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Abstract: Despite advances in diagnostic, prognostic, and treatment modalities, myocardial infarction
(MI) remains a leading cause of morbidity and mortality. Impaired cellular signaling after an MI
causes maladaptive changes resulting in cardiac remodeling. MicroRNAs (miRNAs/miR) along
with other molecular components have been investigated for their involvement in cellular signaling
in the pathogenesis of various cardiac conditions like MI. miRNAs are small non-coding RNAs
that negatively regulate gene expression. They bind to complementary mRNAs and regulate the
rate of protein synthesis by altering the stability of their targeted mRNAs. A single miRNA can
modulate several cellular signaling pathways by targeting hundreds of mRNAs. This review focuses
on the biogenesis and beneficial effects of cellular and circulating (exosomal) miRNAs on cardiac
remodeling after an MI. Particularly, miR-1, -133, 135, and -29 that play an essential role in cardiac
remodeling after an MI are described in detail. The limitations that will need to be addressed in the
future for the further development of miRNA-based therapeutics for cardiovascular conditions will
also be discussed.
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1. Introduction
1.1. microRNAs and Cardiovascular Disease

Several microRNAs (miRNAs/miR) have been involved in cardiac pathological pro-
cesses, such as acute myocardial infarction (MI), cardiac arrhythmias, and hypertrophy [1].
The role of miRNAs is increasingly being recognized as diagnostic, prognostic markers,
or therapeutic targets for cardiovascular diseases. A study by Da Costa Martins et al. [2].
reported that genetic deletion of a nuclease enzyme involved in miRNA biogenesis resulted
in maladaptive cardiac remodeling and heart failure. This underlines the importance of
miRNAs for cardiac function. MiRNAs can either promote or inhibit the apoptosis of
cardiomyocytes, modulate angiogenesis, alter cardiac regeneration, and/or re-program
cardiac fibroblasts into cardiomyocytes [3]. These effects clearly support a relationship
between altered miRNA expression and ischemic heart disease.

1.2. Biology of microRNAs

miRNAs are endogenous, noncoding, single-stranded RNAs 22–26 nucleotides in
length that inhibit messenger RNA (mRNA) expression through the Watson–Crick base
pairing between sequences located in the three prime untranslated regions (3′ UTR) of
mRNA and miRNA [1,3]. MiRNAs are transcribed by RNA polymerase II as pri-miRNAs,
which are ~2 kb in length. In the nucleus, pri-miRNAs are cleaved by the RNase III-
type enzyme Drosha, Dgcr8, and other factors to produce a short stem-loop structure
of ~70 nucleotides called pre-miRNAs [4] (Figure 1). They are then exported out of the
nucleus through exportin-5 into the cytoplasm where they undergo further processing by
the ribonuclease Dicer, producing a double-stranded RNA molecule [3].
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Figure 1. Schematic of miRNA biogenesis and function. AGO, Argonaute protein; RISC, RNA-induced silencing complex. 

One strand of the miRNA duplex is selected as mature miRNA and the other one, 
known as the “passenger strand”, is eliminated and degraded [3,5]. This selection process 
is determined by the strength of base pairing between the two strands of miRNA duplex 
[5]. These then associate with the Argonaute protein to form the RNA-induced silencing 
complex (RISC) [3]. miRNAs in RISC can bind to specific mRNAs by identifying miRNA 
recognition elements (seeds) located in the 3’ UTR of target mRNAs. The nucleotides at 
the 2-8 position at the 5’-end of the miRNAs must be complementary to the ‘seed’ region 
of the target mRNAs for miRNAs to exert their functional effects of translational depres-
sion or direct degradation of the target mRNAs [1,3]. A greater degree of complementarity 
between miRNAs and target mRNAs is more likely to result in target mRNA degradation 
[6]. Increasing evidence has also suggested that in addition to the target mRNA degrada-
tion or translational repression, miRNAs can stabilize and upregulate their target mRNA 
expression [7]. This miRNA-mediated positive gene regulation is a cell-type and condi-
tion-specific process. It could occur through the direct action of miRNA/miRNA-associ-
ated ribonucleoproteins (miRNPs) or through indirect mechanisms whereby the repres-
sive effects of miRNA/miRNPs are abrogated [7,8]. 

