). We note that CELC3B
is also selected in both network diagrams of Figure 4 and Appendix A Figure A2 as one of
the two down-top-nodes, either because it is the first protein in the list of down-proteins or
because it appears at the top position of Table 2 for the strongest sensitivity value Dab (with
a being CELC3B and b being the X-protein MMP-14). One may also note that Appendix A
Figure A1 shows the same (K, K∗) positions as Figure 7 and allows us to identify which of
the boxes belong to the subgroups of TGF-β proteins, up- or down-proteins, or X-proteins.
The complete table of magnetization values used for Figure 7, including the values of
K, K∗, Kg etc., is available in one of the data files provided in [27].
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Figure 7. PageRank “magnetization” M(j) = (P+(j)− P−(j))/(P+(j) + P−(j)) of proteins of Table 1
shown on the PageRank–CheiRank plane (K, K∗) of local indices; here, j represents a protein node
in the initial single protein network and P±(j) are the PageRank components of the bifunctional
Ising MetaCore network (see text). The values of the color bar correspond to M/ max |M| with
max |M| = 0.690937 being the maximal value of |M(j)| for the shown group of proteins. Note that
the positions in the PageRank–CheiRank plane are identical to the positions of Appendix A Figure A1,
and the corresponding K, K∗ values are given in the third and fourth column of Table 1.

In Figure 8, we show the matrices components GR and Grr + G(nd)
qr for the group of

selected 108 nodes corresponding to the Ising MetaCore network. Their structure is quite
similar to the corresponding components for the group of 54 nodes for the simple network
shown in Figures 2 and 3, i.e., GR is dominated by the uniform background due to the
component Gpr with some exceptional peak values and large values if the first (vertical)
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matrix index corresponds to an X-protein with large PageRank probability. For Grr + G(nd)
qr ,

the structure is more sparse, showing the most significant direct and relevant indirect
transitions. We note that for the Ising case, the matrix values are identical for the two labels
of a given node in the horizontal position (except for the diagonal elements of Grr + G(nd)

qr ,
which have been artificially set to zero), which is a mathematical property of these matrices.
However, in the vertical direction, there are significant differences between the two Ising
labels, especially for Grr + G(nd)

qr .
Further detailed analyses of the Ising MetaCore network with applications on fibrosis

interactions are kept for future studies. However, an interested reader can find additional
numerical results at [27]. In particular, figures for the Ising network diagrams obtained
from the Ising versions of GR and Grr + G(nd)

qr , in the same way as in Section 3.4, are
available there.

GR Grr+Gqr
(nd)

Figure 8. Color density plots of GR and Grr + G(nd)
qr for the bifunctional Ising MetaCore network

and the extended group of 108 nodes by attribution of labels (+) and (−) to each node of Table 1.
The matrix plot style is similar to in Figure 2, with outside tics indicating multiples of 20 of the index
values. The color bar is as in Figure 2 with the same translation of colors to matrix values. The
saturation value is, for both panels, the sixth largest value for each matrix, and larger values are
reduced to this value. The strongest cell values are reduced from 0.437575 (0.424939) to 0.101874

(0.060717) for GR (Grr + G(nd)
qr ).

3.6. Summarizing Results Without Formulas

We present here a short summary of results without formulas to make them more
clear for a common reader. With the REGOMAX analysis, we find the external proteins
(Kg = 45, . . . 54, Kx = 1, . . . 10 in Table 1) which produce the strongest influence on the
PageRank probabilities of the internal protein group (Kg = 5, . . . 44 in Table 1) characterizing
the fibrosis process. Since the PageRank probabilities determine the global influence of
proteins on the MetaCore PPI network, we push forward the REGOMAX-conjecture that
these external proteins, found in this work, will produce a significant influence on the
fibrosis process. The lists of these external proteins with their effective influence on internal
proteins (sensitivity) are given in Tables 2 and 3. We also determined the most significant
interactions between the 54 fibrosis proteins; these interactions are given by their GR
matrix elements.

We point out that such a prediction of the REGOMAX analysis has never been tested
in real protein fibrosis processes. However, our previous studies of other directed networks
(Wikipedia networks, world trade networks, etc. [23–26]) allowed us to compare the predic-
tions of the REGOMAX analysis with other studies performed by other scientific methods,
confirming the obtained REGOMAX results and therefore showing the efficiency of this
approach. On these grounds, we expect that our predictions for fibrosis will find their
experimental confirmations.
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We also show that the bifunctional nature of fibrosis PPI can be also analyzed by
the REGOMAX algorithm. Thus, the detailed analysis of these bifunctional effects opens
unexplored perspectives left for further studies.

