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Abstract: Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain
as a contributing factor to Alzheimer’s disease (AD). The consequences of HSV-1 brain infection
are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their
environment, preventing the transmission of signals and fulfillment of homeostatic and immune
functions, which can greatly contribute to the development of disease. In this review, we discuss
the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1
infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to
the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage,
Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can
affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as
the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an
effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons
(IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well
as supporting the neuroprotective properties of glial cells, would reveal valuable information on how
to harness cytotoxic inflammatory milieu to counter AD initiation and progression.

Keywords: Alzheimer’s disease; herpes simplex virus type 1 (HSV-1); herpes simplex encephalitis;
brain; astrocytes; microglia; oligodendrocytes

1. Introduction

Active herpes simplex virus type 1 (HSV-1) infection generates compound biochemical
and morphological changes, leading to the injury of neurons and other brain cells that
culminate in cell death. Nevertheless, the virus aims to intercept cell machinery to produce
viral components. As mentioned by Itzhaki, R. [1], Alzheimer’s disease (AD) is considered
as a multifactorial ailment, partly exerted by genetic or environmental factors; however,
the neuropathological processes that lead to the disease are still not fully understood. In
recent years, many studies advocate the relationship between HSV-1 infection and various
neuropsychiatric and neurodegenerative diseases [2,3].

AD is the paramount cause of a decline in cognitive ability [4] and accounts for about
70% of dementia cases [5]. Currently, there is no effective treatment, and a rapidly aging
society implies AD as one of the major public health concerns. Pathological grounds and,
concomitantly, the hallmark features of the disease comprise deposits of the extracellular
misfolded amyloid beta (Aβ) in the form of Aβ plaques, the presence of intracellular
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neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau, as well as the neu-
roinflammation, gliosis, and activation of glial cells in the brain [6–8].

The role of HSV-1 infection in the brain in AD pathogenesis was originally proposed,
several decades ago, in the pioneering works by Ball [9] and Gannicliffe et al. [10]. HSV-1
is a neurotropic, double-stranded (ds) DNA (dsDNA) virus that infects the peripheral
sensory neurons and establishes life-long latency in the trigeminal ganglion (TG) [11].
Latent HSV-1 sporadically reactivates and can migrate into the trigeminal nuclei located
in the brainstem reaching the thalamus and sensory cortex, resulting in devastating viral
encephalitis (herpes simplex encephalitis, HSE) or persisting latent infection in the central
nervous system (CNS) [12,13]. Recently published research indicates HSE and persistent
HSV-1 infections in the brain as factors that predictably increase the risk or determine the
AD origination [14–18]. In addition to causing severe encephalitis, HSV-1 and HSV-2 can
also reach the brain without evident clinical symptoms [15], and the subclinical chronic
reactivation of latent HSV-1 in the brain is considered to promote AD pathogenesis and
accelerate the disease progression [14,15]. Astoundingly, among patients who underwent
HSE, an immune reaction in the brain prolonged for up to ten years following the acute
onset of the disease, and viral DNA was found in their brains [19]. Evidence of an associ-
ation of HSV-1 brain infection with AD relates to the features of AD, epidemiology and
pathology [20]. The frontal and temporal cortices brain regions affected during HSE are also
primarily affected in AD, and the main symptoms of AD often appear in HSE survivors [21].
Research also shows that the combination of HSV-1 infection in the brain and the genetic
factor, such as the carriage of an apolipoprotein E ε4 (APOE-ε4) allele, is a potent risk factor
for AD [22]. Furthermore, over 230 different autosomal dominant pathogenic variants of
amyloid precursor protein (APP), presenilin 1 (PSEN1), and PSEN2, which likely increase
the risk of AD development, were identified [23]. Mutations of 19 other genes (involved
in brain development, cytoskeletal organization, and immune function), which slightly
increase the risk of AD development, were identified in the last decade, as reviewed by
Bird [24]. Nevertheless, while ~25% of all AD cases are familial, ~75% of AD cases remain
with an unknown disease background [24].

2. The Active and Latent HSV-1 Infection, and Antiviral Immune Response

Following the infection of a naïve person, HSV-1 establishes latency in the peripheral
sensory neurons of the TG or dorsal root ganglia (DRG) as well as vestibular, and facial
ganglia [25]. With increasing age, latent HSV-1 infection in the TG is observed in a growing
number of people. Nearly 70% of people are seropositive for HSV-1 [26], and infection
estimates indicate that around 90% of the human population may be infected with the virus,
which underlines its prevalence in the world [27]. Latent HSV-1 can reactivate following
damage to the tissue innervated by latently infected neurons, other infections, hormonal
imbalance, fever, exposition to systemic physical or emotional stress, and UV light, as
reviewed by Stoeger and Adler [28]. Most often, reactivation is clinically asymptomatic or
causes cranial nerve disorder in the form of herpes labialis. Under certain circumstances,
HSV-1 can infiltrate various parts of the brain, such as the olfactory bulb, temporal lobes,
and other regions in which the genetic material of the virus is found; the epithelial surface of
the cornea; or cause disseminated infection pertaining to multiple organs, such as the liver,
lungs, adrenal glands, and also the brain [29]—HSV infection is the most common cause of
severe and life-threatening (approximately 70% of untreated cases are fatal [30]) sporadic
encephalitis—HSE, blinding keratitis, and neonatal disseminated herpes [25,31,32].

Primary infections with herpes simplex viruses induce rapid immune response aimed
at the efficient inhibition and clearance of HSV-1 infection [33], also preventing virus entry
into the brain. During active infection, HSV constantly replicates and produces pathogen-
associated molecular patterns (PAMPs), such as viral proteins, DNA, and RNA, as well as
cell injury and death-associated products (damage-associated molecular patterns, DAMPs)
that activate the host’s pattern recognition receptors (PRRs) and initiate innate immune
responses. In particular, during HSV-1 replication, dsRNA is formed as an intermediate
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that activates toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), melanoma
differentiation-associated protein 5 (MDA5), and dsRNA-dependent protein kinase R (PKR)
(it is debated whether PKR recognizes HSV-1 RNA or HSV-1–infected host’s genome). The
viral glycoproteins gH and gL stimulate TLR2; soluble gD activates the herpes virus entry
mediator (HVEM). HSV-1 DNA is sensed by TLR9, interferon γ (IFN-γ)-inducible protein
16 (IFI16), DNA-dependent activator of IFN-regulatory factors (DAI), and cyclic guanosine
monophosphate-adenosine monophosphate synthase (cGAS) (Figure 1) (it is speculated
whether cGAS recognizes HSV-1 DNA or the host’s mitochondrial DNA released following
infection [34]), as reviewed by Danastas et al. and Zhao et al. [35,36].
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Figure 1. HSV-1 detection by innate immunity. The innate immune system recognizes HSV-1
using different PRRs. Viral glycoproteins H and L are sensed by TLR2, while soluble gD activates
HVEM. Viral DNA is recognized by TLR9 localized in the endolysosome or activates DAI, cGAS,
and IFI16 localized in the cytoplasm. Viral dsRNA, a replication byproduct, enters the cells from
the extracellular environment following the breakdown of infected cells. The dsRNA activates
TLR3 in the endolysosome or cytoplasmic receptors, RIG-I, and MDA5, as well as PKR. RIG-I and
MDA5 signal via the adaptor mitochondrial antiviral-signaling protein (MAVS) localized at the
mitochondrion. The appropriate adaptor proteins are used to govern TLRs signaling pathways: TLR3
signaling utilizes TRIF while TLR2 and TLR9 exploit MYD88. The execution of signaling pathways,
shown by the dashed lines, leads to the activation of transcription factors, such as the interferon
regulatory factor 3 (IRF3), IRF7 and nuclear factor kappa B (NF-κB), which enter the nucleus and
trigger the expression of proinflammatory cytokines and type I IFNs.