The miRNAs can either bind to target mRNA and undergo degradation or can be 
released from cells through the following export mechanisms [9,10]. The pre-miRNA can 
be incorporated into multivesicular bodies that fuse with the plasma membrane and are 
then released into the extracellular space and circulation in the form of exosomes. The 
cytoplasmic miRNAs are also secreted from the cells as microvesicles through membrane 
blebbing or shedding. In addition, they can be released in the form of apoptotic bodies by 
some cell types such as endothelial cells. The circulating miRNAs can thus be found either 
in a “free” form complexed with proteins or as membrane-bound bodies [9,10]. Circulat-
ing miRNAs are derived from the heart, liver, lung, kidney, and blood cells [6]. As the 
circulating miRNAs reside either in the exosomes, microvesicles, or apoptotic bodies, they 
are protected against degradation by the endogenous RNase activity [6]. This stability of 
circulating miRNAs is being exploited to use them as diagnostic and prognostic bi-
omarkers for diseases.  

Figure 1. Schematic of miRNA biogenesis and function. AGO, Argonaute protein; RISC, RNA-induced silencing complex.

One strand of the miRNA duplex is selected as mature miRNA and the other one,
known as the “passenger strand”, is eliminated and degraded [3,5]. This selection process is
determined by the strength of base pairing between the two strands of miRNA duplex [5].
These then associate with the Argonaute protein to form the RNA-induced silencing
complex (RISC) [3]. miRNAs in RISC can bind to specific mRNAs by identifying miRNA
recognition elements (seeds) located in the 3’ UTR of target mRNAs. The nucleotides at the
2-8 position at the 5’-end of the miRNAs must be complementary to the ‘seed’ region of the
target mRNAs for miRNAs to exert their functional effects of translational depression or
direct degradation of the target mRNAs [1,3]. A greater degree of complementarity between
miRNAs and target mRNAs is more likely to result in target mRNA degradation [6].
Increasing evidence has also suggested that in addition to the target mRNA degradation
or translational repression, miRNAs can stabilize and upregulate their target mRNA
expression [7]. This miRNA-mediated positive gene regulation is a cell-type and condition-
specific process. It could occur through the direct action of miRNA/miRNA-associated
ribonucleoproteins (miRNPs) or through indirect mechanisms whereby the repressive
effects of miRNA/miRNPs are abrogated [7,8].

The miRNAs can either bind to target mRNA and undergo degradation or can be
released from cells through the following export mechanisms [9,10]. The pre-miRNA can
be incorporated into multivesicular bodies that fuse with the plasma membrane and are
then released into the extracellular space and circulation in the form of exosomes. The
cytoplasmic miRNAs are also secreted from the cells as microvesicles through membrane
blebbing or shedding. In addition, they can be released in the form of apoptotic bodies
by some cell types such as endothelial cells. The circulating miRNAs can thus be found
either in a “free” form complexed with proteins or as membrane-bound bodies [9,10].
Circulating miRNAs are derived from the heart, liver, lung, kidney, and blood cells [6].
As the circulating miRNAs reside either in the exosomes, microvesicles, or apoptotic
bodies, they are protected against degradation by the endogenous RNase activity [6]. This
stability of circulating miRNAs is being exploited to use them as diagnostic and prognostic
biomarkers for diseases.

The human genome is estimated to encode approximately 1000 miRNAs that can
target hundreds of distinct mRNAs [6]. Based on the genomic locations of miRNA genes,
miRNAs are classified into the following four types: (a) the intergenic miRNAs, which are
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transcribed from their own genes; (b) the intronic miRNAs, which are transcribed from the
introns of their host protein-coding genes; (c) the exonic miRNAs, which are transcribed
from the exons of their host protein-coding genes; and (d) the untranslated region miRNAs,
which are transcribed from the 3’ or 5’ UTR of the protein-coding genes [11]. Epigenetic
mechanisms can also regulate the transcription of miRNAs [12].

