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Abstract: With the distinguished properties in electronics, thermal conductivity, optical transparence
and mechanics, graphene has a powerful potential in nanosensors, nano-resonators, supercapacitors,
batteries, etc. The resonant frequency of graphene is an important factor in its application and
working environment. However, the random dispersed porosities in graphene evidently change
the lattice structure and destroy the integrity and geometrical periodicity. This paper focuses on the
effects of random porosities in resonant frequencies of graphene. Monte Carlo simulation is applied
to propagate the porosities in the finite element model of pristine graphene. The statistical results
and probability density distribution of porous graphene with atomic vacancy defects are computed
based on the Monte Carlo finite element model. The results of porous graphene with atomic vacancy
defects are compared and discussed with the results of graphene with bond vacancy defects. The
enhancement effects of atomic vacancy defects are confirmed in porous graphene. The influences
of atomic vacancy defects on displacement and rotation vector sums of porous graphene are more
concentrated in local places.

Keywords: random porosities; resonant frequencies; graphene; Monte Carlo simulation

1. Introduction

Graphene is a two-dimensional (2D) nanomaterial composed of a hexagonal honey-
comb lattice [1]. With the distinguished properties in electronics, thermal conductivity,
optical transparence and mechanics, graphene has powerful potential in nanosensors, nano-
resonators, supercapacitors [2–4], batteries [5–7], etc. The covalent bonds between carbon
atoms in graphene ensure the stability in mechanical and chemical properties [8–11]. How-
ever, random porosities are an inevitable and significant issue in research and applications
of graphene. On the one hand, the atomic [12–14] and bond [15,16] vacancy defects appear
in the production process of graphene [17–19]. The effects of random porosities in graphene
are important problems that must be confronted. On the other hand, the porosity in graphene
not only leads to negative factors in the service environment, but also can be used and de-
signed to enhance the competence in hydrogen storage and release [20–22] the piezoelectric
effects after polarization [23,24] and other positive influences in the applications.

The challenges confronted for the study of random porosities in graphene are mainly
concentrated around three aspects. First, the small size on the nanometer scale makes the
precise measurement in physical experiments difficult and inconvenient, and the experimental
equipment is supposed to satisfy more advanced and strict requirements [25–27]. Second, the
random distributed porosities in graphene contribute to the deviation and variances in
the results no matter which are measured from experiments or computed in the numerical
simulations [28,29]. The confusion in uncertain results of porous graphene sets up obstacles

Int. J. Mol. Sci. 2021, 22, 4814. https://doi.org/10.3390/ijms22094814 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7929-4459
https://orcid.org/0000-0003-3609-0258
https://orcid.org/0000-0001-9184-2489
https://doi.org/10.3390/ijms22094814
https://doi.org/10.3390/ijms22094814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094814
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094814?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4814 2 of 14

for the comprehensive understanding of the graphene’s properties [30]. Third, the general
concerns about an independent parameter ignore the correlation and relationships be-
tween parameters corresponding to mechanical and physical properties [31]. For example,
resonant frequencies are related with both mass and stiffness of porous graphene [32].
Therefore, this study is aimed at analyzing the effects of random porosities in the resonant
frequencies of graphene.

In the investigation of porous graphene, the experimental, theoretical and numerical
methods are the effective ways of knowledge exploration. Using an atomic force micro-
scope, nano-indention is performed and detected in the center of a suspended monolayer
graphene membrane [19]. Besides, the Raman spectrum is a useful supplement in the
experimental measurements of graphene [33]. In addition, tight-binding potentials [34–36],
density function theory (DFT) [37–39] and molecular dynamics (MD) simulation [40,41]
are the frequently used approaches. Gupta [42] used MD simulation and the predicted
resonant frequencies were 1.7581 THz, 4.0706 THz, 4.7201 THz and 7.0325 THz in the first-
to fourth-order vibration modes, respectively. By MD simulation, Khatibi [43] obtained
1.6030 THz, 2.4970 THz, 2.5980 THz and 3.5770 THz for pristine graphene. Furthermore,
based on the DFT, Kudin [44], Liu [45] and Wei [46] provided approximate resonant frequen-
cies for graphene. Additionally, Cadelano [47], Zhou [48] and Reddy [49] also have done
related work in the vibration analysis of graphene. Chu [50] proposed the Monte Carlo
simulation (MCS) to propagate random porosities in pristine graphene for the computation
of resonant frequencies.