Innate immunity principally relies on type I interferons (IFNs, IFN-α/β) production,
the host’s first line of defense against HSV-1. By binding to corresponding receptors and
activating IFN-stimulated genes (ISGs), type I IFNs induce an antiviral response across
distinct cell types, such as monocytes, neutrophils, dendritic cells (DCs), macrophages, and
natural killer (NK) cells [33], and mediate adaptive immune response, including humoral
and cellular components managing antiviral control and latency [37,38].

During latency in neurons, HSV genome is transcribed, latency-associated transcripts
(LATs) comprising two major LAT RNA species and several viral microRNAs (miRNAs)
are highly expressed [39–41], while viral immediate-early genes, e.g., ICP4, are expressed
at a low frequency; however, the ICP4 antigen can be present in latently infected ganglion
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neurons [42]. HSV-1 latency is an active process, in which LATs are involved in modulating
viral gene expression [40], miRNAs attenuate transcripts of productive infection genes [41],
while HSV virions are not detectable. Moreover, LATs downregulate components of type I
IFNs pathway [43], but provoke the increased expression of IFN-γ, tumor necrosis factor
α (TNFα), IFN-γ-inducible protein 10 (IP-10), and C–C motif chemokine ligand 5 (CCL5)
(RANTES), and thereby interpose between the infiltration of the lymphocytic cells as well
as chronic inflammation [44]. Laboratory animals with a latent HSV-1 infection in the
nervous system, exhibit increased levels of inducible nitric oxide synthetase and cytokines
that decrease following the treatment of animals with acyclovir [45]. Such a coherence
engenders the belief that HSV-1 latency alone can entail low-grade injury of the CNS cells,
without leading to clinical manifestation [45].

Although epithelial cells and neurons are the major target cells during primary and
recurrent HSV-1 infection [46], in the brain the virus also infects glial cells, including
microglia, astrocytes, and oligodendrocytes [47–52]. Glial cells pave the CNS and adopt
various important functions [53]. They significantly outnumber neurons and express more
selective receptors for HSV-1 than neurons, which results in higher HSV-1 adsorption [54,55].
It has been reported that herpes viruses infect and replicate in astrocytes [56,57], which
determine neuronal vulnerability to HSV-1 [58]; oligodendrocytes, the myelin-producing
cells, are susceptible to HSV-1 infection in vivo [59–62] and in vitro [63], and HSV-1 infects
microglia that isolate virus-infected neurons in the brain [64].

Microglia, astrocytes, and oligodendrocytes are potent immune cells that protect the
brain from pathogens; however, their activation can lead to the weakening of their neuropro-
tective and homeostatic properties, and the development of a neurotoxic pro-inflammatory
environment [65]. While the intricacy of AD stows difficulties in understanding the exact
cause and effect of a particular molecular or cellular pathway, research aiming to unravel
and understand how to preserve or restore the functions of glial cells can delineate novel
therapies to safeguard the integrity of the CNS.

3. Amended Production of Various Inflammatory Factors

During HSV-1 infection, neurons and glial cells produce many inflammatory media-
tors [66], and the rapid development of inflammation following CNS infection suggests
that glial cells play a pivotal role in the initiation and progression of encephalitis. It is
believed that inflammation, as well as the lowered clearance of misfolded proteins in the
CNS, can play crucial roles in neurodegeneration and cognitive decline [67,68]. Moreover,
persistent glial cells-mediated inflammation is considered to be a key contributor to the
neurodegenerative processes and cognitive ailments observed in AD [69]. HSV-1 infection
has been shown to generate high levels of proinflammatory cytokines and activated IFI16
and NLRP3 inflammasomes, inducing the secretion of interleukin 1β (IL-1β), IL-18, and
IL-33, compared to healthy humans [70]. HSV-infected cells can contribute to the progres-
sion of AD and lowered synaptic density through secretion of IFN-β, IFN-γ, IL-1β, IL-6,
chemokine (C–X–C motif) ligand 8 (CXCL8), TNFα, and TGFβ, the immunosuppressive
cytokine [71–74], for which up-regulation is observed both in human AD brain samples,
and in transgenic murine models of AD [75–77]. Interestingly, IFN- γ and TNFα not only
play a protective role during acute HSV-1 infection, but also during virus reactivation
from latency [78]. HSV-1 infected CNS cells also secrete matrix metalloproteases (MMP3,
MMP8, MMP9) and chemokines, such as CCL2 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES),
CXCL9, chemokine (C–X–C motif) ligand 10 (CXCL10), and CX3CL1 [79]. The production
of specific cytokines by neurons, astrocytes, and microglial cells after HSV-1 infection is
shown in Figure 2.
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Figure 2. Induction of specific cytokines and chemokines secretion by CNS cells following HSV-1
infection. After HSV-1 entry into the brain, neurons, as well as glial cells, become infected. The BBB
becomes weakened [80] and HSV-1 infection leads to the activation of astrocytes, which produce
pro-inflammatory cytokines, such as IFN-α, IFN-β, TNFα, and IL-6 [81,82]. Activated microglia
secrete IFN-α, IFN-β, IL-1β, IL-6, TNFα, IP-10, CXCL10, CCL2, CCL4, CX3CL1, CXCL9, and CCL5
(RANTES) [83]. Infected neurons produce IFN-α, IFN-β, IL-1β, CXCL1, and CXCL10 [49,84–86].
Furthermore, neurons exert deregulated expression of miRNAs, e.g., up-regulated miRNA-146a [87].

Cytokines and other molecules produced during inflammation, recruit lymphocytes
and myeloid cells to the site of infection through the lymphatics network or across the
inflammation-weakened blood–brain barrier (BBB) (Figure 2), and thereby monitor and
conquer the invading virus. In the TG of mice latently infected with HSV-1, an influx of
lymphocytes, macrophages, and microglial cells around neurons, as well as occasional
neuronophagy, was observed. Furthermore, chronic inflammatory foci were present in their
brainstem and other brain regions, such as the olfactory bulbs, temporal and parietal areas
of the cortex, and leptomeninges [45]. Activation of the glial cells, the major mediators
of neuroinflammation [88], and infiltration of the CNS with inflammatory cells, serve to
eliminate infected cells and inhibit viral expansion; however, immense and/or persisting in-
flammation can lead to pathological outcomes. For example, it is inflammation as a defense
reaction and result of innate immune responses that can contribute to the secretion of Aβ by
glial cells and neurons; however, Aβ accumulation, as well as NFTs formation, can lead to
astrocytosis and microgliosis [89], and ultimately activate and deepen the neuroinflamma-
tory state that has a significant share in the progression of AD. This renders inflammation
in neurodegenerative diseases the meaning of the double-edged sword [90,91]. Interest-
ingly, HSV-1 evolved specific mechanisms to prevail over the host inflammatory response,
e.g., by expression of the proteins ICP0 and virion host shutoff (vhs) blocking IRF3- and
IRF7-mediated activation of ISGs [92], and by targeting one of the major viral DNA sensor
proteins, IFI16, for rapid proteasomal degradation [70]. Moreover, Hill et al. discovered that
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HSV-1 infection of primary human neural (HN) cells up-regulated host microRNA-146a
(miRNA-146a) associated with proinflammatory signaling and AD (Figure 2), enabling
viral evasion from the complement system [87]. Subsequently, a plethora of the host miR-
NAs playing a role in regulating cell apoptosis, inhibition of viral replication, and, most
importantly, antiviral immunity, have been discovered to be deregulated by HSV-1 [41].

In addition to the infiltration of inflammatory cells around blood vessels and white
matter necrosis, HSV-1 infection of cotton rats contributed to multifocal CNS demyelination,
which, despite subsequent remyelination, resulted in “scars” in the myelin sheaths [93].
Incomplete remyelination can be caused by the transition to a reactive state, as well as by the
death of the glial cells responsible for this process, such as astrocytes and microglia [94], and
contribute to clinical manifestation in the form of cognitive decline, as myelin impairment
can play a significant role in AD pathology and precede Aβ and tau pathologies during the
disease [95].