1.3. MI and microRNAs

Cardiac injury during a myocardial infarction (MI) is caused by ischemic and hypoxic
conditions. An MI can cause cardiac cell death; impaired cardiac signaling, which can
lead to infarct expansion; amplified oxidative stress; and the remodeling of surviving
cardiomyocytes. Cardiac remodeling starts as an adaptive mechanism to maintain heart
function. However, this process becomes maladaptive in pathological conditions, and,
consequently, cardiac fibrosis, dilated cardiomyopathy, and heart failure develop. Car-
diac remodeling is a complex pathological condition where many molecular components
are involved. At present, many investigations are focusing on dissecting the molecular
mechanisms involved in post-infarction remodeling and heart failure. Endogenous miR-
NAs have important roles in various cardiovascular pathologies [5,13]. Altered levels of
miRNA have been reported in ischemic/reperfused hearts in animal and human studies.
He et al. [14] observed an upregulation of 10 miRNAs and downregulation of 6 miRNAs in
Sprague–Dawley rat hearts subjected to 1 h ischemia followed by 3 h reperfusion. In a total
coronary occlusion rat model of myocardial infarction, Dong et al. [15] reported differential
expression of 38 miRNAs in the infarcted zone and 33 miRNAs in the border zone com-
pared with the non-infarcted zone. Bostjancic et al. [16] examined infarcted heart tissue
from the MI patients and found 77 dysregulated miRNAs, of which 47 miRNAs changed
within 1-week post-MI and 30 miRNAs were altered 4 weeks post-MI. Impairment in the
function of ion channels, transporter proteins, intracellular calcium handling proteins, and
other relevant proteins during an MI can create substrates that can predispose the heart to
abnormalities in electrical conduction and arrhythmias. Recent studies have highlighted
the importance of miRNAs in the regulation of cardiac rhythm [3]. Some of the miRNAs
that play important roles in the cardiac remodeling and arrhythmias that occur following
an MI are discussed in the following section and Table 1.

Table 1. microRNAs involved in cardiac remodeling.

MicroRNA Sample Model Sex Effect on
Expression Target Reference

miR-101 Sprague–Dawley rats MI Male and
female Decreases RUNX1 [17]

miR-132 miR-132 KO and WT
mice MI Male Decreases [18]

miR-21 miR-21 KO and WT
mice MI Male Increases KBTBD7 [19]

miR-145 miR-145 KO and WT
mice MI Male Decreases KLF4 [20]

miR-26b Mice MI Male Decreases PTGS2 [21]

miR-146
CTO patient plasma

Mice
Pigs

MI Male and
female Increases IRAK1CEACAM1 [22]

miR-22 Mice MI Male Increases Cav3 [23]

miR-330 Mice MIRI Male Increases SRY [24]

miR-202 Sprague–Dawley rats MIRI Male Decreases TRPM6 [25]

miR-30e Sprague–Dawley rats MIRI Male Decreases SOX9 [26]
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Table 1. Cont.

MicroRNA Sample Model Sex Effect on
Expression Target Reference

miR-23a Patient blood MI Male Decreased PTEN [27]

miR-143 Patients MI Male and
female Increased SPRY3 [28]

miR-124 Patient plasma
Mice MI Increased DHCR2 [29]

miR-19a/b Patients
Mice MI Male Increased SOCS1 [30]

Cav3, caveolin-3; CEACAM1, carcinoembryonic antigen-related cell adhesion molecule 1; CTO, chronic total occlusion; DHCR2, 3β-
hydroxysteroid-delta24 reductase; IRAK1, interleukin 1 receptor associated kinase 1; KBTBD7, kelch repeat and BTB (POZ) domain
containing 7; KLF4, Krueppel-like factor 4; KO, knockout; MIRI, myocardial ischemia–reperfusion injury; PTEN, phosphatase and tensin
homolog; PTGS2, prostaglandin endoperoxide synthase 2; RUNX1, runt-related transcription factor 1; SOCS1, suppressor of cytokine
signaling 1; SOX9, SRY-related high mobility group-box gene 9; SPRY3, sprouty3; SRY, sex-determining region Y; TRPM6, transient receptor
potential cation channel, subfamily M, member 6; WT, wildtype.

1.3.1. microRNA-1

miR-1 is one of the most abundant miRNAs expressed in the myocardium [31]. Its
overexpression is observed in coronary artery disease patients [32]. The miR-1 family
consists of an miR-1 subfamily containing miR-1-1 and miR-1-2 transcripts. However, these
two subfamily members are located on two separate chromosomal regions, 20q13.33 and
18q11.2, respectively [31].

An approximately 2.6-fold increase in miR-1 expression was accompanied by arrhyth-
mias in a rat MI model of permanent coronary artery ligation [3]. Increased expression of
miR-1 results in a widening of the QRS complex, indicating slowed cardiac conduction,
which explains the role of miR-1 as an arrhythmogenic agent in ischemic hearts. miR-1
post-transcriptionally inhibits the potassium voltage-gated channel subfamily J member
2 (KCNJ2), which codes for the Kir2.1 protein. Kir2.1 is the subunit of the K+ channel,
which carries the inward rectifier potassium current [3]. A reduction in Kir2.1 prolongs
the action potential duration and QT interval, resulting in higher incidences of ventricular
tachyarrhythmia [31]. miR-1 represses the gap junction protein alpha 1 (GJA1), which
encodes the connexin-43 gap junction channel protein, thus slowing down the cardiac
conduction in the setting of an MI [32]. Other targets of miR-1 include the notch ligand
delta, the Rho GTPase Cdc42, Iroquois homeobox domain 5 (Irx5), and Shal-related family
member 2 (KCND2) [33].

