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Abstract: Molecular imaging of pathologic lesions can improve efficient detection of cancer and
cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new
blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β
(TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based
imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review
highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction,
and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission
computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence
(NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects
and their respective synonyms or relevant subterms: “Endoglin”, “Imaging/Image-guided surgery”.
In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro
models and one ex vivo study in human organs. In addition to exact data extraction of imaging
modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described
via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative
and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the
evidence remains scarce but promising.

Keywords: endoglin; CD105; TGF-β; imaging; image-guided surgery; molecular imaging; nanoparti-
cles; microbubbles; angiogenesis; cancer; cardiovascular diseases

1. Introduction

In the fields of oncology and cardiovascular disease, imaging of pathologic lesions is
essential for diagnosis, staging, evaluation of drug effectiveness, and follow-up. Clinical
imaging techniques currently rely heavily on pre- and post-operative imaging, visualizing
pathologies and pathophysiological processes after resection (e.g., immunohistochemistry)
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or during check-ups (e.g., computed tomography (CT)-scan). For example, the commonly
used microvessel density (MVD) evaluation involves taking a biopsy, followed by immuno-
histochemistry for endothelial cell markers like CD31, CD34, CD105 and assessment by
a pathologist. Even though MVD is a prognostic marker for various types of cancer (e.g.,
gastrointestinal tumors, malignant melanomas, and tumors of the central nervous system),
real-time imaging modalities focusing on, in principle, the same molecular targets offer
a broader potential [1–4]. Clinical translation of this concept into a theragnostic as well
as intraoperative setting is strongly supported by the wide availability of clinically used
radionuclide, paramagnetic, fluorescent, or gas-filled tracers, visualized by techniques
such as single positron emission tomography (SPECT), positron emission tomography
(PET), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and
contrast-enhanced ultrasound (CEUS) imaging. With regard to intraoperative applications,
NIRF imaging is one of the most suitable techniques. While relying on the same principle of
molecular targeting as (in vivo) PET, SPECT and (in vitro) immunohistochemical analysis,
NIRF imaging can be used in the context of image-guided surgery (IGS), allowing surgeons
to discern between healthy and malignant tissue [5]. The selection of appropriate targets
is of key importance to clinical imaging and related research. The previously mentioned
endothelial cell marker CD105, better known as endoglin, is an interesting candidate target
to visualize various diseases.

Endoglin is a 658 amino acid long, homodimeric transmembrane glycoprotein of
180 kDa [6,7]. Used as a marker for activated endothelial cells, endoglin has proven itself
as a potent prognostic indicator for cancer patients, predicting poor outcomes for overall,
disease free, and cancer-specific survival [8]. However, endoglin is rapidly surpassing
its label of mere endothelial cell activation marker. As a coreceptor for transforming
growth factor (TGF)-β1 and -β3, endoglin interacts with TGF-β type I and II receptors
(TβR-I, TβR-II). In addition, it modulates bone morphogenetic protein (BMP)9/10 signaling
(Figure 1) [9,10]. Active TGF-β binds to TβR-II, leading to recruitment and phosphory-
lation of TβR-I, also known as activin receptor-like kinase (ALK)5. Subsequently, the
activated TβR-I kinase phosphorylates receptor-regulated SMADs, SMAD2/3 (R-SMADs).
Phosphorylated R-SMADs bind to the co-SMAD, SMAD4. They migrate to the nucleus
to regulate gene transcription [11,12]. In endothelial cells, TGF-β can signal via two type
I receptors: ALK5 and ALK1, via, respectively, inducing SMAD2/3 and SMAD1/5/8
phosphorylation. Endoglin has multiple roles in this signaling cascade. While ALK1
and TβRII form a complex with endoglin on the cell surface, association of ALK5 with
endoglin is dependent on the binding of TGF-β1 to TβRII and recruitment of ALK1 to the
receptor complex [13,14]. Additionally, BMP9 and BMP10 can bind to endoglin, ALK1,
and a bone morphogenetic protein type II receptor (BMPR-II) and induce SMAD1/5/8
phosphorylation via ALK1-dependent mechanisms (Figure 1) [15].

Presence of endoglin on the cell membrane constrains the ALK5-signaling route,
thereby stimulating the endothelial cell proliferation-favoring activity of ALK1. Accord-
ingly, increased expression of endoglin has been mostly linked to activated endothelial cells
at sites of inflammation and angiogenesis. Moreover, a complex of ALK1 and endoglin
binds BMP9 directly, enabling the induction of proangiogenic processes [15].

Next to its key role in regulating angiogenesis, endoglin is expressed by neoplastic
epithelial cells, hematopoietic stem cells, innate immune cells, adaptive immune cells,
(cancer-associated) fibroblasts, and mesenchymal stem cells, as reviewed by Schoonder-
woerd and colleagues [14]. These cells express endoglin mostly in the context of complex
TGF-β-regulated pathologic lesions like cancer, cardiovascular diseases, and fibrosis, sug-
gesting that endoglin may be employed to target various pathologic conditions for therapy
or imaging [14,16]. The intricacy of endoglin-mediated mechanisms is illustrated by a
specific subtype of Rendu–Osler–Weber disease: hereditary hemorrhagic telangiectasia
type 1 (HHT1). This rare, autosomal dominantly inherited disease is characterized by
mutations in the endoglin gene, resulting in pulmonal arteriovenous malformations and
telangiectasia-mediated epistaxis [17]. Next to endothelial cell defects, HHT1 patients have
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an impaired immune system, characterized by lymphopenia of CD4+ (helper) T cells, CD8+
(cytotoxic) T cells, and natural killer cells, in addition to functional deficits in neutrophils,
polymorphonuclear cells, and monocytes [18–20].
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Figure 1. Overview of the two dominant TGF-β signaling pathways in endothelial cells. Presence of endoglin/CD105 on
the cell membrane upon binding of TGF-β is associated with promotion of the angiogenesis-favoring ALK1 pathway, while
constraining the mainly antagonistically functioning ALK5 pathway. The ALK1 pathway can also be initiated separately via
BMP9 (and BMP10 during embryogenesis).