In order to take random porosities into consideration, atomic vacancy defects are
dispersed in graphene by MCS. The stochastic sampling process in MCS provides sufficient
random numbers, which correspond to the serial numbers of atoms in graphene. The
marked atoms in the MCS form atomic vacancy defects with three connected bonds. The
results of porous graphene are compared with the previous work of random bond vacancy
defects in graphene. The analysis of porous graphene in vibration is useful and helpful to
understand the mechanical properties of graphene in the real service environment. The
random distributed porosities are among the most important factors that contribute to
uncertainties in graphene. It is necessary to have quantitative computation and effective
propagation for porosities in the reliability and stability analysis of graphene.

This article is structured as follows: In Section 2, the random atomic vacancy defects
are introduced in pristine graphene, and the finite element model for porous graphene
is created based on the continuum theory. Monte Carlo simulation is used to propagate
the random distributed atomic vacancy defects in graphene. In Section 3, based on math-
ematical statistics and probability analysis, resonant frequencies of porous graphene are
compared with the reported results in literature [35–43]. Furthermore, Section 3 also pro-
vides the discussion about the effects of atomic vacancy defects and bond-breaking defects
in the vibration behavior of porous graphene. The last section offers a brief summary of
this paper.

2. Results and Discussion
2.1. Statistical Results

Given that the porosities are randomly dispersed in graphene, sufficient times of per-
forming the Monte Carlo-based stochastic finite element method (MC-SFEM) are necessary
to simulate the uncertainties in the location of porosities. In this study, the repetition time
of MC-SFEM is settled as 1000 for porous graphene. The database of the stochastic finite
element model for porous graphene is huge. The statistical results of resonant frequencies
are computed from the original database of MC-SFEM. The mean, maximum, minimum
and variance values of resonant frequencies of porous graphene with the corresponding
percentage of atomic vacancy defects are listed in Table 1.
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Table 1. Statistical results of resonant frequencies for porous graphene with atomic vacancy defects.

Per (%) Mode Mean (THz) Minimum
(THz)

Maximum
(THz) Variance

0.1

1 1.7265 1.7203 1.7298 2.46 × 10−6

2 3.2891 3.2780 3.2941 5.95 × 10−6

3 3.7405 3.7243 3.7462 8.47 × 10−6

4 5.1839 5.1681 5.1915 9.64 × 10−6

0.3

1 1.7236 1.7119 1.7301 6.27 × 10−6

2 3.2837 3.2664 3.2917 1.64 × 10−5

3 3.7343 3.7134 3.7449 2.13 × 10−5

4 5.1755 5.1555 5.1882 2.72 × 10−5

0.6

1 1.7191 1.7054 1.7286 1.18 × 10−5

2 3.2749 3.2426 3.2877 3.13 × 10−5

3 3.7248 3.6986 3.7413 4.02 × 10−5

4 5.1618 5.1380 5.1821 5.53 × 10−5

0.9

1 1.7147 1.7000 1.7260 1.74 × 10−5

2 3.2668 3.2421 3.2823 4.33 × 10−5

3 3.7150 3.6821 3.7358 6.79 × 10−5

4 5.1486 5.1169 5.1720 8.26 × 10−5

1.2

1 1.7098 1.6923 1.7263 2.69 × 10−5

2 3.2577 3.2314 3.2760 5.90 × 10−5

3 3.7043 3.6685 3.7269 8.94 × 10−5

4 5.1342 5.0990 5.1637 1.11 × 10−4

1.5

1 1.7052 1.6870 1.7217 3.24 × 10−5

2 3.2481 3.2177 3.2734 8.27 × 10−5

3 3.6944 3.6466 3.7260 1.10 × 10−4

4 5.1198 5.0750 5.1538 1.38 × 10−4

The mean values of resonant frequencies in porous graphene are computed from all the
results in the sampling space. The maximum and minimum values of resonant frequencies
in different vibration modes are tracked and captured in the result sets. The maximum
and minimum values of resonant frequencies represent the extreme situations that can
possibly appear in porous graphene. Besides the mean values of resonant frequencies in the
statistical results, the maximum and minimum values also provide meaningful information
as demonstrated in Figure 1.