These cellular mechanisms could be responsible for the arrhythmogenic potential of
miR-1. Consistent with this hypothesis, the introduction of miR-1 worsened arrhythmias,
while suppression through antisense inhibitors reduced arrhythmias in rats undergoing
an MI [33]. Moreover, propranolol, a β-blocker used as an antiarrhythmic agent, can
downregulate miR-1 expression and thus improve cardiac conduction [34]. Interestingly,
the expression levels of miR-1 in the left atrial tissue from patients with atrial fibrillation
were reduced. This differential regulation of miR-1 in the left atrial and ventricular tissues
suggests that the miR-1 levels in the myocardium should be maintained within a proper
range [3]. However, further studies are warranted to understand the effect of miR-1
expression in different tissues and conditions. The induction of the miR-1 expression in
the rat model of MI lowered the expression of insulin-like growth factor-1 [35] and other
anti-apoptotic genes, such as B-cell lymphoma-2 (Bcl-2) and heat shock protein (HSP) -60
and -70 [13]. This could be responsible for the activation of the pro-apoptotic pathways in
cardiomyocytes, which may ultimately impact left ventricular remodeling.

1.3.2. microRNA-133

miR-133 is dominantly expressed in cardiomyocytes and cardiac fibroblasts (19). Its
targeted deletion, overexpression, and antisense-mediated knockdown have demonstrated
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its essential roles and targets in cardiac remodeling [36]. The miR-133 family has two
isoforms, -133a and -133b. Both isoforms have a similar sequence except for the 3’-terminal
base, where guanidine is found in miR-133a and adenosine in miR-133b [13]. The miR-133a
isoform has two further subvariants, -133a-1 and -133a-2. Depending upon the species,
these miRNAs are located on different chromosomes. For example, in the murine genome,
miR-133a-1 is arranged with miR-1-2 on chromosome 18, mir-133a-2 is clustered with miR-
1-1 on chromosome 2, and miR-133b is located with miR 206 on chromosome 1. However,
in the human genome, miR-133a-1, miR-133a-2, and miR-133b are located on chromosomes
18, 20, and 6, respectively [37].

miR-133 and miR-1 are transcribed together; however, whereas miR-1 is pro-apoptotic,
miR-133 has an anti-apoptotic role [38]. In both in vitro and in vivo models of ischemia
and reperfusion injury, overexpression of exogenous miR-133a reduced the apoptosis of
cardiomyocytes [39]. The β-blocker carvedilol protected cardiomyocytes against apoptosis
by upregulating miR-133 expression [40]. miR-133 exerts its action by inhibiting pro-
apoptotic genes, such as death-associated protein kinase 2 (DAPK2), apoptotic protease
activating factor 1 (APAF1), caspase-9, Bcl-2 like 11, and Bcl-2-modifying factor (BMF) [13].

A downregulation of miR-133a levels in a rat model of MI [13] and in cardiac tissue
from MI patients has been observed [41]. Conversely, circulating levels of miR-133a in
blood have been upregulated in acute MI patients, which could suggest cardiac dam-
age [42]. The levels of circulating miR-133a are sensitive to cardiac injury and are elevated
before changes in cardiac troponin T (cTnT) or creatine phosphokinase (CPK) can be ob-
served [43]. This implies that miR-133a could provide strong diagnostic and prognostic
information compared to the traditional markers [44]. In a rat model of MI, the overexpres-
sion of miR-133 increased left ventricular ejection fraction and fractional shortening [45].
Overexpression of miR-133a has improved cardiac function by decreasing myocardial
fibrosis in the streptozotocin-induced diabetic cardiomyopathy in mice [46] and heart
failure in rats [47]. miR-133a exerted its anti-fibrotic effect by inhibiting the expression of
profibrotic genes such as connective tissue growth factor (CTGF) and collagen 1A1 [48]
as well as suppression of the upregulated Akt-dependent signaling pathways in heart
failure [47]. Inflammation plays a critical role in the adverse left ventricular remodeling
after an MI [49]. Overexpression of miR-133a reduced the inflammatory cell infiltration
in the myocardium after an MI [50]. miR-133a can also be cardiogenic by reprogramming
human and murine fibroblasts via suppressing Snai1, a key modulator of epithelial to
mesenchymal transition [51]. It can also induce transdifferentiation of cardiac fibroblasts by
inhibiting the transforming growth factor-β (TGF-β) signaling cascade [50]. miR-133 has
also been studied for its correlation with the incidences of ventricular fibrillation (VF). The
downregulation of miR-133a/b was associated with the development of VF in MI patients
by increasing the expression of hyperpolarization-activated cyclic nucleotide-gated ion
channel 2 (HCN2), which determines cardiac automaticity. This indicates that increased
expression of miR-133a/b could be used therapeutically for reducing the incidence of
arrhythmias in MI patients [52].