In cardiovascular research, there is a strong need for a noninvasive tool to study
neovessel formation in a preclinical setting, in which researchers heavily rely on histologic
analyses, and in a clinical setting, where the quantification of in vivo intralesional angio-
genesis is not yet common. Although investigated to a lesser extent than HHT1 and cancer,
the role of endoglin in atherosclerosis, specifically in endothelial cell activation, vascu-
lar remodeling, angiogenesis, and inflammatory cell migration, suggest that the protein
is a versatile imaging target [21,22]. Of specific interest would be the visualization and
quantification of angiogenic processes to assess and monitor disease driving mechanisms
like intrawall neoangiogenesis and intraplaque hemorrhage. Such an additional layer to
traditional imaging modalities would ideally be combined with the benefits of existing
noninvasive, real-time techniques such as ultrasonic (three-dimensional) wall and lumen
size determination and measurements of hemodynamic parameters.

For tumors, endoglin-based imaging may provide added value in disease monitoring,
quantification, and therapy decision in a (pre) clinical setting. In vivo imaging of endoglin
expression on neoangiogenic vasculature could become a noninvasive alternative to MVD
determination, allowing for improved disease classification, disease monitoring, therapy
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decision making, and personalizing the choice of (anti-angiogenic) treatments. Moreover,
live endoglin-based imaging can be employed to perform IGS in highly vascularized
tumors, whether or not combined with multiple other targets and preoperative mapping
using hybrid tracers.

This review will give a systematic overview of the use of endoglin as a molecular target
for imaging of cancer and cardiovascular diseases, including (pre) clinical applications such
as IGS and diagnostics. The aim is to identify the current status of endoglin-based imaging
of pathologic lesions in a (pre) clinical setting for cancer and cardiovascular diseases. In
the method section, the systematic method of literature search will be described. Section 3
will discuss the general function of endoglin in cancer, including its role in angiogenesis
and other processes, and the rationale of using endoglin as target for tumor imaging. Next,
the current literature on (pre) clinical, endoglin-based, PET, MR, NIRF, and ultrasound
imaging in tumors will be reviewed, followed by the role of endoglin in imaging of vascular
disorders. The last sections will summarize and discuss the possibilities and limitations of
endoglin-based imaging, as well as consider future perspectives.

2. Methods
2.1. Search Strategy

An initial orientational search was performed in PubMed and Google Scholar to
identify appropriate search terms for endoglin-based imaging. These terms were conse-
quently used in an extensive literature search in PubMed: (i) endoglin and (ii) imaging
and image-guided surgery. All relevant Mesh terms, appropriate search field tags, ap-
plicable synonyms, and specific subterms were added to the final search strategy, which
was performed on 17 December 2020 (Appendix A). This systematic review was carried
out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines of 2009, and the protocol, based on the basic format by Systematic
Review Center for Laboratory animal Experimentation (SYRCLE), has been made publicly
available [23–25]. The authors of this manuscript are aware of the recently published
updated PRISMA 2020 statement [26]. Our research has been designed and conducted
under the PRISMA 2009 guidelines and is thus published accordingly.

2.2. Eligibility Criteria

The following inclusion criteria were employed: (i) published in the English language,
(ii) making use of one of the following imaging modalities: PET, SPECT, MRI, NIRF,
ultrasound, (iii) report of an imaging modality-specific outcome measure that should
be capable of demonstrating both contrast differences and feasibility of endoglin-based
imaging, (iv) experimental study using (parts/derivatives of) animals or human subjects
for cancer- or cardiovascular disease-related research. The final decision of including ex
vivo studies in human organs has been made afterwards, upon finding only one such a
study in the definitive literature search. The following exclusion criterion was employed:
articles that reported on soluble endoglin. All included articles had to meet every in- and
exclusion criterion. Full-texts were available for each eligible study and did not influence
in- or exclusion of articles. All eligible studies were included that were published up
until 17 December 2020.Eligibility was assessed independently by two authors (V.Q.S.
and C.F.M.S.; review team members). Meeting reports were considered to be eligible.
Disagreement or discrepancies between the review team members were discussed until
consensus was reached. When needed, a third author with expertise in the specific research
field was consulted.

2.3. Data Extraction

Due to the expected heterogeneity of the included articles in terms of disease model,
tracer type, and imaging modality, all study characteristics and outcomes were described
via a narrative synthesis. No predefined, exact outcome measurements were therefore
extracted. Fundamental characteristics such as imaging modality, tumor or cardiovascular
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disease model (species, cell line), tracer, and tracer class were extracted independently by
the review team.

3. Results
3.1. Study Selection

The PubMed search on endoglin-based imaging for cancer and cardiovascular diseases
revealed a total of 476 articles (Figure 2). Additional studies on MR (n = 1) and ultrasound
imaging (n = 1) in tumor models were found, respectively, via the reference list of an
included article and through an external source (reviewer). The selection procedure was
split up in two phases. The first selection phase, in which 477 titles and abstracts were
screened, focused on inclusion criteria (i) and (ii) and exclusion criterion (i) (Figure 2).
After exclusion of 403 articles, 74 + 1 full-text articles were assessed in the second selection
phase, focusing on inclusion criteria (iii) and (iv). The resulting 59 articles consisted of 55
studies in tumor models: general nuclear imaging (2), SPECT (1), PET (17), MRI (9), NIRF
(6), ultrasound (7), dual PET/NIRF (11), dual PET/MRI (1), and dual NIRF/MRI (1). The
remaining four articles used PET to image cardiovascular disease models.
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3.2. Endoglin-Based Cancer Imaging
3.2.1. Angiogenesis and Tumor(-Associated) Cells

Neovascularization is essential for tumor growth, development, and metastasis [27].
Therefore, the concept of targeting microvessels for diagnostic and therapeutic purposes is
rather well established. As compared to other angiogenic targets on endothelial cells, such
as vascular endothelial growth factor receptor (VEGFR), endoglin has an up to 10 times
higher expression level [28–30]. An evident application of endoglin would therefore be
noninvasive, in vivo detection of angiogenesis for diagnosis and prediction of tumor pro-
gression. This could be effectuated via imaging, by employing an endoglin-targeting tracer
(e.g., antibodies, peptides, or nanoparticles), and by the use of labels and corresponding
imaging systems. During surgery, real-time imaging with targeting probes and imaging
techniques such as NIRF could assist surgeons to identify and completely resect malignant
tissue more precisely, while sparing vital surrounding tissues [5]. For both types of imaging
applications, important target characteristics include distribution within the tumor and the
availability of a specific tracer.