With the increase of the amount of atom vacancy defects in porous graphene, the
mean values of resonant frequencies linearly decrease in the first- to fourth-order vibration
modes. However, the minimum and maximum values of resonant frequencies are more
complicated with fluctuations. More importantly, the enhancement effects by atomic
vacancy defects are observed in Figure 1 (marked with red ellipses). Even though the mean
and minimum values of resonant frequencies in the first- to fourth-order vibration modes
are smaller than those of pristine graphene, the maximum values of resonant frequencies
illustrate the possibility of improving the resonant frequencies by atomic vacancy defects
in porous graphene.

In Figure 1, when the percentage of atomic vacancy defects equals 0.1%, the maximum
resonant frequencies in the first- to fourth-order vibration modes all exceed those of pristine
graphene. In addition, the maximum resonant frequency of the first-order vibration mode
is higher than that of pristine graphene when Per is smaller than 0.6%. Furthermore, the
enhancement effects of atomic vacancy defects in porous graphene also happen when Per
is 0.3% in the third-order vibration mode as shown in Figure 1c. Therefore, the introduction
of appropriate atomic vacancy defects in pristine graphene contributes to the improvement
of resonant frequencies in vibration modes.
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modes, respectively; the red ellipses mark the points that larger than the corresponding value of the initial grapehene).

Resonant frequencies are the quotient of stiffness and mass matrices of porous graphene.
The atomic vacancy defects in porous graphene cause the reduction of mass, which is the
numerator in the computation of resonant frequencies. The atomic vacancy defects in
porous graphene also play roles in the weakening effects in stiffness matrices, which are
the denominators. When weakening effects in stiffness matrices are smaller than the re-
duction in mass matrices, the resonant frequencies are amplified. By contrast, when the
decrease of stiffness matrices of graphene is more dominant than that of mass matrices, the
resonant frequencies are cut down. Therefore, the enhancement effects happening in minor
situations with the tiny percentage of atomic vacancy defects are reasonable.

In addition, Figure 2 presents the variance of resonant frequencies in different vibration
modes. In each vibration mode, the variance of resonant frequencies becomes larger with
the increase of atomic vacancy defects. Besides, when porous graphene has the same
amount of atomic vacancy defects, the variance in low-order vibration modes is smaller
than that of high-order vibration modes. For example, the variance of porous graphene
with 0.3% of atomic vacancy defects in the first-order vibration mode is smaller than that
in the second-, third- and fourth-order vibration modes. Furthermore, the gradient of the
variance of resonant frequencies in high-order vibration modes is larger than that of low-
order vibration modes. This means that with the increase of the amount of atomic vacancy
defects, the amplification of the variance of resonant frequencies is faster in high-order
vibration modes than in low-order ones. Thus, porous graphene has a stronger capacity
to reduce the fluctuation and deviation in low-order vibration modes than in high-order
vibration modes.
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The probability density distribution of resonant frequencies in porous graphene is
illustrated in Figure 3. The results in Figure 3 have a good agreement with those in
Figures 1 and 2. First, when the amount of atomic vacancy defects is 0.1%, the probability
density of resonant frequencies is distributed in the narrower interval range than that of
0.3%, 0.6%, 0.9%, 1.2% and 1.5% in the first four vibration modes. This point confirms that
the variance of resonant frequencies increases with the augmentation of atomic vacancy
defects. Second, the peak of probability density moves to the left with the increase of
the amount of atomic vacancy defects, which proves that the mean value of resonant
frequencies reduces with the increase of atomic vacancy defects. Third, the probability
density distribution of resonant frequencies in porous graphene is approximated to the
shape of the Gaussian and Weibull density distribution, but the precise results of MC-SFEM
are not as regular as those of the Gaussian or Weibull density distribution.

2.2. Comparison and Discussion

Atomic vacancy defects are formed by the disappearance of atoms with three con-
nected neighbor bonds, while bond vacancy defects are the absence of single bonds. In the
honeycomb lattice of graphene, one atom is connected with three neighbor bonds, and one
bond is the link between two atoms. In order to compare the atomic and bond vacancy
defects in graphene, the statistical results of resonant frequencies for porous graphene with
bond vacancy defects are listed in Table 2.