In summary, because of its anti-fibrotic, anti-apoptotic, and regenerative potential,
miR-133a could be further explored therapeutically for its cardioprotective and regenerative
effects after cardiac injury.

1.3.3. microRNA-29

The miR-29 family consists of miR-29a, miR-29b-1, miR-29b-2, and miR-29c [53].
Despite being transcribed from different genetic loci, both miR-29b-1 and miR-29b-2 have
identical mature sequences [54]. Thus, both are collectively termed as miR-29b. In the
human genome, miR-29a and miR-29b-1 are located on chromosome 7, whereas miR-29b-2
and miR-29c are on chromosome 1 [54]. A study has demonstrated that miR-29b is the
dominant member of the miR-29 family as its myocardial expression is 4- and 8-fold higher
than that of miR-29a and miR-29c, respectively [55]. miR-29 is an essential regulator of
extracellular matrix proteins and pathways that are related to fibrosis [53]. The miR-29
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family members target 16 genes that code for extracellular matrix proteins, such as collagen
isoforms, fibrillin 1, elastin, matrix metalloproteinase 2, laminin γ1, and integrin β1 [56,57].

miR-29 is highly expressed in fibroblasts, and its inhibition can induce collagen
expression in both cell culture and mice after an MI [2]. This demonstrates the profibrotic
effect of lowering miR-29 expression. A study by Zhang et al. [58] demonstrated the
antifibrotic effect of miR-29b in angiotensin II-induced cardiac fibrosis in mice. Consistent
with this, carvedilol produced an antifibrotic effect in a murine model of MI by upregulating
miR-29b [59]. However, Sassi et al. [60] demonstrated that miR-29 promotes rather than
reduces cardiac fibrosis. However, these contrasting data could be explained by the use
of a mouse model for left ventricular pressure overload-induced by transverse aortic
constriction (TAC) by Sassi et al. [60] unlike other studies [53,61] that used a coronary
artery ligation-induced animal model of MI. There are differences in the type of cardiac
fibrosis produced in these experimental models [62]. The cardiac fibrosis in TAC is mainly
characterized as reactive interstitial fibrosis, which occurs as an adaptive mechanism
to preserve cardiac structure and function. In contrast, in the ischemic injury model,
replacement fibrosis occurs to fill up the void of viable cardiomyocytes to prevent cardiac
rupture. In addition, other studies have shown the beneficial effects of the upregulation
of a specific variant of miR, -29b, while Sassi et al. [60] assessed the global deletion of
miRNA regardless of variant subtypes. Therefore, these experimental differences could be
responsible for the contrasting results in these studies.

An upregulation of miR-29b improved cardiac function in doxorubicin-induced car-
diotoxicity in rats [55]. The improved cardiac function by miR-29b has been attributed to its
inhibitory effect on the apoptosis of cardiomyocytes. Consistent with this, overexpression
of miR-29b promoted apoptosis of cardiomyocytes in vitro, and downregulation of miR-29b
by an miR-29b inhibitor suppressed apoptosis of cardiomyocytes in vitro [55]. The exact
mechanism behind this anti-apoptotic effect of miR-29b has been identified. It targeted
the Bax 3’ UTR to reduce Bax expression, which is a pro-apoptotic protein. It also induced
the expression of Bcl-2, an anti-apoptotic protein. Furthermore, it inhibited mitochondrial
membrane depolarization, cytochrome C release, and activation of caspase-3 [55]. miR-29b
has also been shown to suppress tumor necrosis factor-related receptor 5 (TRAF5) to exert
its anti-apoptotic effect in hypoxia-induced cardiomyocyte injury [63]. miR-29b may also
improve cardiac function through the activation of Akt in endothelial cells that promotes
endothelial cell-mediated angiogenesis [61]. The induction of angiogenesis in MI is known
to improve cardiac function and decrease the risk of cardiac rupture [64].