Although the efficacy of endoglin-based whole-tumor imaging could be questioned
due to the proclivity of endoglin expression on activated endothelium rather than on
malignant cells, similar tracers and novel insights suggest differently. For example, the (pre)
clinical results of other neoangiogenesis-based tracers, like cRGD-peptide- (αvβ3 integrin)
and vascular endothelial growth factor (VEGF)-targeting antibodies demonstrate efficient
whole-tumor imaging [31,32]. Next to its high presence on endothelial cells, expression
of endoglin has also been shown on fibroblast-like stromal cells at the invasive fronts of
colorectal and prostate cancer [33,34]. Various malignant cell types of epithelial origin
show an increase in endoglin expression level, including in primary endometrial cancer,
head and neck squamous cell carcinoma (especially in tissue samples from metastatic
patients), and metastatic breast cancer cells [35–37]. Therefore, those carcinomas would be
good candidates for endoglin-based imaging, even when endoglin’s tumor promoting or
suppressing role in these settings remains currently undetermined. Based on the endoglin-
expressing cells in the tumor microenvironment, i.e., angiogenic endothelial cells, subtypes
of fibroblasts, and some malignant epithelial cells, specific endoglin targeting agents
have been developed for cancer therapy. The most promising is most likely carotuximab
(TRC105) (reviewed in [38]). TRC105 is an endoglin-binding chimeric monoclonal antibody
(human/mouse), designed for minimal immunogenicity in patients. Next to therapy, this
antibody would be particularly suitable for diagnostic and imaging purposes, owing to
its good tolerability, high accumulation, and limited side effects. Moreover, its affinity for
human as well as mouse endoglin qualifies TRC105-based tracers for direct preclinical
evaluation in mouse models.

Exploitation of endoglin-based imaging of pathological lesions in a (pre) clinical set-
ting, based on compounds developed for therapy, would accelerate a clinically translatable
approach. An obvious application would allow for quantification (PET, SPECT) or real-
time visualization (NIRF) of neovessels, providing a better alternative to conventional
histological MVD determination. Importantly, although current imaging systems may also
reveal vascularization, they do not discern between existing vessels and neovasculature. In
addition to vascularization, endoglin-based imaging could allow for precise image-guided
resections, upon identification of specific tumor types that express endoglin beyond the
endothelium or are highly vascularized. For all clinical applications, important criteria
include a high lesion-to-background ratio, minimized toxicity, and an optimized combina-
tion of tracer and imaging modality. The latter subject will be explored further below in
the context of the current literature on noninvasive, endoglin-based tumor imaging.

3.2.2. Endoglin-Based Nuclear Imaging of Tumors

Nuclear imaging systems, which operate via the detection of radiotracers, have an
established role in cancer diagnostics [39]. In short, dedicated radiotracer decay, which
results in the emission of positrons or gamma rays, is measured by PET and SPECT
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scanners respectively, and transformed into an image of the targeted tissue. The most
commonly used radiotracer in PET imaging is 18F-FDG, a radiolabeled sugar molecule that
accumulates in cells with enhanced glucose metabolism, such as cancer cells. For SPECT
imaging, a wide variety of tracers are employed that are coupled to radioisotopes, such
as 99mTc, 123I, and 111In. Upon intravenous injection of these radiopharmaceuticals and
the use of CT for anatomical referencing, an accurate, contrast-rich, and three-dimensional
image of the targeted tissue can be created to (i) reveal and monitor malignant tissues,
(ii) portray pathophysiological and molecular processes (e.g., tumor angiogenesis and
heterogeneity), and (iii) guide surgical procedures and facilitate image-guided biopsies [40].
Currently, their added value lies primarily within the realm of diagnostics. With regard to
surgery, combinations with NIRF imaging have been shown to guide surgical oncologists
based on preoperative PET or SPECT maps of various types of tumors (e.g., lymphoma,
prostate, breast, and thyroid cancer) [41–45].

Our literature search revealed one endoglin-based SPECT article (Figure 2, Table 1) [46].
The authors assessed the biodistribution, tumor-targeting properties, and in vivo deiodina-
tion of both directly and indirectly 125I-labeled, anti-CD105 monoclonal antibodies (mAbs)
in mice bearing murine melanoma cell line B16F10. Interestingly, they concluded that direct
iodination of the anti-CD105 antibodies resulted in swift dehalogenation in vivo, mediated
via catabolic processes. In contrast, indirect iodination via a D-KRYRR linker peptide led
to reduced dehalogenation, slower clearance, and higher tumor-specific accumulation,
demonstrating that the antibody pertained its antigen-specific binding [46].

Despite these interesting results, endoglin-based nuclear imaging research has a
widespread preference for PET (Figure 2). Historically, the earliest general endoglin-based
nuclear imaging study was reported by Fonsatti and coworkers in 2000, by radiolabeling
the anti-endoglin monoclonal antibody MAEND3 with 125I and demonstrating specific
imaging of breast cancer in a canine model [47]. The earliest and only ex vivo study in
human organs was performed in 2004. Adequate imaging was reported by using the
anti-CD105 monoclonal antibody E9 in freshly excised kidneys from seven patients with
renal cell carcinoma [48]. The 99mTc-labeled mAb E9 was perfused through the kidney
and subsequently detected via immunoscintigraphs, demonstrating to match the pre- and
post-surgically determined tumor locations by MRI and histopathology [48]. Seven years
later, Cai and coworkers translated this concept to PET with the TRC105 antibody, by
specifically studying the in vivo properties of two commonly employed chelators: 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-1,4,7-
triacetic acid (NOTA) [49]. In a 4T1 murine breast cancer mouse model, they demonstrated
that the choice of chelator for conjugation of TRC105 with 64Cu did not affect the antibody’s
specificity or binding capacities. PET imaging demonstrated that 64Cu-NOTA-TRC105 dis-
played increased stability compared to 64Cu-DOTA-TRC105, illustrated by decreased liver
uptake with equal targeting competence [49]. Additional studies in the 4T1 in vivo model
showed that the Fab and F(ab’)2 fragments of TRC105 coupled to 64Cu were taken up faster
but at a lower peak (t = 24 h, t = 48 h, respectively) compared to the intact antibody 64Cu-
NOTA-TRC105 [50,51]. In 2012, the same group demonstrated that 66Ga-NOTA-TRC105
had similar binding affinity and specificity compared to unlabeled TRC105 [52]. Moreover,
this PET-tracer was able to image breast cancer in the 4T1 murine model [52]. A follow-up
study in the same model showed that TRC105 could be labeled with 89Zr, by employing
the chelator desferrioxamine B, to effectively visualize the 4T1 tumor in vivo [53]. Another
chelator, diethylenetriaminepentaacetic acid (DTPA), was used in the aforementioned
breast cancer mouse model to conjugate TRC105 with various yttrium isotopes (86/90Y) [54].
86Y is a relatively new isotope for PET imaging, and the validation of 86Y-DTPA-TRC105 as
a functional in vivo PET imaging tracer is a great example of the ever-expanding field of
promising radioisotopes [54].