In Figure 4, the mean and maximum values of resonant frequencies in porous graphene
are compared. On the one hand, the mean values of porous graphene with bond vacancy
defects are close to those with atomic vacancy defects in different vibration modes. When
Perb equals Per, the mean values of resonant frequencies in porous graphene with bond
vacancy defects are a little larger than those with atomic vacancy defects, except when
Perb is 1.5%; then, the mean values of resonant frequencies in porous graphene with bond
vacancy defects are smaller than those with atomic vacancy defects. With the increment of
bond vacancy defects in porous graphene, the mean values of resonant frequencies also
decrease. However, the regularity of atomic vacancy defects enables porous graphene
with a more solid ability to resist the reduction in resonant frequencies, especially when
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the amount of vacancy defects is large, such as 1.5%. On the other hand, when Perb is
equivalent to Per, the maximum values of resonant frequencies in porous graphene with
atomic vacancy defects are larger than those with bond vacancy defects. The contrary
phenomena are rare. Enhancement effects in porous graphene with bond vacancy defects
are also observed, but are smaller than those with atomic vacancy defects. Therefore, porous
graphene with atomic vacancy defects not only has a more solid robustness in the reduction
of resonant frequencies, but also can result in stronger possible enhancement effects.

The variance values of resonant frequencies in porous graphene with two different
vacancy defects are compared in Figure 5. The variance values of resonant frequencies in
porous graphene with bond vacancy defects are evidently smaller than those with atomic
vacancy defects. As mentioned above, each atom vacancy defect is connected with three
neighbor bonds, and each bond links two atoms. In a sense, when Per equals Perb, the
amount of bond vacancy defects in porous graphene with atomic vacancy defects is larger
than that with bond vacancy defects and is approximately 1.5 times that with bond vacancy
defects. Even though the regularity in atomic vacancy defects causes robustness in resonant
frequencies and provides more evident enhancement effects in porous graphene, bond
vacancy defects lead to smaller variance and deviation.
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Table 2. Statistical results of resonant frequencies for porous graphene with bond vacancy defects.

Per (%) Mode Mean (THz) Minimum
(THz)

Maximum
(THz) Variance

0.1

1 1.7267 1.7220 1.7286 1.04 × 10−6

2 3.2896 3.2783 3.2936 4.40 × 10−6

3 3.7408 3.7304 3.7476 5.70 × 10−6

4 5.1847 5.1766 5.1893 4.58 × 10−6

0.3

1 1.7242 1.7166 1.7286 3.01 × 10−6

2 3.2846 3.2664 3.2923 1.04 × 10−5

3 3.7353 3.7140 3.7450 1.77 × 10−5

4 5.1765 5.1637 5.1851 1.30 × 10−5

0.6

1 1.7199 1.7108 1.7269 5.54 × 10−6

2 3.2766 3.2579 3.2873 2.22 × 10−5

3 3.7260 3.7010 3.7422 3.47 × 10−5

4 5.1640 5.1323 5.1776 2.93 × 10−5

0.9

1 1.7153 1.7038 1.7229 9.52 × 10−6

2 3.2680 3.2480 3.2833 3.46 × 10−5

3 3.7160 3.6912 3.7363 5.70 × 10−5

4 5.1496 5.1242 5.1691 4.73 × 10−5

1.2

1 1.7110 1.6962 1.7213 1.41 × 10−5

2 3.2593 3.2323 3.2769 4.72 × 10−5

3 3.7068 3.6723 3.7342 8.11 × 10−5

4 5.1345 5.1003 5.1576 6.88 × 10−5

1.5

1 1.7017 0 1.7174 5.83 × 10−3

2 3.2425 0 3.2706 2.12 × 10−2

3 3.6866 0 3.7233 2.74 × 10−2

4 5.1063 0 5.1431 5.24 × 10−2

2.3. Vibration Modes of Porous Graphene

The random distributed atomic vacancy defects cause the deviation of resonant fre-
quencies in porous graphene. The vibration modes of one example in the MC-SFEM for
porous graphene are depicted in Figures 6 and 7.

Different from the influence of 5% bond vacancy defects in the literature [50], the
geometrical symmetry and regularity in the vibration modes are not obviously destroyed in
porous graphene with 1.5% atomic vacancy defects. However, atomic vacancy defects bring
about changes in the local placement of graphene in the results of displacement and rotation
vector sums. Vacancy defects caused by the absence of atoms are more concentrated than
bond vacancy defects in graphene. Although atomic vacancy defects are stochastically
distributed in porous graphene, the disappeared bonds are clustered around the absent
atom. Therefore, atomic vacancy defects have more concentrated impacts on the results of
displacement and rotation for the local scope.
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3. Materials and Methods
3.1. Porous Graphene

The carbon atoms in graphene are combined with covalent bonds in sp2 hybrid orbitals.
The carbon–carbon (C–C) covalent bonds are supposed to be the elastic beam elements in
the characteristic lattice of graphene. The equivalent Young’s modulus and Poisson ratio
are derived from the following equations.