4. Conclusions

Identifying fibrosis-associated proteins is a critical issue in treating heart failure. How-
ever, deciphering fibrosis proteins experimentally is extremely time-consuming and labor-
intensive. Thus, alternative methods should be developed to discover fibrosis proteins.
In the current study, we explored fibroblast transcriptome profiling data [5] to develop a
model for predicting cardiac fibrosis protein–protein interactions using the Google matrix
analysis. Thus, we implemented the REGOMAX algorithm to the MetaCore PPI network
to dissect the key proteins driving cardiac fibroblast activation leading to fibrosis.

In this work, we presented the Google matrix analysis of PPI of cardiac fibrosis. The
group of 54 proteins actively participating in the fibrosis process is determined on the
basis of INSERM experimental results presented in [5], which identify 44 proteins. In
addition, we discover 10 external proteins with strongest sensitivity action on the fibrosis
related 44-group. The sensitivity action is computed in the context of the REGOMAX
approach applied to the MetaCore PPI network [8]. Our results allow us to identify the
most important interactions between 54 proteins related to fibrotic cascade. The strongest
integrated sensitivity actions of fibrosis proteins are summarized in Table 3, predicting the
strongest influence of the myocardial fibrosis process. The strongest interactions between
fibrosis proteins are also identified from the REGOMAX analysis and are summarized
in Table 2.

The current research not only significantly improves the prediction performance of
fibrosis proteins, but also discovers several potential fibrosis-associated proteins for future
experimental investigations. It is anticipated that the current research could provide new
insights into fibrosis-related disease mechanisms and diagnosis. Confirmatory testing of
these predictions is planned with the experimental investigations of fibrosis to be performed
at INSERM.

We argue that the developed Google matrix analysis for PPI has a generic and universal
nature, being based on the strict mathematical features of Markov chains and directed
networks [15–18]. Thus, this approach can be applied not only to the MetaCore network
but also to other PPI network databases, such as TRANSPATH [13] and REACTOM [14].
The mathematical foundations of the Google matrix analysis have proved to be useful and
efficient for different types of directed networks, including the World Wide Web [15,16],
Wikipedia networks, and the world trade networks [17,20,23,25,26]. Thus, we expect
that the analysis of the existing PPI network databases [8,13,14] with the Google matrix
algorithms described here will find broad applications for analysis of various complex
biosystems and diseases.
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Appendix A

Appendix A.1. Additional Figures for REGOMAX Results

Here we present additional Appendix Figures A1–A5 for the main part of this article.
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Figure A1. Positions of the 54 proteins of Table 1 in the local PageRank–CheiRank. Note that these
positions are identical to the positions of Figure 7 and the corresponding K, K∗ values are given in
the 3rd and 4th column of Table 1. Pink full circles correspond to the subgroup of TGF-β nodes, full
black boxes correspond to the subgroups of up- and down-proteins and red squares correspond to
the subgroup of X-proteins.

Appendix A Figure A1 provides complementary information to Figure 1.
Appendix A Figure A2 provides the network diagrams similar as in Figure 4 but with

a different choice of 5 top nodes based on the criterion of top positions in Table 2.
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Figure A2. Effective network diagram for the same cases as in Figure 4 but using different 5 top nodes
being the first X-node, the first two up-nodes and the first two down-nodes according to Table 2.

Appendix A Figure A3 shows the sensitivity matrix D(166)
ab for the intermediary group

of 166 proteins which was used to determine the additional 10 X-proteins as explained
in Section 2.6.
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Appendix A Figure A4 provides an additional analysis of the overall influence of the
TGF-β proteins on the up- and down-proteins which is discussed in Section 3.5.

Appendix Figure A5 provides the graphical and fit verification of the linear behavior
between the two quantities D(u/d)

s (b) and Pr(b) appearing the last two columns of Table 3.

Figure A3. Color density plot of the sensitivity matrix D(166)
ab for the intermediary group of

166 proteins being the first 44 proteins of Table 1 (TGF-β, up- and down-subgroups) and 122 further
proteins (in PageRank order) determined by having a direct link to one of the top 5 up-nodes (Ku ≤ 5)
or top 5 down-nodes (Kd ≤ 5; see also text).
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Figure A4. Effective ranking K(TGF−β)
s index of the TGF-β sensitivity versus Ku/Kd of up- (red boxes)

and down-proteins (blue full circles). The ranking index K(TGF−β)
s is determined by ordering the

sum D(TGF−β)
s (a) = ∑4

b=1 Dab in decreasing order for a = 5, . . . , 44 (i.e., a belongs to one of the sets
of up- or down-proteins) and where Dab is the sensitivity matrix for the 54 nodes of Table 1 (see also
Figure 5).
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Figure A5. Dependence of the sum of sensitivities D(u/d)
s (b) from Table 3 on the (local) PageRank

probability Pr(b); the straight green line shows the fit dependence D(u/d)
s (b) = ηPr(b) with the

obtained numerical value η = 39.5 ± 1.4; the dashed red line corresponds to the power law fit

D(u/d)
s (b) = η̃[Pr(b)]κ with η̃ = 41.9± 4.3 and κ = 1.017± 0.028.