Increasing evidence now suggests that the downregulation of miR-29 contributes to
the development of cardiac fibrosis. In this setting, miR-29 mimics that could elevate the
expression levels of miR-29 or, alternatively, pharmacological inhibitors that could prevent
the downregulation of miR-29 might represent effective therapeutic strategies [53].

1.3.4. microRNA-135

miR-135 is comprised of two variants, miR-135a (miR-135a-1 and miR-135a-2), and
miR-135b [65]. miR-135 is less widely studied in the field of cardiovascular physiology
and pathophysiology. miR-135a is encoded by two genes located on chromosome 3 and
12, whereas miR-135b is found on chromosome 1 [66]. miR-135b is expressed 10-fold less
in the midbrain raphe nuclei than miR-135a [65]. Chu et al. [67] reported a reduction
in cardiac hypertrophy by the overexpression of miR-135b in both angiotensin II and
TAC-induced models. CACNA1C, a gene that codes for L-type calcium channels, was
the main target of miR-135b [67]. It was also predicted to target phosphodiesterase 1A
(PDE1A), and the cardiac-specific sodium–calcium exchanger (NCX1) [67]. miR-135b
improved cardiac function in a murine MI model and protected cardiomyocytes in vitro
by downregulating the expression of caspase-1, NOD-like receptor-containing pyrin 3
(NLRP3), and interleukin-1β (IL-1β) [68].

miR-135a expression levels are reduced in myocardial ischemia–reperfusion injury in
diabetic mice [69]. Upregulation of miR-135a was achieved by using mimics in this model.
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This reduced the myocardial infarct size and apoptosis by decreasing the expression of the
thioredoxin-interacting protein (TXNIP) [69]. TXNIP (also called the thioredoxin-binding
protein-2 or vitamin D3 upregulated protein-1) regulates the cellular redox state and is
associated with apoptosis [70]. Wang et al. [71] reported that upregulation of miR-135a
decreased myocardial infarct size and apoptosis in an ischemia–reperfusion injury model.
Protein tyrosine phosphatase 1B (PTP1B), which plays an important role in several cellular
processes, such as differentiation, proliferation, migration, and apoptosis, is a direct target
of miR-135a [71]. A negative association between PTP1B and miR-135a was observed [71].
Wu et al. [72] demonstrated that the antifibrotic effect of miR-135a is mediated through the
transient receptor potential melastatin 7 (TRPM7) channel, which plays a crucial role in
cellular proliferation and differentiation.

Duoung et al. [73] reported the downregulation of miR-135a in the left ventricle of
mice with a complete atrioventricular block induced by His-bundle ablation. The sodium–
calcium exchanger type 1 (NCX1) has been identified as the main target of miR-135a [73].
Increased expression and activity of the NCX1 that bi-directionally exchanges 3 Na+ for 1
Ca++ are adaptive mechanisms during the cardiac remodeling process to maintain cardiac
function. However, this alteration can become pro-arrhythmic and produce early- and
delayed-after depolarizations as a consequence [73]. To support this, overexpression of
miR-135a reduced the spontaneous beating frequency of rat neonatal cardiomyocytes by
63% [73]. miR-135a should be explored further to exploit its anti-arrhythmic potential for
modulating cardiac automaticity, spontaneous calcium release, and calcium efflux.

These miRNA effects are depicted in summary in Figure 2.
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Figure 2. Potential role of miRNAs in positively impacting cardiac remodeling after a myocardial infarction. Akt, protein
kinase B; APAF1, apoptotic protease-activating factor 1; BAX, Bcl-2-associated X-protein; Bcl-2, B-cell lymphoma-2; BMF,
Bcl-2-modifying factor; Cas-9, caspase-9; CDC42, cell division control protein 42 homolog; COL1A1, collagen 1A1; CTGF,
connective tissue growth factor; DAPK2, death-associated protein kinase 2; EMT, endothelial mesenchymal transition;
GJA1, gap junction protein alpha 1; HCN2, hyperpolarization-activated cyclic nucleotide-gated ion channel 2; HSP, heat
shock protein; IGF-1, insulin-like growth factor-1; IRX5, Iroquois homeobox domain 5; KCND2, Shal-related family member
2; KCNJ2, potassium voltage-gated channel subfamily J member 2; MMP2, matrix metalloproteinase 2; NCX1, sodium–
calcium exchanger; PTP1B, protein tyrosine phosphatase 1B; TGF-β, transforming growth factor-β; TRAF5, tumor necrosis
factor-related receptor 5; TRPM7, transient receptor potential melastatin 7; TXNIP, thioredoxin-interacting protein. Black
arrow indicates promotion, while red arrow indicates inhibition.
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1.4. Circulating miRNAs
1.4.1. Stability, Packaging, and Targets of Circulating miRNAs