After establishing latency, HSV-1 can reactivate and most often cause vesicles and
ulcers in the mucocutaneous sites; however, infrequently, the virus can invade and replicate
in the brain. In addition to exceptionally severe, acute encephalitis, HSV-1 can cause mild
or asymptomatic subacute illness, also associated with cerebral dysfunction [96]. In adults,
it can take the form of manifestations, such as headache, drowsiness, nausea, vomiting,
disorientation, photophobia, and weakness [97]. It is believed that mild disease probably
exemplifies the more common presentation of HSE; however, less severe symptoms may
not be acknowledged, or the patient can recover prior to diagnosis and, thus, many cases
can be omitted. However, mild cases of HSE, as well as repeated reactivations of HSV-1,
which can also occur in the brain, should be of particular interest, as they can accumulate
adverse consequences of inflammation. Whether subacute HSE can contribute to the onset
of neurodegenerative disease, such as AD, warrants further investigation.

Moreover, once occurred, HSE can entail long-term, persistent inflammatory processes
in the brain. Viral DNA, but no HSV antigens, were found in the patient’s brain ten years
after acute onset of HSE [19], indicating that following HSE, HSV-1 can establish latency not
only in the TG but also in the CNS cells, and constitute an ember for future brain infections
as well as recurrent HSE. Such a possibility was also proposed by Olsson et al. [98]. Interest-
ingly, HSV reactivation in the CNS can appear spontaneously, affect only a small group of
cells, and not induce neurological symptoms [45]. Research on the human brain, within the
context of atypical/mild/chronic HSV-1 infections, can contribute to an understanding of
whether and to what extent molecular and cellular events during such infections promote
neurodegeneration. Although they are known to exist, the prevalence of such infections is
not underpinned in the population level. Research regarding the long-term consequences
of HSV-1 infections of the CNS are scarce, and often hampered by small/selected study
groups limited to patients with severe HSV encephalitis [99].

It should be kept in mind that neuronal cells are terminally differentiated and do
not produce cellular DNA; therefore, they are deprived of the precursors for HSV-1 DNA
synthesis that are encoded by the HSV-1 genes [100]. However, these genes are inessential
for viral replication in glial cells multiplying upon brain injury, or in cell culture. During
studies on neurodegenerative diseases, increasing attention is being directed towards glial
cells triggering neuroinflammatory responses, as neuroinflammation is a composite process
orchestrated primarily by various groups of glial cells in CNS, and also peripheral immune
cells [101].

4. Functions of Astrocytes, Oligodendrocytes, Microglia, and Their Activation
4.1. Astrocytes

Astrocytes as the heterogeneous and most numerous cells of the brain, are the ma-
jor controllers of synaptic activity and plasticity, neuronal network, and cognitive func-
tions [102,103]. Being supportive glial components in neural tissue, they provide an
adequate ionic milieu for neurons, support their metabolism, maintain the BBB, regulate
blood flow, and clear cell debris, as reviewed by Kim et al. [104]. Furthermore, through
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participation in the immune response, astrocytes play a critical role in host defence during
viral infection, and any alteration in the astrocytic function can contribute to pathological
changes in the CNS and neurological complications.

As a consequence of HSV-1 infection, astrocytes undergo a dramatic transformation [57,105].
Such a process, named “reactive astrocytosis”, involves morphological and molecular
changes that result in increased astrocyte proliferation, change of cell morphology with a
loss of astrocytic projections, and increased levels of proteins, such as glial fibrillary acid
protein (GFAP), as shown in Figure 3.
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Figure 3. Generation of ROS by the CNS cells following HSV-1 infection. HSV-1-infected neurons
undergo oxidative stress and generate excess ROS; however, glial cells are also a significant source of
these reactive molecules [106]. ROS radicals compromise the DNA causing strand brakes, crosslink
bases of nucleic acids or proteins, or modify DNA bases through the induction of adducts [107–109],
as shown in the red box. Astrocytes exert an increased level of GFAP following infection, which
indicates the development of astrocytosis [110]. Infected oligodendrocytes secrete microvesicles (MVs)
containing viral proteins, nucleic acids, or infective virions [51], and produce exosomes containing
regulatory RNAs and proteins, as shown in the brown box. Oligodendrocytic HSV-1 infection results
in cell death, demyelination, and loss of neurons [111,112].

Recently, it was shown that astrocytes exert an increased expression of heparan sulfate
proteoglycans—the first binding sites for the virus and, as a consequence, show a greater
susceptibility to HSV-1 infection than neurons [58]. The reduction of viable cells and
changes in primary human astrocytes’ morphology, from a stellar to globoid shape, was
observed after HSV-1 infection [113]. Potent astrocytosis and a dramatical increase in
the number of reactive astrocytes were shown in the brain regions damaged by HSV-1
infection [112]. These effects were present both in acute (2 days p.i.) and in chronic
(30–60 days p.i.) infections [112]. HSV-1 up-regulates astrocytic secretion of TNFα and IL-6
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via the TLR3 pathway [114], as well as induces the production of type I IFNs [16,115]. A
recent report showed that HSV-1-infected astrocytes were transiently activated, became
hypertrophic, and expressed both pro-inflammatory neurotoxic A1- and anti-inflammatory
neuroprotective A2-astrocyte markers [57]. Furthermore, the HSV-1 infection cell protein
0 (ICP0) triggered fibroblast growth factors (FGFs) activity and up-regulated FGF-4, FGF-
8, FGF-9, and FGF-15, inducing paracrine neurotrophic signaling in neighboring cells.
Furthermore, the up-regulation of TLR2, TLR6, TLR9, MDA5, and DAI, as well as the
increased expression of type I IFNs and ISGs, occurred in HSV-1 infected astrocytes [116].
Several days after HSV-1 infection, an increased level of GFAP was observed, indicating
the development of astrocytosis [110]. GFAP plays a crucial role in the progress of reactive
astrocytosis, in response to viral infections [117]. Reactive astrocytes can provoke the
dysfunction of normal astrocytes and affect their response to inflammation [118,119]. The
role of astrocytosis in the course of HSE is deliberated. Some studies have reported that
astrogliosis exerts beneficial effects, including wound closure, neuronal protection, and BBB
repair [120]. However, others have shown that astrocytosis can be harmful, particularly in
the context of inflammation [53,121]. Novel evidence showed that astrocytes contribute
to and promote HSV-1 infection of neurons by fueling neurons with extracellular ATP. In
the absence of functional astrocytes, neuron HSV-1 infection was less efficient; therefore,
astrocytes can participate in a productive infection of neurons rather than protecting
them [58]. Moreover, reactive astrocytes restrain survival as well as the differentiation of
the oligodendrocyte precursor cells [122].

4.2. Microglia

Microglia and astrocytes possess immune functions and respond to invading pathogens,
by producing soluble mediators that can promote inflammation and leukocyte recruitment
across the BBB [123–125]. Microglia comprise 10–20% of the glial cells, and being profes-
sional CNS macrophages, they sense and internalize extracellular material, cell debris, as
well as apoptotic cells, preserving neuronal networks and repairing CNS injuries [126,127].
Microglia are considered the first line of defense in response to HSV-1 infection and are
responsible for the release of pro-inflammatory cytokines and chemokines, including type
I IFNs, IL-1β, IL-6, TNFα, CXCL10, and C–C motif chemokine ligand 2 (CCL2), and are
the major source of inducible nitric oxide synthase (iNOS) [83,128,129], as presented in
Figure 2. Importantly, microglia are the main producers of type I IFNs among CNS cells,
following HSV-1 infection [130]. The up-regulation of P2RY12, CD68, Serpina 3n, GFAP,
and Vim genes associated with the reactivity of astrocytes and activation of microglia, was
recently shown in an HSV-1 infected mouse cortex and hippocampus, conjointly, with
the heavy deposition of Aβ aggregates [131]. The up-regulation of CD68 and P2RY12
drives microglia into a phagocytic state, suggesting that Aβ aggregates can prime reactive
microglia for phagocytosis.