Appendix A.2. Simple Estimate for the Sensitivity Matrix

In the second part of this appendix we remind some details (see [34]) about the
numerical computation of the sensitivity (8) and provide an analytic approximation based
on a simplified model. Let (a, b) be an arbitrary index pair and Gε be the perturbed Google
matrix obtained from a general unperturbed Google matrix G0 by multiplying its element
G0(a, b) at position (a, b) by (1 + ε) and then sum-renormalizing the column b to unity.
The elements in the other columns are not modified. In a more explicit formula we have:

∀c,d Gε(c, d) =
(1 + ε δcaδdb) G0(c, d)

1 + ε δdb G0(a, b)
(A1)
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where δca = 1 (or 0) if c = a (or c 6= a). Note that the denominator is either 1 if d 6= b or the
modified column sum 1 + ε G0(a, b) of column b if d = b. Expanding (A1) up to first order
in ε we obtain Gε = G0 + ε∆G + . . . with ∆G having the elements:

∀c,d ∆G(c, d) = δcaδdb G0(c, d)− δdb G0(a, b) G0(c, d) . (A2)

Let Pε be the sum-normalized PageRank vector of Gε determined by the conditions
Gε Pε = Pε and the normalization ET Pε = 1 where ET = (1, . . . , 1) is a (row) vector with
unit entries. Note that the column sum condition of Gε can be written as ET Gε = ET and
of course for ε = 0 we also have G0 P0 = P0, ET P0 = 1 and ET G0 = ET . Furthermore we
write the perturbed PageRank vector in the form Pε = P0 + ε∆P + . . . where the ∆P must
satisfy the condition ET ∆P = 0. Then the sensitivity (8) is directly related to ∆P by:

D(b→a)(j) =
∆P(j)
P0(j)

. (A3)

Expanding the PageRank equation Gε Pε = (G0 + ε∆G + . . .)(P0 + ε∆P + . . .) = Pε =
P0 + ε∆P + . . . to order one we first obtain the unperturbed PageRank equation G0 P0 = P0
and a further inhomogeneous equation :

∆P = G0 ∆P + ∆G P0 (A4)

which can be efficiently numerically solved by iteration (choosing initially ∆P = 0 on
the right hand side) once P0 has been computed (see [34] for details on this point). This
provides a numerical precise scheme to compute the sensitivity in the limit ε→ 0 without
the need to take finite ε-differences.

Now, we consider a particular very simple model where G0 has identical columns
being the PageRank P0, i.e., G0 = P0 ET or more explicitely G0(c, d) = P0(c) for all values
of c, d. Then we obtain from (A2)

∀c,d ∆G(c, d) = δcaδdb P0(c)− δdb P0(a) P0(c) (A5)

and from (A4)
∆P = (P0 ET)∆P + ∆G P0 = ∆G P0 (A6)

since ET ∆P = 0. Inserting (A5) in (A6) we obtain (replacing c = j and performing the
d-sum for the matrix vector product)

∀j ∆P(j) = [δja − P0(a)] P0(j) P0(b) (A7)

and from (A3)
D(b→a)(j) = [δja − P0(a)] P0(b) . (A8)

Choosing j = a this gives the sensitivity matrix

Dab = D(b→a)(a) = [1− P0(a)] P0(b) ≈ P0(b) (A9)

where the last approximation holds if typically P0(a)� 1.
This result is of course only valid for the simplified model of identical columns (being

the PageRank vector) in G0. However, when G0 represents a typical reduced Google matrix,
with Nr � N, the component Gpr which has the strongest numerical weight (typically
∼95%) is of the form Gpr = P̃0 ẼT where P̃0 ≈ P0 and ẼT ≈ ET except for a few number of
components j where strong deviations between P̃0(j) and P0(j) (and similarly between Ẽ(j)
and E(j)) are possible.

Our examples of Dab visible in Figure 5 and of D(166)
ab of Appendix A Figure A3

confirm the typical behavior Dab ∼ P0(b) for a “uniform background” but there are some
exceptional peak values which arise from the deviations from Gpr to the simplified model
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and also from the contributions of Grr and Gqr. This also explains our numerical finding
that all matrix elements of Dab are positive. Actually, according to (A8) we expect that
D(b→a)(j) is typically positive if j = a and negative if j 6= a.

Furthermore, when taking the partial a-sum over up- and down-nodes of Dab the effect
of exceptional peaks is strongly reduced thus explaining the linear behavior D(u/d)

s (b) ≈
ηPr(b) visible in Table 3 and Figure A5.
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