Next to breast cancer models, mice bearing human glioblastoma U87MG (EGFR/
CD105+/+) tumors were used to examine the potential of endoglin-based imaging. A
bispecific immunoconjugate, consisting of two Fab fragments against EGFR and CD105,
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was used to enhance specificity to desired targets and subsequently improve imaging [55].
In this study, dual targeting increased both tumor-specificity and -affinity of the immuno-
conjugate, resulting in separate 64Cu-mediated PET (Table 1: PET) and ZW800-mediated
NIRF imaging of glioblastomas in vivo (Table 1: NIRF) [55]. Comparably, dual targeting of
human pancreatic adenocarcinomas (BXPC-3 cell line) in an orthotopic mouse model was
achieved with a 64Cu-NOTA-conjugated heterodimer of anti-tissue factor and anti-endoglin
Fab [56].

The earliest studies on endoglin-based imaging with the use of nanomaterials de-
scribed the application of 64Cu and 66Ga radiolabeled, ultra-high surface area TRC-105-
nanographene as potent in vivo imaging tracer for the 4T1 breast tumor vasculature [57–59].
The authors reported excellent specificity, minimal extravasation, and appropriate tracer
stability. Notably, toxicity and safety issues with the graphene family of nanomaterials have
been studied with contrasting results, ranging from chronic organ injury to inconsequential
long-term retainment upon polyethylene glycol (PEG) functionalization [60,61]. Via a
similar concept, the regularly applied 64Cu-TRC105 combination conjugated with the nano-
material reduced graphene oxide (RGO) has been found to target tumor neovasculature in
the 4T1 mouse model [62]. RGO is an effective photothermal agent which can be employed
for tumor ablation as well as imaging purposes [63]. An alternative approach is the use of
targeted gold nanoparticles (AuNPs) for PET imaging of melanoma xenografts in C57BL/6J
mice (B16F10 cell line) [64]. 89Zr-labeled anti-CD105 monoclonal antibodies were conju-
gated to plasma-polymerized allylamine (PPAA)-coated AuNPs, intravenously injected in
the mice, and subsequently assessed for biodistribution via PET imaging. Compellingly,
no imaging-limiting effects were found upon AuNP-antibody conjugation, whereas high
tumor-to-tissue ratio and tumor selectivity allowed for effective cancer detection [64].
The application of AuNPs in the field of imaging is promising, especially due to their
modifiability, biodistribution, and possibility of photothermal therapy [64,65].

Radiolabeled unimolecular micelles represent another nanoplatform for endoglin-
based PET imaging. The outer layer of these micelles is a hydrophilic shell, often consisting
of PEG, allowing for the transport of hydrophobic drugs. Unimolecularity ensures stability
in the circulation, in contrast to multimolecular micelles which disassemble as a conse-
quence of dilution [66]. Two different types of unimolecular micelles that were equipped
with TRC105, NOTA, and 64Cu were reported: (i) unimolecular micelles formed by den-
dritic amphiphilic block copolymers poly(amidoamine)–poly(l-lactide)-b-poly(ethylene
glycol) (PAMAM-PLA-PEG) and (ii) brush-shaped amphiphilic block copolymer poly(2-
hydroxyethyl methacrylate) (PHEMA) with side chains consisting of poly(L-lactide)-PEG
(PLLA-PEG) [66,67]. The first type of unimolecular micelle could release a cargo of the
cytotoxic agent doxorubicin upon sensing tumor-specific pH changes in the 4T1 breast
cancer model in vivo [66]. Combined with satisfactory PET capacities, these micelles could
be employed in theragnostic approaches. The second type of unimolecular micelles also
showed pH-controlled, tumor-specific doxorubicin release, competent PET-mediated tumor
visualization, and equal tumor distribution in the same in vivo model [67].

The tumor-specific characteristics of the anti-endoglin antibody TRC105 have also
been combined with biocompatible, radiolabeled PEGylated mesoporous silica (mSiO2)
nanoparticles (64Cu-NOTA-mSiO2-PEG-TRC105), which aggregated specifically at 4T1
breast tumor sites in mice after intravenous administration [68]. This accumulation was
reported to be mediated via both (i) the enhanced permeability and retention effect (EPR),
i.e., accumulation of particles at tumor sites due to large-pored neovasculature, and (ii)
specific binding to CD105 expressing vasculature. In general, while interesting features of
mesoporous silica nanoparticles (MSNs), such as their easily modifiable porous structure
and large surface area, allow for interesting theragnostic applications, concerns regarding
unwanted nonspecific reticuloendothelial-system-mediated uptake and reduced elimina-
tion have limited their widespread application [69]. In a second iteration, biodegradable
MSNs (bMSNs), capable of carrying multiple loads and of self-destruction upon cargo
release, were published [70]. In the 4T1 breast cancer model, PEGylated, chelator-free,
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89Zr-TRC105-labeled bMSNs allowed for stable and tumor-specific PET imaging [70]. In
2018, this research group also achieved to combine hollow MSNs (hMSNs) with quantum
dots (QD; fluorescent emitter) into a so-called yolk-shell hybrid nanosystem for effective
dual PET and NIRF imaging of 4T1 tumors [71]. Moreover, they showed the feasibility of
tumor vasculature imaging with an upconversion nanoparticle (UCNP)@89Zr-hMSN-PEG-
TRC105 tracer at 980 nm [72]. The same study also demonstrated that general synthesis of
similar 89Zr-labeled hMSNs, with internal cores of inorganic functional nanoparticles and
superparamagnetic iron oxide nanoparticles (SPIONs) was feasible. SPION cores can be
used in the field of MRI and will be elaborately discussed in the next section. In the context
of dual PET and MR imaging, PEGylated manganese oxide (Mn3O4) nanoparticles were
developed and conjugated with TRC105 and 64Cu, which exhibited low toxicity and high
specificity for CD105 positive vasculature in 4T1 breast tumors [73].