Extracellular miRNAs in circulation are remarkably stable by being in a vesicle or
by forming a complex with proteins. Lipid membrane encapsulation or protein complex
renders circulating miRNAs protection against degradation by RNase [74]. Circulating
miRNAs can be categorized as vesicle-associated or non-vesicle-associated [75]. Vesicle-
associated miRNAs include exosomes (50–90 m) and microvesicles (1 µm) that can be
isolated and detected from extracellular fluid [76]. Non-vesicle-associated circulating miR-
NAs mainly exist as a ribonucleoprotein by making a complex with either Argonaute2,
nucleophosmin1, GW182, or high-density lipoprotein (HDL). Due to this complex forma-
tion with proteins, this type of miRNAs is protected from RNase unless dissociated from
proteins [75].

There has been a growing interest in extracellular vesicles, particularly exosomes
in cell communication. Exosomal content comprises of proteins, lipid metabolites, and
nucleic acids, including miRNAs [77]. Although argued, several mechanisms explaining
the delivery of bioactive cargo of exosomes into a target cell have been proposed [78–80]: (a)
receptor–ligand interactions, where proteins on exosomal membrane bind with receptors
on the target cell membrane, thus stimulating various intracellular signaling cascades in the
recipient cell; (b) direct delivery of exosomal cargo into the cytosol by fusion of exosomal
membrane with the plasma membrane of target cell; (c) phagocytosis and macropinocytosis;
(d) receptor-mediated endocytosis through clathrin- or caveolin-mediated endocytosis; and
(e) cell gap junction-mediated transfer between cells. These mechanisms are illustrated in
Figure 3. Once inside the target cell, how miRNA and other exosomal bioactive cargoes
are protected against degradation by intrinsic endosomal pathways is unclear. Exosomal
peptides and lipid metabolites have been known to ultimately end up in the target cell
membrane. This indicates the potential fusion of the exosomal cargo with endosomes [78].
However, further research is needed to explain the protection afforded to small RNA
material. Exosome research faces several challenges, such as co-isolation of non-exosomal
complexes, difficulties in labeling endogenous exosomes to trace their movement and
uptake, and issues in identifying recipient cells without impacting cellular function [78].
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1.4.2. Circulating miRNAs as a Diagnostic and Prognostic Marker

Due to the robust stability and easy detectability of circulating miRNAs in blood,
they are emerging as an attractive biomarker in cardiac injury and remodeling. miR-
1, miR-133, miR-208, and miR-499 are intensively being investigated as biomarkers for
acute myocardial infarction [42]. Although the accuracy of a single miRNA in detecting
myocardial injury is poor, a panel of multiple miRNAs or a combination with cardiac
troponin improves the diagnostic power [81]. Circulating miRNAs can help differentiate
between heart failure (HF) with preserved and reduced ejection fraction [82]. They can also
indicate the progression or reverse of cardiac function. The levels of miR-1, miR-208, and
miR-499 normalize after the commencement of the left ventricular assist device in advanced
HF [83]. Arrhythmias arising out of electrical abnormalities due to cardiac remodeling are
also associated with miRNAs. Compared with healthy subjects, patients with persistent
atrial fibrillation have lower plasma miR-150 levels [84]. Despite the promising nature of
circulating miRNAs as biomarkers, certain challenges preclude their immediate application
in diagnosis or prognosis. The ubiquitous expression makes it difficult to discriminate
cardiac miRNAs from muscle and from one clinical condition to another [85]. It is also
unclear whether increased levels indicate more expression or increased release from the
injured myocardium [86].