The analytical function representing bond energy is the Morse function [51]:

Ur = De
ij

[
e(−2aij∆rij) − 2e(−aij∆rij)

]
(1)

where De
ij is the bond stretching energy, rij is the equilibrium distance, ∆rij represents

the variation of the bond length and aij is a relative coefficient. With the parameter for
hybridized sp2 bonds, the Morse potential is expressed as:

Ur = De

{[
1 − e−β(r−r0)

]2
− 1
}

(2)

where r0 is the bond equilibrium length, De is the energy of dissociation and β is the
coefficient of regression fitting.

r0 = 0.139 nm, De = 6.03105 × 10−10 Nnm, β = 26.25 nm−1 (3)

The energy of the bond angle is written as follows:

Uθ =
1
2

kθ(∆θ)2
[
1 + ksextic(∆θ)4

]
(4)

with kθ = 0.9 × 10−18Nm/rad2, ∆θ = θ − θ0, θ0 = 2.094 rad, ksextic = 0.754 rad−4.
Therefore, the equivalent parameters, the diameter d, Young’s modulus E and shear

modulus G of the beam elements representing the C–C bonds can be computed as follows:
d = 4

√
kθ
kr

E = k2
r L

4πkθ

G = k2
r kτ L

8πk2
θ

(5)

where kr, kθ , kτ are the bond sketching, bond bending and torsional resistance force
constants, respectively. Thus, the related parameters in small scale for graphene are
transformed into the material parameters, which can be directly used in the finite element
model for mechanical analysis.

The C–C bonds are simplified as the beam finite element model in pristine graphene.
The beam finite element has a circular solid cross-sectional area. The length of each beam
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in the finite element model corresponds to the distance between the neighboring atoms in
the honeycomb lattice of graphene. The original finite element model for graphene without
vacancy defects was verified in our previous work, which reached a good agreement with
the results computed by molecular dynamics, density function theory, etc. [50]. Compared
with the adaptive intermolecular reactive empirical bond order (AIREBO) potential method
in molecular dynamics for C–C bonds, the finite element model for graphene not only has
merits in computational costs, but also is more competitive in the macro-property analysis
for graphene since the resonant frequency in this study is an intrinsic macro-characteristic.

3.2. Beam Finite Element

The beam finite element used in this study is based on Timoshenko beam theory which
includes first-order shear deformation effects. The element is a linear, quadratic and cubic
two-node beam element in 3D. For each node, it has six degrees of freedom, which include
translations in the x, y and z directions and rotations around the x-, y- and z-axes. The
beam finite element is well-suited for linear, large rotation and/or large-strain nonlinear
applications. Different from the truss element, the beam finite element has the capacities in
axial and flexural computation.

The equation derived by Timoshenko that governs flexural vibrations of beams with a
constant cross-section can be expressed as follows [50]:

EI
ρA

∂4ξ

∂z4 − I
A
(1 +

E
κG

)
∂4ξ

∂z2∂t2 +
∂2ξ

∂t2 +
ρI

κGA
∂4ξ

∂z4 = 0 (6)

where ξ = ξ(z, t) is the transversal displacement along the x-axis at point z and time t, E
is the Young’s modulus, I is the inertia moment, G is the shear modulus, ρ is the mass
density and A is the cross-section area. In this theory, Timoshenko shear coefficient κ is a
free parameter.

Besides ξ, angular variable θ is introduced. During a flexural motion, cross-sections
are supposed to remain flat and perpendicular to the deflected neutral axis at any point of
this axis. Angle θ between the z-axis and the vector orthogonal to the cross-section is equal
to the angle between the neutral axis tangent line and the z-axis. Note that θ equals the
slope of the deflected neutral axis, that is,

θ ≈ tan θ =
∂ξ

∂z
(7)

In the normal mode, ξ(z, t) varies harmonically with time as follows:

ξ(z, t) = [A cos(wt) + B sin(wt)]χ(z) = C sin(wt + ϕ)χ(z) (8)

where A, B, C and ϕ are the corresponding constants to be determined. Equation w = 2π f
is the angular frequency and χ(z) is a function that determines the normal mode amplitude.