3.2.3. Endoglin-Based MR Imaging of Tumors

MRI is a powerful imaging modality that makes use of strong magnetic fields and
radiofrequency waves to capture images of the human body with high spatial and tem-
poral resolution. MRI contrast agents traditionally differ in their indirect and nonlinear
behavior from the direct and linear principles of contrast agents used for CT or the gamma
ray-emitting isotopes for nuclear scintigraphy. These differences are based on the distinct
magnetic properties and interactions of 1H protons toward the applied MRI contrast agent;
as such, the dose of the contrast agent and used MRI sequence determines whether either
T1 shortening (positive) or T2 shortening (negative) contrast effects are predominant. Typi-
cal positive MRI contrast agents are Gd- or Mn-containing paramagnetic chelates, while
Fe-containing superparamagnetic crystals of nanoparticles are referred to as negative or
susceptibility contrast agents. The recent increasing demand for sensitive MRI contrast
agents has initiated the development of hybrid T1/T2 dual agents that combine the imag-
ing properties of both T1 and T2 in a synergistic manner [74]. T1 and/or T2 properties of
endoglin-based MR tracers are indicated in Table 1. SPIONs are commonly used in (preclin-
ical) endoglin-based MR imaging, as they can be readily modified to bind tumor-specific
antibodies or to carry drugs, serving as a theragnostic platform [75], (reviewed in [76]).

Dassler et al. optimized SPIONs with a biocompatible polyacrylic acid (PAA) coat-
ing conjugated with a monoclonal antibody against mouse endoglin [77]. Initially, they
demonstrated via autoradiography that 59Fe-radiolabeled αCD105-PAA-SPIONs could
accumulate at endoglin-expressing, highly vascularized teratocarcinomas in mice (F9 ter-
atoma model). However, upon MR imaging of αCD105-PAA-SPIONs in the same model,
limitations in signal detection sensitivity hampered tumor-specific visualization. The au-
thors argued that improving the imaging properties of SPIONs would be insufficient in
this case, considering the limitations of main MRI sequences and field strength [77].

Using a different strategy, the detection of early tumor angiogenesis was enabled in
rats bearing extracerebral gliomas (F98 cell line) [78]. By entrapping the MRI contrast agent
gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) into PEG-coated liposomes,
the researchers created a versatile foundation for a targeting vehicle. After conjugation
with an anti-CD105 monoclonal antibody, the anti-CD105-Gd-liposomes were injected
intravenously into the animals. The signal intensity of the liposomes primarily granted
visualization of the tumor-specific vasculature but was also sufficient to enable accurate
whole-tumor imaging for up to 120 min [78]. In a similar approach, tumor margins in
a glioma rat model (C6 cell line) were effectively delineated by targeting endoglin with
paramagnetic liposomes conjugated to monoclonal anti-CD105 antibodies [79]. These
sterically stabilized, paramagnetic liposomes were intravenously injected into the animals
and showed effective tumor imaging capabilities.

The applicability of single-walled carbon nanotubes (SWCNTs) as a theragnostic,
endoglin-targeting MRI tracer was demonstrated by tagging polyvinylpyrrolidone (PVP)-
functionalized SWCNTs with SPIONs and conjugating them with an anti-mouse endoglin
antibody [80]. After loading the nanotubes with doxorubicin, the magnetic nanoparticles
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were administered intravenously to mice bearing luciferase-expressing 4T1 breast cancer
cells. The researchers had previously shown that adequate efficiency of tumor-specific
accumulation of the modified SWCNTs was feasible via MRI in the murine 4T1 breast cancer
model with good biocompatibility [81]. Interestingly, an external flexible high-energy
magnet was used to guide the delivery of the tracers to the known tumor site [80,81].
Comparable MR imaging results with identical SWCNTs and external magnets were
obtained in a subsequent study focusing on lung metastases in the 4T1 model [82].

Nanomicelles have also been adopted for endoglin-based tumor MR imaging. Shelled
nanoprobes consisting of the CD105-specific peptide CL 1555 (amino acid sequence:
AHKHVHHVPVRL), a poly(ε-caprolactone)-block-poly(ethylene glycol) amphiphilic
copolymer, and a core comprising manganese ferrite (MnFe2O4) nanoparticles, were able
to induce high contrast MR imaging of tumor vascular endothelial cells in vitro [83]. In
another study, the same authors designed an anti-CD105-conjugated nanoparticle hybrid
based on a SPION core (maghemite, γ-Fe2O3) and a golden shell (Au) with the purpose of
MR imaging of tumor angiogenesis [84]. Gold-coating reduces toxicity of the iron oxide
core and decreases aggregation, adding to the stability of the hybrid on top of the PE-
Gylation process [85,86]. MRI signal was detected 60 min after intravenous injection of
the nanomicelles in BALB/c mice bearing the human breast adenocarcinoma MDA-MB-
231 cell line. A positive correlation was found between the relative signal intensity and
histologically assessed MVD based on CD105 [84].

Similarly, magnetic endoglin-specific aptamer nanoprobes based on modified mag-
netic carboxymethyl chitosan (CMCS) nanoparticles (aptamer-Fe3O4@CMCS) were gen-
erated to target subcutaneous H22 hepatocellular carcinomas in mice [87]. The results
showed that tumor neovascularization could be accurately imaged with low toxicity and
adequate biocompatibility by using aptamer-Fe3O4@CMCS for MRI.

3.2.4. Endoglin-Based Near-Infrared Fluorescence Imaging of Tumors

Like for targeted PET, SPECT, and MRI, most targeted tracers for NIRF-based imaging
consist of dyes conjugated to peptides, (derivatives of) monoclonal antibodies, aptamers
consisting of single chain DNA/RNA, or of other carriers equipped with these tracing
elements, such as nanoparticles, viruses, or cell-derived vesicles [88]. NIRF imaging further
depends on a fluorescent dye and a near-infrared light source with a specific wavelength
to illuminate the tissue of interest. Electrons in the atoms of the fluorescent dye react on
this excitation light by transferring from the ground state to the excited state. Upon return
to the ground state, these electrons emit a near-infrared signal with a longer wavelength,
which can be visualized with a camera system. Optical imaging with NIRF light operates
beyond the spectrum of visible light (700–900 nm), which demands the use of dedicated
near-infrared camera systems and filter settings. The limited tissue penetration, real-time
view, and absence of radiation make NIR light-based imaging ideal for use during surgery.
Moreover, the imaging tracers and camera systems are relatively cheap and manageable [5].