4.3. Oligodendrocytes

Oligodendrocytes produce various neurotrophic factors and form myelin sheaths
around neurons, taking part in the propagation of potentials along axons [132]. They
express various innate immune receptors and modulate immune responses in the brain as
well as produce small vesicles—exosomes containing regulatory RNAs and proteins, which
play important roles in neurodegenerative disorders. Furthermore, following HSV-1 infec-
tion, oligodendrocytes can secrete MVs harboring viral proteins, nucleic acids, or infective
virions, thus participating in the viral cycle [51], as shown in Figure 3. Oligodendrocytic
HSV-1 infection results in cell death, demyelination, and the loss of neurons [111,112].

During AD, astrocyte proliferation and the transition to a reactive state can be ob-
served. In particular, oligomeric Aβ and hyperphosphorylated tau induce functional
astrocyte impairment, resulting in disturbed neuron metabolism, prostrate synaptic ac-
tivity and plasticity, as well as malfunctioning regional blood supply, as reviewed by
Acosta et al. [133]. Furthermore, activated microglia proliferate and concentrate around
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Aβ plaques, and microglial functioning and responses to Aβ are altered, which results
in the secretion of inflammatory factors, exacerbation of tau pathology, and activation of
neurotoxic astrocytes, culminating in neuron injury, synapse loss, as well as microglial
degeneration [134,135]. Oligodendrocytes and their production of myelin determine the
metabolic and trophic surrounding for axons; therefore, they are decisive for the proper
functioning of the brain [136]. Their damage can contribute to neurodegeneration and
recent data indicate that AD is associated with demyelination, oligodendrocyte dysfunc-
tion, as well as the loss of oligodendrocyte–axon communication [137,138]. Deprivation
of the myelin sheath can be an initiating step of the early stage AD changes observed
before the Aβ and tau pathology [139]. Oligodendrocytes are vulnerable cells, and Aβ,
NFTs, oxidative stress, and inflammation induce/aggravate their dysfunction and myelin
breakdown, and lead to apoptosis [139,140]. Oligodendrocyte progenitor cells (OPCs), or
NG2-glia, regenerate damaged oligodendrocytes; however, they are also disrupted during
AD [136].

Adverse and neurotoxic changes occurring in brain cells during HSV-1 infection,
can open the door to the development of AD-related pathologies and, importantly, often
resemble those observed during the disease. Supporting and enhancing the neuroprotective
properties of the glial cells, as well as appropriate components in their responses, have
potential employment in a therapeutic approach to dementia and AD in particular [141].

5. Oxidative Damage

Reactive oxygen species (ROS) are continuously produced in the mitochondria of the
metabolically active CNS cells, and provide an optimal redox state for the activation of
transduction pathways involved in the proper regulation of the neuronal activity, glial cells
specification, and differentiation [142,143]. However, during mitochondrial dysfunction,
when the production of ROS is excessive or exceeds the antioxidant capacity of the cells,
oxidative stress can occur [144], as shown in Figure 3. Metabolic processes in neurons
trigger ROS production, and astrocytes regulate oxidative stress in the CNS through
decomposing and clearing free radicals produced by neurons and other cells. However,
under pathological conditions, astrocytes can become a major source of excessive free
radicals that can damage neurons and activate microglia, as reviewed by Chen et al. [145].
Activated microglia exhibit a high tolerance to oxidative stress and, in addition, release
radicals, such as superoxide and nitric oxide [146], while oligodendrocytes, in contrast, are
particularly vulnerable to oxidative stress, high ROS levels especially affect their maturation,
myelin sheath formation, and remyelination [143,147].

Extensive scientific evidence links HSV-1 infection with both AD and oxidative stress
in CNS cells. During HSV-1 infection, ROS and reactive nitrogen species (RNS) limit viral
replication, and regulate host inflammatory and immune responses [148]. A recent study
indicates that ROS generation in HSV-1 infected immune cells is NF-κB-dependent, and
antioxidant administration raises HSV-1 replication levels in these cells [149]. On the other
hand, scientific data show that oxidative stress concurs with HSV-1 replication [150,151].
For instance, the treatment of HSV-1-infected Vero cells with embelin, which possess an-
tioxidant properties, not only reduced the production of H2O2 and HSV-1-caused oxidative
damage, but also inhibited the attachment and penetration of HSV-1 virions, causing the
inhibition of infection [152]. However, the antioxidant capability of the host cells can be
exceeded by high ROS production, engendering harmful effects. Furthermore, the polyun-
saturated fatty acids (PUFA)-rich nervous system is especially prone to oxidative damage,
including the autocatalytic lipid peroxidation, during which reactive carbonyl species
(RCS) are formed [153]. ROS and RCS prostrate glutathione and other reductants, generate
oxidative modifications of nucleic acids and proteins, often modifying their structure and
function, which, acting cumulatively, inevitably lead to brain tissue damage and dysfunc-
tion. Oxidative injury is an inseparable companion of HSE [154], and is also associated
with neurodegenerative diseases. In particular, oxidative stress plays a major role in the
pathogenesis of AD [148,155], and its derivatives can represent an early phenomenon of the
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disease. Increased levels of 8-hydroxyguanine (8-OHG), 8-hydroxyadenine (8-OHA) DNA
adducts, and 5,6-diamino-5-formamidopyrimidine were observed in various AD-affected
brain regions and hippocampus; in particular, in the early stage of disease [156], while
8-OHG RNA adducts decreased and acrolein/guanosine DNA adducts and 8-OHA RNA
adducts increased in the late stage of AD [156,157].

Oxidative damage associated with HSV-1 infection, encompasses primarily lipid
peroxidation products’ 4-hydroxy trans-2-nonenal (HNE) and acrolein adducts to proteins
and 8-OHG, as well as 8-OHA adducts to DNA and RNA, among at least 20 ROS-modified
bases adducts. ROS levels were significantly increased in neural P19N 1cells as early as
1 h post infection (p.i.) with HSV-1 [151]. A total of 8-OHG adducts occurred in a large
number of neurons, as well as the non-neuronal cells of the TG, brainstem, hypothalamus,
and thalamus of mice with an active form of HSV infection [45]. HNE-protein adducts
were also observed in latently infected mice. Interestingly, the presence of HNE has also
been demonstrated in neurons and non-neuronal cells, in which the presence of HSV-1
proteins or LAT expression in acutely and latently infected mice, respectively, has not been
demonstrated; therefore, the damage resulting from HNE attachment was not only limited
to HSV-1 infected cells, but also the neighboring ones. Similarly, the presence of 8-OHG
has been observed in infected and adjacent cells. The described oxidative damage of neural
tissue that occurred during acute and latent HSV-1 infections, was also associated with
the apoptosis of the CNS cells, mainly non-neuronal cells. According to multiple HSV-1
reactivations, significantly increased levels of proteins with HNE and 13-HNE adducts
were observed in the cortex of HSV-1 infected mice [158]. In particular, the functioning of
the two proteins (glucose-regulated protein 78 (GRP78) and collapsin response-mediated
protein 2 (CRMP2)) associated with the AD pathophysiology and responsible for stabilizing
the microtubules, was impaired.

The above data strongly suggests that HSV-1 infection, and especially recurrent viral
reactivation in the brain, can contribute to oxidative damage that can predispose the brain
to AD or result in the development of neurodegeneration. Furthermore, HSV-1 infection
and oxidative stress alter the lysosome system in the form of increasing the lysosomal load,
diminishing the activity of the lysosomal enzymes, or modifying cathepsin maturation,
which can be involved in different forms of AD [159]. Oxidative stress during HSV-1 infec-
tion, significantly potentiates the intracellular accumulation of Aβ levels and precipitates
the abundance of autophagic compartments in SK-N-MC human neuroblastoma cells;
therefore, HSV-1 infection together with oxidative damage promote AD neurodegeneration
events [160].