1.4.3. Circulating miRNAs and Cardiac Remodeling

Several studies have tried to identify the useful or detrimental effect of exosomal
miRNAs on pathological cardiac remodeling after MI. The recently approved heart failure
drug sacubitril/valsartan, a neprilysin inhibitor and angiotensin receptor blocker, improves
cardiac function and reverses myocardial remodeling [87]. Modulation of miRNA con-
tent in plasma exosomes could explain its cardiac effects. Sacubitril/valsartan has been
demonstrated to increase the exosomal production in vitro in induced pluripotent stem
cell-derived cardiomyocytes and in an in vivo MI model. Next-generation sequencing
analysis revealed downregulated miR-181a in these exosomes from the sacubitril/valsartan
group [88]. Bone marrow mesenchymal stem cell-derived exosomes were found to shuttle
miR-185 to the myocardium to reduce ventricular remodeling and improve cardiac function
by reducing the expression of suppressor of cytokine signaling (SOCS2) [89]. miR-21 in
exosomes from cardiac stromal cells facilitate heart repair through the phosphatase and
tensin homolog/Akt pathway-mediated angiogenesis and cardiomyocyte survival [90].
miRNA array, transcriptomic analysis, and next-generation sequencing have shown miR-
19a in exosomal cargo to improve systolic function, induce angiogenesis, and attenuate
myocardial fibrosis post-infarction [91]. Conversely, some exosomal miRNAs have also
been known to adversely impact cardiac remodeling. miR-142 in exosomes from activated
CD4+ T cells induces cardiac fibrosis and dysfunction post-infarction through WNT signal-
ing pathway-mediated myofibroblast activation [92]. Cardiac fibroblast-derived exosomal
miR-27a, miR-28a, miR-34, miR-130a, and miR-328 dysregulate the Nrf2/ARE signaling
cascade and enhance cardiac fibrosis, thus promoting myocardial remodeling [93]. Further
research will help in dissecting out targets and developing strategies to either enhance or
silence certain exosomal miRNAs to ameliorate cardiac remodeling post-infarction.

1.5. Diet, MI, miRNAs, and Future Directions

According to the INTERHEART study, diet is a major modifiable risk factor for
MIs, as higher consumption of fruits and vegetables is associated with a reduced risk
of an MI [94]. A similar inverse relationship between a healthy diet and a lower risk
for cardiovascular disease has been observed in the Lyon Diet Heart Study [95] and the
PREDIMED trial [96]. Many nutritional components in heart-healthy diets have been
demonstrated to regulate the expression of diverse miRNAs [97]. Ma et al. [98] reported that
omega-3 polyunsaturated fatty acids (n-3 PUFAs) protect cardiomyocytes following an MI
through the upregulation of anti-apoptotic miRNAs and downregulation of proapoptotic
miRNAs. The supplementation of tomato or its rich carotenoid constituent, lycopene,
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improved diastolic dysfunction, and ameliorated cardiac remodeling through modulation
of 8 miRNAs after an MI in rats [99]. Pretreatment with resveratrol, a plant polyphenol, has
also been reported to protect against cardiac ischemia/reperfusion injury via modulation of
25 different miRNAs [100]. Selective changes in miRNAs have been reported 8 weeks after
an MI in rats on flax oil-supplemented diet rich in n-3 PUFA, alpha-linolenic acid [101].
These changes were associated with cardiac pathological remodeling processes, including
apoptosis, fibrosis, and arrhythmias after the MI [102]. Although several miRNAs are now
known to control various pathological consequences of an MI, the knowledge regarding
the nutritional constituents modulating the expression of various miRNAs following an
MI is limited. Therefore, further studies are warranted to examine and dissect molecular
miRNA targets of dietary compounds showing therapeutic effect in MIs.

1.6. Limitations of Using microRNA as a Therapeutic

Despite being widely studied and shown to be effective in experiments, there are
some limitations to the current status of miRNAs as prospective therapeutics. miRNAs and
inhibitors of miRNAs do not affect the existing proteins but rather alter the levels of mRNA
and their translation. Therefore, it would be necessary to understand the pharmacokinetics
of any proposed miRNA therapy [33]. Studies are also required to develop stable anti-
miRNAs that can achieve therapeutic efficacy in the heart and to better prevent any
off-target effects [33]. Further, the overexpression of any miRNAs for therapeutic purposes
requires viral approaches, which would pose a potential challenge for any translational
studies in humans [2]. Finally, in some cases, any attempts at genetic deletions have lacked
a therapeutic response compared to the short-term inhibition of specific miRNAs [103].
Long-term and carefully designed studies in the future will help understand the reason
for the disparate outcomes and aid in the development of efficacious miRNA therapies for
cardiovascular pathologies.

1.7. Summary

MicroRNAs are emerging as therapeutic target options for impaired heart rhythms
and hemodynamic function. Unlike the standard pharmacological agents that target single
molecules in a pathological pathway, miRNAs can interact with several mRNAs and
regulate multiple downstream mediators affecting several signaling cascades together [2].
Circulating miRNAs in exosomes can exert action on distant organs and can be exploited
for modulating the expression of cardioprotective miRNAs in the heart. In particular, miR
-1, -133, -29, and -135 could be investigated further for their beneficial actions on regulating
the function of several ion channels, inhibiting cardiac apoptosis, and improving cardiac
function.
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