∂4χ

∂z4 +
ρw2

Mr

∂2χ

∂z2 +
w2ρ2

κGE
[w2 − w2

c ]χ = 0 (9)

with wc = 2π f =
√

κGA
ρI , where fc is the critical frequency and 1

Mr
= ( 1

E + 1
κG ) is the

reduced modulus.
It is well known that solutions of the equation above behave differently according to

w2 − w2
c . The general solution can be written as follows:{

χ(z) = A1 sin(K1z) + B1 cos(K1z) + C1eK2z + D1e−K2z w < wc
χ(z) = A2 sin(K1z) + B2 cos(K1z) + C2 sin(K2z) + D2 cos(K2z) w > wc

(10)

where
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K1 =

√
ρw2

2Mr
+

√
( ρw2

2Mr
)

2
− ρ2w2

κGE (w2 − w2
c )

K2 =

√√√√S

[
ρw2

2Mr
−
√
( ρw2

2Mr
)

2
− ρ2w2

κGE (w2 − w2
c )

] With S =

{
1 i f w > wc
−1 i f w < wc

(11)

Usually, coefficients Ai, Bi, Ci, Di are different from zero, and the solutions of equa-
tions include functions depending on both K1 and K2, where K1 and K2 are defined as
positive square roots.

For free vibration analysis for Timoshenko beam based on the principle of virtual
work, the weak form of equation can be written as follows:∫ L

0
EI

∂θ

∂x
δ(

∂θ

∂x
)dx +

∫ L

0
κGA(

∂ξ

∂x
− θ)δ(

∂ξ

∂x
− θ)dx =

∫ L

0
δξρA

..
ξdx +

∫ L

0
δθρI

..
θdx (12)

As defined above, ξ is the transversal displacement in Timoshenko beam, where
θ is the transversal rotation, while

..
ξ and

..
θ are the transverse and rotary accelerations,

respectively, L is the length of the beam and δ denotes that the terms are virtual.

3.3. Monte Carlo-Based Finite Element Method

MCS is a classical stochastic sampling method with a solid mathematical founda-
tion [32]. Each atom in the honeycomb lattice of pristine graphene is marked with different
serial numbers in the finite element model. MCS is used to provide the stochastic serial
numbers that are related to the atoms forming vacancy defects. Once the specific atoms are
selected in the stochastic sampling process of MCS, three connected C–C bonds disappear
to develop into the atomic vacancy defects in the local location.

The finite element model of pristine graphene consists of 4212 atoms (Na), 6226 bonds
(Nb) and 18,678 elements. Therefore, the percentage of atomic vacancy defects in porous
graphene can be defined as follows:

Per =
Da

Na
(13)

Similarly, the percentage of bond vacancy defects is computed as follows:

Perb =
Db
Nb

(14)

where Da and Db are the amounts of atomic and bond vacancy defects, respectively. Figure 8
illustrates the schematic of porous graphene with 1.5% atomic vacancy defects in the finite
element model.

In this paper, MCS is applied to propagate the porosities in the finite element model
of pristine graphene as shown in Figure 8. By the combination of MCS with finite element
computation, the random distributed atomic vacancy defects are stochastically introduced
in the finite element model of graphene. The implementation of finite element computation
provides resonant frequencies of graphene. Then, the impacts of atomic vacancy defects
can be discussed and analyzed depending on the proposed MC-SFEM based on a huge
database with a large sample space.
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4. Conclusions

In this paper, random atomic vacancy defects are taken into consideration in the
vibration analysis of porous graphene. The MC-SFEM is applied to propagate stochastic
porosities in pristine graphene and compute resonant frequencies. Statistical results and
probability density distribution for porous graphene with atomic vacancy defects are
computed and carried out. Based on this work, the following key points can be emphasized:

• Probability density distributions of resonant frequencies caused by random distributed
atomic vacancy defects are not as regular as the Gaussian or Weibull distribution.

• Resonant frequencies can be amplified by the introduction of appropriate atomic
vacancy defects in pristine graphene.

• Porous graphene has a stronger capacity to reduce fluctuations and deviations in
low-order vibration modes than in high-order vibration modes.

• The porosities in graphene not only ensures a more solid robustness in the reduction
of resonant frequencies, but also can result in stronger possible enhancement effects.

• The impacts of atomic vacancy defects are more concentrated in the local scope.
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