6. Amyloid Beta Secretion

A widely accepted hypothesis called “amyloid cascade”, designates Aβ accumulation
as a factor leading to AD pathology [161,162]. Aβ is generated via proteolytic cleavage
of the amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase [163].
Until recently, nerve cells were considered the major producers of Aβ; however, the latest
scientific findings show that astrocytes can also secrete significant quantities of Aβ [6],
and are therefore important cells contributing to cerebral amyloid loading. It is worth
noting that amyloid production accompanies astrocytes reactivation, as astrocytic levels
of APP, β-, and γ-secretase significantly increase [6]. Astrocytes, however, also act in the
opposite manner, by phagocyting and breaking down Aβ. The gravity of this feature is
evidenced by the pharmacological ablation of astrocytes in organotypic brain culture slices
(OBCSs) from 5XFAD mice, that entailed an increase in Aβ levels, reduced Aβ degradation,
as well as reduced the density and size of hippocampal dendritic spines [164], following
the ablation of the astrocytic proliferation in APP23/GFAP-TK transgenic mice, which
similarly exacerbated the disease pathology in the mouse model of AD [165]. Interestingly,
when astrocytes phagocytose Aβ protofibrils, the material may not be degraded, but stored
intracellularly, and subsequently secreted from cells in the form of microvesicles containing
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N-terminally truncated Aβ, which can induce neuronal apoptosis [166], as presented
in Figure 4.
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Figure 4. Engulfment and production of amyloid β, accumulation of hyperphosphorylated tau
in neurons and glial cells, and death of the CNS cells after HSV-1 infection. Reactive astrocytes
can internalize or secrete Aβ, particularly in the form of N-terminally truncated Aβ in MVs, and
contribute to neuronal apoptosis [166]. Microglia also clear amyloid plaques or secrete Aβ neurotoxic
forms [167,168]. Astrocytes and microglia often encircle Aβ plaques [6,169]. Astrocytes surrounding
Aβ plaques can die, leaving an area rich in amyloid and GFAP, and activated microglia can stimulate
CNS cells to produce Aβ [170]. In turn, extracellular Aβ induces neuroinflammation and activates
microglia [171]. Aβ-activated microglia internalize dead and dying neurons as well as other stressed
live cells [172,173]. Demyelinating lesions in the CNS occur following the death of oligodendrocytes
after HSV-1 infection [111]. Furthermore, the virus elicits the hyperphosphorylation of tau and
accumulation of the protein in the nuclei of neurons and neuronal cells [174,175]. Tau aggregates
can be released from neurons [176] and astrocytes, and microglia can internalize the proteins and
contribute to their spread [177,178].

Mature oligodendrocytes express various APP isoforms and secrete the 40 and 42 amino
acid Aβ species in vitro [179]; however, more research is needed to establish the role of these
cells as a source of Aβ, bearing in mind that Aβ peptides are cytotoxic to oligodendrocytes
and induce oligodendrocyte death [180,181].
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Microglia, being professional phagocytes, are capable of internalizing different forms
of Aβ [182,183]. During AD, microglia gather around, interact with Aβ plaques, and
become activated through transcriptional and functional reprograming; however, their
motility and phagocytic activity become greatly impaired [184]. Interestingly, transient
microglia ablation in APP transgenic CD11b-HSVTK mice did not inhibit amyloid plaque
formation and maintenance [185]. Additionally, microglia accord to the plaque growth via
Aβ clusters phagocytosis and the consecutive release of accumulated Aβ into extracellular
space preceding their death [186], as shown in Figure 4. Upon exposure to amyloid,
microglia also increase the internalization of amyloid-loaded neurons, even before the
amyloid plaque deposition occurs [172]. Dysfunctional microglia can therefore contribute
to the aggravation of Aβ deposition and neuronal pathology, before the plaque onset occurs
and in the later stages of AD [172,184].

A high number of reactive astrocytes and activated microglia have been found in the
vicinity of Aβ plaques, in the brains of the triple transgenic mouse model of AD (3xTg-
AD) [169] and people suffering from AD, as reviewed by Fakhoury [69]. Astrocytes and
microglia clear and break down amyloid in response to neurodegeneration. However, since
microglia also facilitate the convergence of soluble and oligomeric amyloids within plaques
into a fibrillar form resistant to degradation, this can result in the loss of the debris-cleaning
role of the cells and the development of AD-promoting pathology [187].

A significant increase of Aβ deposits was observed in the brains of HSV-1-infected
mice [163,188]. Interestingly, BACE1 and nicastrin (components of γ-secretase) levels
increased in HSV-1 infected human neuroblastoma SHSY5Y cells [163]; HSV-1 can also
elevate IFN-induced PKR level, leading to the expression of BACE1, which is otherwise
constitutively inhibited [189]. Moreover, HSV-1 particles interact intracellularly with APP,
facilitating viral transport and simultaneously disrupting proper APP transportation and
distribution in cells [190], further indicating the possible contribution of HSV-1 to the
development of AD pathology. Another significant evidence of the HSV-1 influence on
the Aβ deposition in the brain is the demonstration that 90% of Aβ plaques contain HSV-1
nucleic acids, while over 70% of viral DNA was associated with the plaques in the brains of
people suffering from AD [191]. HSV-1 is capable of enhancing Aβ aggregation both in cell
cultures in vitro as well as during 5XFAD mice infection, and can lead to Aβ nucleation
and the growth of amyloid fibrils [192]. In 2019, Ezzat et al. [192] established that HSV-1
binds amyloidogenic peptides to its “protein corona”, a layer of peptides that adhere to
the surfaces, thanks to which the formation of amyloid is catalyzed by surface-assisted
nucleation. Moreover, increased soluble Aβ (sAβ) can also indirectly contribute to AD,
as it belongs to one of the proinflammatory cytokine-induced DAMPs, and, through the
activation of the TLR4/TLR7/TLR9 pathway, exacerbates inflammation in the brain [193].
Although the available evidence of HSV-1 presence in the brains of AD patients is not
sufficient to confirm an inevitable role of the virus on its own in AD, because HSV-1 also
resides in the brains of healthy people [1], the discussed data corroborate that the presence
of HSV-1 in the brain can be one of the factors initiating the formation of Aβ plaques, as
well as one of the significant contributions leading to the onset of AD.

7. Tau Hyperphosphorylation

The anomalous deposition of aggregated proteins in the form of intraneuronal tau
filaments is a hallmark of AD, as well as most other neurodegenerative diseases [8]. The
neuron-resident tau belongs to the microtubule-associated proteins (MAPs) family, par-
ticipates in the stabilization and polymerization of microtubules, and thus fosters axonal
transport and supports neuronal integrity [194]. Tau and tau-like proteins are also ex-
pressed in lower levels in glial cells, such as oligodendrocytes and astrocytes [195,196],
where they contribute to the cellular differentiation, formation of myelin sheaths, the
outgrowth of processes, and neuron-glia contact [197]. The hyperphosphorylation of tau
induces the release of the protein from microtubules [198], the loss of the cytoskeleton, ac-
cumulation of tau in the nuclei of neuronal cells, and promotes the formation of aggregates,
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NFTs [175], as shown in Figure 4. Diminishing axonal stability and hastening neuronal
dysfunction supervene on tau hyperphosphorylation [199]; however, such modification
does not lead to pathology during hibernation [200] and the fetal development of rodents
and humans [201–206]. It is speculated that the formation of aggregates from abnormally
hyperphosphorylated tau into NFTs, can comprise a protective mechanism by which cells
minimize the toxic activity of the abnormal protein [207].

Recently, much scientific attention is directed to the “tau propagation hypothesis”,
which assumes that the transmission of tau aggregates between neurons promotes the
formation of successive aggregates of tau and AD pathology. The neuron-to-neuron transfer
of tau requires release/leakage of the pathological form of tau outside the degenerated
cell and its internalization by recipient cells, resulting in the formation of tau aggregates
within these cells [208]. Moreover, the increase in the intracellular pathological tau in
the brain correlates with the extent of cognitive deficits and the characteristic pattern of
tau aggregates spreading during AD, typically the aggregates incrementally accumulate
at the cortex of the temporal lobe and propagate to the hippocampus and other parts of
the brain [209]. Pathological tau present in glial cells also exerts propagation across the
brain, e.g., oligodendroglial tau aggregates spread along white matter tracts, ultimately
leading to the loss of oligodendrocytes [210]. In addition to neurons, astrocytes also
produce, internalize, and degrade tau, and participate in tau propagation in the brain,
also possibly influencing AD progression [177]. Interestingly, glial tau aggregates can
supplement neuronal tau aggregates in the same degenerating brain regions [195].