Although the use of camera systems may seem cumbersome and distracting in the
operating theatre, it has rapidly become common practice, especially during minimally
invasive interventions such as laparoscopy, sentinel lymph node procedures, and robot
assisted surgery. A tumor-representing NIRF signal is superimposed on the signal captured
by a visible light camera, providing contrast between healthy and malignant tissue on
a monitor. As shown in Figure 3, small lesions can be clearly recognized. In various
clinical studies, tumor-specific NIRF dye-labeled antibodies have been used in oncologic
intraoperative settings (e.g., colorectal liver metastases, pancreatic cancer, and ovarian
cancer) [89–91].

An important characteristic of NIRF is the inability of humans to perceive its emission
and excitation wavelengths, ensuring its on-demand availability upon activation of the
accessory camera without interfering with regular, visible light-based surgical workflows.
Moreover, NIRF imaging has low tissue-autofluorescence and is barely affected by tissue
scattering and absorption, establishing its favorable tumor-to-background ratio and accu-
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rate target delineation. The real-time imaging capabilities of NIRF in combination with
its high spatial and temporal resolution make it an attractive imaging modality for IGS.
The classical near-infrared wavelength window (NIR-I) allows for imaging depths of up to
1 cm deep, depending on tissue composition. Despite this limited penetration depth, it has
already been clinically applied. More recently, a second NIR wavelength window (NIR-II,
1000–1700 nm) has gained attention due to its improved contrast, resolution, and imaging
depth capabilities (1–3 cm) [92,93]. An interesting development is the implementation
of nanotechnologies in this field, with the creation of NIR-I-to-NIR-II nanomaterials that
absorb light in the NIR-I window and emit sharp fluorescent signals in the NIR-II window
(e.g., single-walled carbon nanotubes, quantum dots, polymer nanoparticles) (reviewed
in [94]).

A challenge in the field of fluorescence-guided surgery is the transition from preclinical
and early phase clinical trials into phase 2–3 studies, to demonstrate clinical benefit [95].
Next to procedural challenges such as the need of motivated and instructed clinicians,
initiating competent trial teams, and setting up adequate protocols, overcoming technical
problems such as appropriate matching of camera system and imaging agent is crucial.
Moreover, it should be kept in mind that, although NIRF laparoscopic surgery has some
distinct advantages compared to NIRF open surgery in terms of reduced background light
and imaging distance, its imaging capacity is lower due to safety issues related to excitation
laser power [95].

Early experiments with endoglin-based NIRF imaging started in 2009, when an in vitro
model based on human umbilical vein endothelial cells (HUVECs) was employed to simu-
late angiogenic and physiological vasculature and demonstrate effectiveness of molecular
imaging of angiogenesis [96]. Although the authors were able to image angiogenesis by us-
ing a planar NIRF imager and endoglin- and VEGFR2-specific contrast agents, an important
limitation was the lack of additional cell types serving as a tumor environment. Nonethe-
less, an interesting observation was that the highest NIRF signal was that of endoglin in
proliferating endothelial cells, while VEGFR2 fluorescent signal could not be observed [96].
Two years later, the anti-endoglin chimeric antibody TRC105 was conjugated to the NIRF
dye IRDye 800CW, and subsequently injected intravenously in 4T1 breast cancer-bearing
mice [97]. The specificity of the tracer was confirmed using blocking experiments, con-
trol antibodies, and histology. Moreover, the authors claimed an 85% 800CW-TRC105
conjugation yield without any alterations to the binding affinity to endoglin [97].

In 2018, using M13 phage display, 13 peptides directed against endoglin were iden-
tified [98]. Peptides are associated with improved heat stability and tumor penetrative
capabilities compared to antibodies and are cheaper to develop and produce [99]. Pep-
tide nABP296 was identified as having the highest affinity for the endoglin-expressing
MNNG/HOS cell line (human osteosarcoma) and was conjugated with the fluorescent dye
fluorescein-5-isothiocyanate (FITC). One hour after intravenous administration of FITC-
nABP296 in subcutaneous MNNG/HOS xenografted mice, specific fluorescent signal in the
tumor was shown. Sections of an osteosarcoma patient, that were stained using nABP296
and an anti-CD105-antibody, demonstrated overlapping specificity of both proteins for
osteosarcomas ex vivo [98].

In the field of endoglin-based NIRF imaging, various groups have been focusing
on improving specificity via the use of nanomaterials, like activatable liposomes [100].
Liposomes are nanocarriers that are especially under investigation in the context of drug
delivery because they are easily modifiable, biocompatible, and have high payload capacity
(reviewed in [101]). Upon encapsulating the liposomes with the NIRF dye DY-676-COOH
and conjugation with antibody fragments against endoglin (END-IL), it was shown that
NIRF imaging of xenografted human MDA-MB-231 breast cancer cells and HT1080 fibrosar-
coma cells was feasible in mice [100]. NIRF imaging capacity was dependent on uptake
and degradation of the liposomes by the desired target cells, based on self-quenching of DY-
676-COOH at high concentrations. Interestingly, whereas the human (h)END-IL principally
accumulated at the tumor site, the mouse (m)END-IL tended to accumulate in the liver, kid-
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neys, lungs, and vasculature of the mice. Validation via confocal microscopy on harvested
tissues showed that hEnd-IL predominantly bound to the tumor cells, while mEnd-IL was
more specific for murine vasculature. In addition to tumor cells, the authors also indicated
that the probes could be taken up by phagocytes, thereby possibly targeting phagocytic
cells like tumor associated macrophages [100]. The liposomes were recently adjusted to
simultaneously target fibroblast activation protein (FAP) and endoglin via the addition of
specific single chain antibody fragments (Bi-FAP/mEND-IL) [102]. Similar to the previous
study, mice bearing a xenografted fibrosarcoma (HT1080-hFAP, high FAP expression, large
vasculature) or breast tumor (MDA-MB-231, no FAP expression, neovasculature) were
injected with the bispecific liposomes and subsequently imaged [102]. The dye cargos
were adequately delivered at, respectively, the FAP-expressing cells and neoangiogenic
endothelium [102]. Similar results have been obtained by adding the antibody anti-CD105
ILp to the surface of liposomes, demonstrating effective imaging of tumor vasculature in
human MDA-MB-231 breast cancer-bearing mice [103].