During replication in the nucleus, which is a complex and structured process, HSV-1
recruits numerous nuclear proteins. Although the virus does not require tau for replication
in neuronal cells, HSV-1 infection causes tau phosphorylation at serine 202/threonine 205,
threonine 212, serine 214, serine 396, and serine 404 [86,211,212], as well as the accumulation
of hyperphosphorylated tau in the nuclei of infected neuronal cells [175]. Tau phosphoryla-
tion was observed in the cytoplasm of primary adult murine hippocampal neurons already
at 24 h of HSV-1 infection [174], and the levels of tau phosphorylated threonine 205, as well
as tau cleavage and aggregation increased significantly in the brains of mice with multiple
HSV-1 reactivations [86]. The virus enhances the activity of the enzymes responsible for
the tau phosphorylation, such as glycogen synthase kinase 3beta (GSK-3β) and protein
kinase A (PKA) [213]. Moreover, the pattern of proteins phosphorylated by HSV-1 protein
kinase U(S)3 overlaps that of phosphoproteins targeted by PKA [214]. Moreover, HSV-1
infection promotes tau cleavage through caspase-3 activation in murine primary neurons
and astrocytes, which increases the kinetics of tau aggregation [215].

Interestingly, it is proposed that tau phosphorylation and accumulation can play a
role in antiviral protection as a normal host immune repertoire. Exceeding the critical level
of the modified protein and/or its aggregates can redirect their character from shielding
to neurotoxic, and lead to AD as to the innate immunity disorder [216]. An adaptation of
such a novel perspective on changes during neurodegeneration does, however, require
additional observations and experimental data. Furthermore, studies on tau pathology in
non-neuronal cells, such as astrocytes and oligodendrocytes, indicate that these cells can be
significant players among propitious AD treatment methods.

8. Apoptosis and Autophagy

Immense neuronal death, due to apoptosis, is a frequent finding in the brains of people
suffering from neurodegenerative diseases, and, in AD, apoptosis entails the extensive
death of neurons and glial cells [211,212,217]. It is generally known that viral infections can
trigger apoptosis, a programed cell death that plays an important role in viral pathogenesis
and host antiviral response [218]. Apoptosis can limit the viral spread; therefore, HSV-1
modulates cellular death and encodes anti-apoptotic virulence factors to evade elimination.
On the other hand, HSV-1 also promotes the death of cells that can be detrimental for viral
replication [219]. The HSV-1 acute infection of the CNS ineluctably entails neuronal and
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glial cell death [112,220–222], as shown in Figure 4; however, the replicating virus also
counteracts neuronal antiviral mechanism, such as autophagy [223].

Apoptosis is modulated by two signaling pathways, extrinsic and intrinsic, and is
executed by a family of cysteine proteases known as caspases, recently reviewed by
Duarte et al. [15]. There are many studies that show that HSV-1 infection causes neu-
ronal apoptosis and brain disease [220,224–226]. Neuronal apoptosis occurred in hu-
man HSE brain tissue and cultured human glioblastoma cells infected by HSV-1 [227].
DeBiasi et al. [220] observed apoptotic neurons and glia in brain tissue sections of patients
with acute HSE, indicating that HSV-1 infection can directly cause apoptosis of the BBB com-
ponents. He et al. [228] indicated that HSV-1 infection triggers apoptosis as a consequence
of BBB damage, which was associated with a GM130-mediated Golgi stress response,
and HSV-1 neuronal infection entails Golgi apparatus fragmentation [229]. Recently, it
was shown that the HSV-1 infection of mice causes hippocampal damage and neuronal
apoptosis, which is related to the downregulation of the suppressor of cytokine signaling 2
(SOCS2) and SOCS3, and to increased hippocampal expression of inflammatory cytokines,
such as TNFα, IL-1β, IL-6, and IFN-α/β [230]. In the cultured neurons, HSV-1 infection
decreased the expression of the dendritic postsynaptic density scaffolding proteins, such
as postsynaptic density protein 95 (PSD-95), Drebrin, and CaMKIIb, and induced exten-
sive loss of dendritic spines and retraction of secondary dendrites, as well as entailed
unresponsiveness to glutamate stimulation, culminating in the functional deregulation
of neurons [231]. Latterly, Doll et al. provided evidence that sensory neurons undergo
apoptosis as a result of HSV reactivation in mice [232]. In this study, dead neurons were
cleared by Iba1+ cells, which can play a role in preventing the damage and protecting
neighboring neurons. HSV-1 infection also induces microglial apoptosis. Expression of
the apoptotic genes of caspase-2, caspase-3, Cide-B, and Dsip1 were increased; however,
Tnfrsf12a and RipK2 were down-regulated in microglia after HSV-1 infection [233].

HSV-1 modulates the apoptotic pathway through the expression of viral immediate
early (IE) genes, e.g., ICP0 acts as an activator of apoptosis. The expression of ICP0 alone
was necessary and sufficient to trigger apoptosis during HEp-2 cells infection by HSV-
1 [234]. A new study presented by Mangold et al. [235] showed that HSV-1 modulates
viral gene expression and protein levels, depending on the viral strain in infected human
neuronal cells. In turn, infected neurons change the response pathways to different HSV-1
strains and activate genes involved in death receptor signaling and retinoic acid-mediated
apoptosis signaling. Furthermore, the changes included pathways that regulate neuronal
cell adhesion, migration, and cytoskeletal rearrangement (pathways associated with inte-
grin signaling, integrin-linked kinase (ILK), ephrin B-, and ephrin receptor-signaling), as
well as the regulation of neuronal adherens junction components in response to particular
HSV-1 strains [235].

HSVs can also modulate autophagy [236]. The host defense against HSV-1 infec-
tion, involving autophagy, relies on fencing off the cellular synthesis of virus proteins,
reached by phosphorylation of the eIF2α [237,238]. eIF2α phosphorylation promotes the
induction of autophagy in HSV-1-infected neurons [27]. Autophagy can also be elicited
by recognition of viral DNA by the cGAS DNA sensor and beclin 1 (BECN1), or by the
stimulator of interferon genes (STING). These pathways lead to the delivery of viral DNA
to autophagosomes [239,240]. Furthermore, HSV-1 infection in murine TG neurons induced
autophagosome clusters also in non-infected neurons lacking detectable viral protein ex-
pression [241]. HSV-1 utilizes cellular mechanisms to inhibit autophagy through virus
neurovirulence proteins: US11 and ICP34.5 [27]. US11 interacts with PKR and inhibits
eIF2α phosphorylation [242]. ICP34.5 binds to BECN1 and inhibits its autophagic function.
A previous report showed that the mutant HSV-1 lacking the BECN1-binding domain of
ICP34.5 did not inhibit autophagy in neurons [223].

Significantly, autophagy can also be exploited by viruses to enhance their multiplica-
tion or persistence during latency. Recently, it was reported that the transient induction
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of autophagy by HSV-1 in human monocytic THP-1 cells appeared to have a proviral
role [243].

It is worth to mention that the hosts’ exploitation of autophagy against HSV-1 is cell
type-specific. For example, autophagy was critical for viral control in cultured primary
neurons, while it was dispensable in fibroblasts in vitro [244,245]. This difference was also
observed in vivo, autophagy was involved in the antiviral response in neurons, but not
in epithelial cells [245]. Interestingly, HSV-1 infection entails the accumulation of intracel-
lular autophagosomes and Aβ affluence in autophagic regions in human neuroblastoma
cells [246], indicating a possible multifaceted role for HSV-1 in the development of AD.

9. Neuronal and Glial Cell Injury and Loss Combined with Advanced Age

Advanced age favors the development of processes that can affect neurodegeneration
and, at the same time, the possibility of having HSV-1 infection and virus in the brain in-
creases with the length of life. Notwithstanding the fact that changes observed in the brain
during aging resemble AD pathology, the disease is not synonymous with accelerated brain
aging [247]. During AD, neuronal loss occurs with the distinction of regional selectivity,
principally, in the hippocampus and neocortex [248,249]. Research indicates that neuron
death in brain aging, however present, may not necessarily precipitate the age-related dete-
rioration of hippocampal and neocortical functions [250]. According to changes in the hip-
pocampal subfield structure, AD-related processes can be qualitatively different from those
occurring during the normal aging of the brain [248]. However, Avramopoulos et al. [251]
found a particularly significant overlap between changes of gene expression with age and
changes in AD. Furthermore, the group observed that up-regulation of genes involved in
the inflammation and regulation of transcription as well as down-regulation of genes asso-
ciated with neuronal functions eventuated in the same direction. Consequently, although
structural and genetic alterations observed in healthy-aging brains can be divergent from
those appearing in AD, advancing age is a risk factor for AD and age-related changes and
can augment the likelihood of AD development [251,252]. Common characteristics of brain
aging encompass changes in neuron and brain volume, alterations in dendritic complexity
and neurotransmission, and accumulation of neurotoxic proteins [67]. These processes are
suspected to contribute, at least in part, to the neurodegeneration and cognitive impairment
related to advanced age, although the grounds of many known brain changes related to
aging still remain indefinite.

HSV-1 DNA is present in high frequency in the brains of elderly people, compared
to the brains of children and young people in which it occurs only in a very small pro-
portion [1,191,253]. HSV genetic material has been detected in 35% of normal human
brains studied, or in the brain tissue of 54% of humans free of clinical signs of HSV-1
infection, suggesting that the virus can establish latency in the brain without severe en-
cephalitic sequelae [254,255]. It has been proposed that the virus reaches the brain in
elderly people because the immune system is aging and declines with age [1], while viral
reactivations following stimuli, such as stress or immunosuppression, can lead to mild
encephalitis and can be attributable to neuronal damage and affect the progression of brain
pathogenesis [253,256].

HSV-1 readily infects neurons, astrocytes, microglia, and oligodendrocytes in the brain,
neuronal, and glial destruction is observed in the acute stage and during the first month
following HSV-1 encephalitis in humans [257]. During encephalitis induced by acute HSV-1
infection, neuronal loss caused by necroptosis and apoptosis, particularly in the temporal
and frontal lobes of the human brain were observed [15]. On the second day of HSV-1
infection in mice, focal moderate cortical necrosis and myelin swelling were present in the
brain, while from 7–10 days p.i., neuronal degeneration and deficits appeared in severely
necrotic areas, and astrocyte/oligodendrocyte nuclei were substituted by karryorhectic
figures indicating cell death [112]. Astrocytes of mice infected with HSV-1 by the corneal
route undergo active degeneration, and animals exhibit a complete loss of astrocytes in
the trigeminal root entry zone already 6 days post virus inoculation [258]. Additionally,



Int. J. Mol. Sci. 2022, 23, 242 16 of 32

moderate focal-to-extensive astrogliosis developed in the brains of animals with subchronic
(14–60 days p.i.) HSV-1 infection, characterized by the presence of reactive astrocytes with
elongated, thickened, and branching processes, which gather in the areas with a lack of
neurons. Brains of animals 30 or 60 days p.i., were visibly reduced in size, and an evident
neuronal loss in the hippocampus and loss of as much as 40% of the temporal-occipital
cortex were observed. The surviving animals, 30 and 60 days p.i., exhibited behavioral
defects and long-term memory deficits. HSV-1 infection of murine neuronal cultures
led to a shortening of axons and dendrites after 8 h p.i., reduced neuronal viability to
40% and axonal length to 20% in 18 h p.i., with regard to uninfected control cells, and
induced cytoskeletal reduction and retraction, which together resulted in axonal injury,
neurite damage, and neuronal death [226]. Moreover, the immense destruction of the
nerve terminals was observed following HSV inoculation in the neostriatum of rats, which
probably elicited a significant decrease in tyrosine hydroxylase (TH) and glutamine acid
decarboxylase (GAD) in the striatum and substantia nigra, and choline acetyltransferase
(ChAc) in the ipsilateral striatum [259]. Dopaminergic hypofunction was also observed as
a repercussion of the acute HSV brain infection in rabbits [260]. Damage through loss of
neurons and cholinergic phenotype to the cholinergic system, which is involved in memory
and learning, is considered to be among the earliest events during AD etiology [89], while
the loss of dopaminergic neurons pertains to cognitive decline symptoms in a mouse model
of AD [261], and structural alterations of the dopaminergic system strongly condition
behavioral symptomatology in AD patients, as reviewed by D’Amelio et al. [262].

Interestingly, latent HSV infection in mice also led to the injury of neurons, resulting
in the decrease of neuronal parameters in the TG, such as cell diameter, nucleus diameter,
the density of cells, and their number, indicating that latent HSV-1 infection in the brain is
associated with progressive neuronal pathology [2]. The lytic, quiescent HSV cycle in iPSC-
derived glutamatergic human neurons altered cellular function [263], and persistent HSV-1
infection of human and murine neuronal cultures, as well as murine brains, up-regulated
Arc expression and deteriorated protein activity in maintaining neuronal morphology,
synaptic plasticity, and formation of memory [264].

Succinctly, HSV-1 infection in the brain not only instantly affects the physiology of
neurons, astrocytes, microglia, and oligodendrocytes, significantly altering their protein
levels and morphology [265], but also leads to heavy cell damage and death. Interestingly,
the virus exploits molecular strategies to evade host cell death through suppression of
both host cell death pathways for the benefit of viral replication [228]; yet, the entry and
spread of HSV-1 in the CNS leads to severe and long-term brain damage. Neuroanatomical
HSV-1 tropism not only comprises TG or DRG, but also cingulate gyrus, orbitofrontal,
insular, and mesial temporal lobe regions of the cerebral cortex [3], including, in particular,
the hippocampus, which exhibits a high level of HSV-1 receptors [266]. AD is considered
hippocampal-related brain disorder, and cerebral cortex regions that are damaged during
HSE correspond to areas in which changes are observed in AD patients’ brains [3].

10. Genetic Studies—Future Line of Investigation

The immune system of the majority of humans who have acute/latent HSV-1 infection,
is capable of suppressing the virus from entering the CNS; however, a monogenic inborn
error of immunity can significantly predispose a man to a neurologic emergency, such
as HSE.

Mutations in TLR3, genes of the components of the TLR3 pathway, or other genetic
deficiencies that lead to the diminished IFN production, can result in HSE among HSV-1
infected patients [267–282]. Furthermore, mutations in the DBR1, the protein responsible
for dsRNA binding, resulted in HSV-1 as well as influenza virus and norovirus presence in
the brainstem and brainstem HSE [283]. Recently, rare deleterious variants of SNORA31
were found in 5 HSE patients [284]. SNORA31, one of the most conserved small nucleolar
RNAs (snoRNAs), directs the uridine to pseudouridine isomerization in small nuclear
and ribosomal RNA; therefore, a lack of functional snoRNA31 outlines novel mechanism
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underlying HSE. Since TLR3 is required for innate immune responses to HSV-1 in neurons
and other CNS cells, such as oligodendrocytes and astrocytes [279,285], deficiencies in
TLR3 and other proteins associated with the proper receptor functioning, as well as IFN
induction in the brain, also possibly contribute to increased susceptibility to HSE [286,287];
however, this requires further examination.