This paragraph will discuss studies that combined NIRF with PET and/or MR imag-
ing. In 2012, Cai and his group demonstrated that TRC105 labeled with both a NIRF dye
(800CW) and 64Cu could be employed to successfully image 4T1 breast tumors in vivo,
showing good overlap between the two imaging modalities (Figure 3A) [104]. In vitro
experiments demonstrated that the dual-labeled antibody bound to HUVECs with high
specificity, yet not to 4T1 cells which lack CD105 expression. In the same year, comparable
results were found with a combination of TRC105, 800CW, and a different PET-isotope, 89Zr,
in the aforementioned in vivo 4T1 breast cancer mouse model [105]. A meeting report and
two articles showed that both the 64Cu- and 89Zr, dual-labeled (800CW) antibodies were
capable of primarily imaging angiogenesis and small tumor nodules in the lung metastatic
4T1 breast cancer model, supported by various in vitro and ex vivo experiments [106–108].
Importantly, NIRF and not PET imaging struggled to properly delineate the lung metas-
tases, which was attributed to the limited tissue penetration of NIRF and the relatively deep
position of the tissue [107]. By using a heterodimer of CD105 and tissue factor Fab antibody
fragments, labeled simultaneously with ZW800 and 64Cu or single-labeled with 64Cu,
the same group demonstrated the feasibility of in vivo NIRF and PET imaging of human
BxPC-3 and PANC-1 pancreatic tumors [56,109]. In the domain of multimodality-imaging,
various effective endoglin-targeting nanoparticles in the context of the 4T1 breast cancer
mouse model have been reported, including (i) small copper sulfide nanoparticles (NIRF
absorption and extinction properties), surrounded by mesoporous silica nanoshells and
labeled with TRC105 and 64Cu, (ii) hMSNs, loaded with doxorubicin and ZW800 and conju-
gated with TRC105 and 64Cu, and (iii) red fluorescent zinc oxide nanoparticles conjugated
with 64Cu and TRC105 [110–112]. In general, the flexibility of these nanoparticles allows
for the combination of multiple imaging techniques such as MRI and NIRF. In this context,
SMMC-7721 hepatic cellular carcinoma xenografts were effectively imaged with both imag-
ing modalities by employing an endoglin-targeted aptamer–dendrimer combination that
was conjugated with a paramagnetic agent (Gd-DTPA) and a near-infrared fluorophore
(IR783) [113].

3.2.5. Endoglin-Based Ultrasound Imaging of Tumors

Imaging based on ultrasound functions via the transmission of non-ionizing, high-
frequency sound waves through target tissue. These soundwaves are reflected differently
by various tissue types based on their density (acoustical impedance) and are processed into
greyscale, real-time images with good contrast. Developments over several decades have
culminated in various improved techniques as compared to the original two-dimensional
ultrasound images, including three- and four-dimensional acquisition, blood flow mea-
surements via color doppler, and contrast-enhanced ultrasound (CEUS) imaging via the
use of microbubbles. Next to the obvious advantage of its non-harmful nature, ultrasound
is relatively cheap, readily available and fast, has a manageable and portable size com-
pared to MR and nuclear imaging modalities, and allows for simultaneous visualization
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of morphology and pathophysiological processes. However, when considering utilizing
ultrasound in any context, one must keep in mind that effective image acquisition demands
training and experience. Moreover, the emitted sound waves are inept to travel effectively
through echodense structures (e.g., bone, thick vascular calcifications), resulting in acoustic
shadows that impair the viewing field behind these solid structures. Nonetheless, ultra-
sound imaging is a promising modality in cardiovascular and tumor imaging, as indicated
by its clinical adoption in diseases such as aortic aneurysms, atherosclerotic obstructions,
and ovarian cancer [114–116].

Microbubbles are shelled gas bubbles with a diameter of 0.5–10 µm, which exception-
ally react to ultrasonic waves by expansion and contraction. This response leads to emission
of detectable signals, allowing for distinct imaging by the ultrasound transducer and in-
creasing (targeted) contrast. Moreover, a so-called destruction pulse can be used to increase
targeted contrast or induce content-release (e.g., therapeutic agents) and modifications to
the structure of microbubbles allow for increased theragnostic specificity and local drug
release (reviewed in [117]). It is important to keep in mind that the diameter of microbub-
bles only allow for targeting of intravascular markers, although nanobubbles have been
proposed as extravascular targeting agents with the capability of traversing (leaky) vascular
endothelium because of their size (<200 nm) [118]. Notably, all microbubble constructs
reported in the paragraphs below were functionalized with (strept)avidin, a protein foreign
to humans with potential immunogenic risks, allowing for proof-of-principle studies but
impairing clinical use.