Lately, mutations in the optineurin (OPTN), which determines the selective degra-
dation of the two HSV-1 proteins, VP16 and gB by autophagy, were found to result in
increased virus multiplication in the brains of mice, leading to the death of neurons and
culminating in accelerated neurodegeneration [288]. OPTN deficiency was also associated
with increased expression of the proinflammatory markers, IFN-γ, and fewer CD3+4+ and
CD3+8+ cells in brainstems of mice encountering HSV-1 infection.

Scientific evidence incrementally converges on confirming the hypothesis of HSV-1 be-
ing a causative factor of neurodegenerative diseases; however, a question arises whether the
HSV-1 ingress to the host brain and subsequent detrimental activity of the virus primarily
ensues from the patient’s genetic background. The genetic basis of determining protective
immune response to the HSV-1 infection in the brain points to CNS-specific contributions
of the TLR3-dependent IFN-α/β- and IFN-λ-mediated immunity, as well as DBR1 and
SNORA31 antiviral mechanisms [283,284,289,290]. Studying the collaboration between
genetic paucities in the host defense and the emergence of clinical symptoms of HSV-1
brain infection in the form of acute HSE, can lay the novel groundwork for investigating
the association of AD onset with former HSV-1 invasion in the brain, resulting from the
incomplete or impaired antiviral response.

11. Conclusions

HSV-1 infection leads to increasing pathologies in the brain, which can be associated
with the emergence of neurodegenerative diseases among people [2]. Both viral latency
and viral reactivation can contribute to the degeneration of neurons and their loss, which is
the trigger point for the clinical emergence as well as propagation of dementia. Following
reactivation, HSV-1 can shed asymptomatically or entail either acute or chronic disease;
thus, the infection can cause a broad variety of severities [256]. Many of the sequelae of
HSV-1 infection in the brain provide a route to the loss of glial neuroprotection. This article
summarizes the most important changes in brain glial cells, following HSV-1 infection
and their consequences. Activation of the glial cells, oxidative damage, Aβ secretion,
tau hyperphosphorylation, secretion of inflammatory factors, and cell loss in certain re-
gions of the brain are unchanging or similar to the alterations observed in AD; therefore,
they can lead to the development of neurodegenerative pathologies promoting AD onset
and/or progression.

Although the transition of glial cells into a reactive state, the production of ROS, Aβ,
pro-inflammatory agents, and initiation of apoptosis are directed at the damage of the
infected cells, they can exert a profound effect on brain functioning. Importantly, the
discussed alterations can induce and/or augment each other. For example, the release of
inflammatory agents stimulates Aβ production in astrocytes, while Aβ elicits oxidative
stress in these cells. Furthermore, soluble tau oligomers can be secreted into the extracellular
environment and contribute, independently or in concert with Aβ, to synaptic dysfunction
and the ensuing memory loss [291]. Furthermore, Aβ/NF-κB interaction in astrocytes can
play a central role in the inflammatory and oxidative stress changes present in the brains
of AD patients [292]. The alterations emerging in the CNS cells following HSV-1 infection
were collectively presented in Figure 5.
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Figure 5. Molecular and cellular events in brain neurons and glial cells after HSV-1 infection.
Following HSV-1 entry into the brain, neurons as well as astrocytes, microglia, and oligodendrocytes
can become infected. HSV-1 infection can entail Aβ accumulation and the formation of amyloid
plaque structures in a 3D bioengineered brain model [293]. After infection, astrocytes become reactive,
undergo morphological changes, e.g., loose projections, exert increased levels of GFAP, and secrete
pro-inflammatory cytokines, such as IFN-α, IFN-β, TNFα, and IL-6 [81,116]. Astrocyte endfeet are
structural components of the blood–brain barrier BBB [53,82], whose structure is impaired during
viral infection [80]. Reactive astrocytes often surround Aβ plaques [169]. Following astrocyte death,
there remains an area in the vicinity of Aβ plaques containing a significant level of GFAP. Astrocytes
have the ability to internalize as well as secrete Aβ [6]. In particular, N-terminally truncated Aβ can be
generated and secreted by astrocytes in MVs into the extracellular environment and contribute to the
apoptosis of neurons [166]. Furthermore, Aβ in the extracellular milieu induces neuroinflammation,
an early event in neurodegeneration [294], and activates microglia [171]. Microglia can phagocyte
dead and dying neurons, as well as stressed live cells, their processes and synapses [295], and Aβ-
activated microglia increase the internalization of neurites and can induce neuronal death [172,173].
Microglia gather around and clear amyloid plaques [167]; however, they also confine larger Aβ
deposits in the plaques [134]. Furthermore, the cells can convert Aβ into neurotoxic pre-fibrillar
forms that are trafficked and released in MVs [168]. Additionally, activated microglia can stimulate
CNS cells to up-regulate the production of Aβ [170]. In response to HSV-1 infection, activated
microglia secrete IFN-α, IFN-β, IL-1β, IL-6, TNFα, IP-10, CXCL10, CCL2, CCL4, CX3CL1, CXCL9,
and CCL5 (RANTES) [83]. Oligodendrocytes can support HSV-1 spread by secreting MVs with
the infectious virus [51]; however, the death of the cells occurs following infection [15], and HSV-1
induces multifocal demyelinating lesions in the CNS [111]. Oligodendrocytes produce exosomes with
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regulatory RNA and can send functional molecules to neurons, affecting their properties [296]. HSV-1
influences neuronal physiology, and induces structural disassembly and functional deregulation,
as shown in the blue box [231]. Infected neurons largely secrete IFN-α, IFN-β, IL-1β, CXCL10, and
Aβ peptides [49,84,85,297]. Furthermore, following HSV-1 infection, neural cells show up-regulated
miRNA-146a [87] as well as deregulated expression on other miRNAs [41]. Neuroinflammatory
cytokines lead to elevated Aβ concentrations in the brain [298]. HSV-1 infection has been shown to
induce complex hyperphosphorylation of tau and nuclear accumulation of hyperphosphorylated
tau in neurons and neuronal cells [174,175]. Accumulation of abnormally phosphorylated tau has
been demonstrated to precede the formation of NFTs during AD [299]. Tau aggregates are deposited
within neurons; however, tau monomers, as well as aggregates, can be released from these cells [176].
Astrocytes, as well as microglia, can internalize tau and contribute to tau spread [177,178]. Neurons,
as well as glial cells, can be the source of ROS, which cause significant cellular damage, as shown in
the yellow box.

The IFN system is the immunological circuit that plays an explicit role in host defense
against viral infections, by limiting virus replication and establishing an overall anti-viral
state [35]. Herpes simplex viruses downregulate IFN responses and evade the immune
system; therefore, deficiencies in molecular pathways leading to IFN production can
sensitize people to HSV-1 brain infections and their long-term clinical consequences.

In the last decade, prominent attention in the research field of AD has been directed
towards glial cells in the brain, as their impaired functioning is of substantial importance in
AD progression and at the same time provides a significant goal for therapies. Still, many
of the molecular mechanisms underlying the pathologies associated with HSV-1 infection
observed in glial cells require careful elucidation. These cells, through their neuroprotective
and neurorestorative behavior, appear to be key players in the fight to suppress AD.

Author Contributions: Writing—original draft preparation, M.B.M., K.S. and Z.W.; figure prepa-
ration, K.S.; writing—review and editing, M.B.M., K.S., Z.W. and F.N.T.; supervision, F.N.T.; fund-
ing acquisition, M.B.M. and F.N.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Science Centre Poland, grant number UMO-
2016/23/N/NZ6/02499.

Acknowledgments: Figures were created with BioRender.com.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
writing of the manuscript.

Abbreviations

Aβ Amyloid beta
AD Alzheimer’s disease
APOE-ε4 Apolipoprotein E ε4
APP Amyloid precursor protein
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PSD-95 Postsynaptic density protein 95
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RCS Reactive carbonyl species
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RNS Reactive nitrogen species
ROS Reactive oxygen species
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snoRNAs Small nucleolar RNAs
SOCS Suppressor of cytokine signaling
STING Stimulator of interferon gene
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