The first use of targeting microbubbles to endoglin was reported in an in vitro culture
of endothelial cells (bEND.3 cell line) [119]. Avidin–biotin interaction was employed for
noncovalent coupling of rat anti-mouse monoclonal anti-endoglin antibodies (MJ7/18) to
microbubbles. Avidin was incorporated into the shell of perfluorocarbon-exposed dextrose
albumin (PESDA) microbubbles via sonication. FITC-conjugated biotinylated monoclonal
antibodies were linked to the microbubbles (anti-CD105-avidin-PESDA-Microbubble) and
subsequently incubated with cultured endothelial cells and 3T3 fibroblasts, demonstrat-
ing specific binding to the former but not to the latter subtype [119]. In a subsequent
study, an in vivo subcutaneous mouse model of pancreatic cancer (Pan02 cell line) was
used [120]. After 5 weeks of treatment with either the chemotherapeutic drug gemc-
itabine or a control agent, video-intensity of anti-CD105-avidin-PESDA-Microbubbles
was significantly lower in the gemcitabine group, as supported by comparable results
obtained with immunofluorescence-assessed endothelial cell marker expression (CD105
and VEGFR2) and MVD determination. In short, video-intensity is calculated by subtrac-
tion of background video-intensity from the mean video intensity generated by targeted
microbubbles [121,122]. In the same article, the authors used microbubbles conjugated
with anti-VEGFR2. They reported that no toxicity was observed during or after all ul-
trasonic applications [120]. In another study, streptavidin-biotin binding chemistry to
fabricate microbubbles targeted to biotinylated rabbit anti-mouse αvβ3 integrin, mouse
VEGFR2, mouse endoglin, and a control IgG was reported [123]. The microbubbles con-
tained streptavidin moieties in their lipid shell, enclosing perfluorocarbon. Ovarian ade-
nocarcinoma (SKOV3)-, breast adenocarcinoma (MDA-MB-361)-, and pancreatic adeno-
carcinoma (MiaPaCa2)-bearing mice were injected with four boluses (interval of 30 min)
that contained all four microbubble types. Real-time, longitudinal CEUS of all three
targeted microbubbles showed effective quantification of angiogenic marker expression
via video-intensity in all three cancer models. Especially for endoglin, good correlation
was found between ex vivo immunoblotting analyses and targeted CEUS imaging sig-
nal (ρ = 0.88) [123]. In a similar study, the video-intensity of lipid-shelled microbubbles
coupled via streptavidin-biotin binding chemistry to anti-mouse rat integrin αv, VEGFR2,
endoglin, and a control IgG was evaluated in a B16-F10 melanoma mouse model [124].
The mice received every day either sorafenib, a multikinase inhibitor which inhibits an-
giogenesis [125,126], or a control solution, and underwent CEUS imaging at days 0 and 3.
Calculated differential targeted enhancement (dTE), analogous to the previously described
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video-intensity, revealed that endoglin-conjugated microbubbles displayed significantly
increased signal intensity as compared to anti-integrin αv and anti-VEGFR2 microbubbles.
Moreover, endoglin microbubbles demonstrated increased signal intensity in the control
treated group as compared to the mice that received sorafenib [124]. CD105-targeted
perfluorocarbon-containing lipid-shelled microbubbles using avidin-biotin binding chem-
istry (anti-CD105-avidin-Microbubble) were employed in the context of subcutaneous
U87MG glioblastoma-bearing mice [127]. After in vitro immunofluorescence confirmed
specificity of the CD105-targeted microbubbles to CD105 positive endothelial cells (MS1
cell line) compared to 4T1 breast cancer cells, adequate positive correlation in the glioblas-
toma model between ex vivo CD105 immunofluorescence and in vivo ultrasound dTE
(ρ = 0.86) was shown. In a model of HepG2 hepatoblastoma-bearing nude mice, microbub-
bles conjugated with anti-mouse anti-endoglin antibodies had a significantly higher dTE
than microbubbles conjugated with an isotype IgG in the vasculature of the xenografted
tumor [128]. Comparably, CD105-targeted microbubbles were studied in the context of
two separate xenografted cholangiocarcinoma mouse models (TFK-1, EGI-1 cell lines) and
demonstrated significant capacity to bind to both tumors compared to isotype control
microbubbles [129].

Intriguing research that is beyond the scope of this review is the work by the group of
Foster, proving that endoglin-targeting microbubbles can be used to image the vasculature
of living mouse embryos [130,131].

Table 1. Overview of current endoglin-based tumor imaging studies, categorized by imaging modality, disease model, and
imaging agent.

Imaging
Principle Specific Model

(h) = Human, (m) = Murine Imaging Agent Class

Nuclear imaging
(n = 20)

General
(n = 2)

Dogs with spontaneous mammary tumors 125I-MAEND3 [47] a
a. Antibody

Human renal cell carcinoma patients *
(excised human kidneys)

99mTc-E9 mAb [48] a

SPECT
(n = 1) B16F10 (m) melanoma model 125I-anti-CD105 mAb [46] a a. Antibody

PET
(n = 17)

4T1 (m) breast cancer mouse model

64Cu-NOTA-TRC105 and 64Cu-DOTA-TRC105 [49] a

64Cu-TRC105-Fab [50] b

64Cu-TRC105-F(ab’)2 [51] b

66Ga-NOTA-TRC105 [52] a

89Zr-Df-TRC105 [53] a

86Y-DTPA-TRC105 [54] a

64Cu-NOTA-nanographene-TRC105 [57,58] c

66Ga-NOTA-nanographene-TRC105 [57,59] c

64Cu-NOTA-RGO-TRC105 [62] c

64Cu-NOTA-PAMAM-PLA-PEG-TRC105 [66] c

64Cu-NOTA-PHEMA-PLLA-PEG-TRC105 [67] c

64Cu-NOTA-mSiO2-PEG-TRC105 [68] c

89Zr-bMSN-PEG-TRC105 [70] c

a. Antibody
b. Fab fragment
c. Nanoparticle

U87MG (h) glioblastoma (EGFR/CD105+/+)
mouse model

64Cu-NOTA-(anti-CD105 and anti-EGFR Fab) [55] b

BxPC-3 (h) pancreatic tumor mouse model 64Cu-NOTA-(anti-CD105 and anti-TF Fab) [56] b

B16F10 (m) melanoma mouse model 89Zr-anti-CD105-AuNP-PPAA [64] c

MRI
(n = 9)

4T1 (m) breast cancer mouse model Anti-CD105-PVP-SWCNT-SPION [80,81] c, T2

c. Nanoparticle
d. Peptide

4T1 (m) lung metastases mouse model (breast
cancer) Anti-CD105-PVP-SWCNT-SPION [82] c, T2

MDA-MB-231 (h) breast cancer mouse model Anti-CD105-PEG- (Fe2O3/au nanoparticle) [84] c, T2
F9 (m) teratoma mouse model αCD105-PAA-SPION [77] c, T2
F98 (m) glioma rat model Anti-CD105-Gd-(PEGylated liposomes) [78] c, T1
C6 (m) glioma rat model Anti-CD105-Gd-(paramagnetic liposomes) [79] c, T1
Tumor vascular endothelial cells (coculture,
HUVEC: MDA-MB-231 (h); 1:5) (in vitro) CL 1555-PEG-MnFe2O4 [83] c,d, dual T1/T2

H22 (m) hepatocellular carcinoma mouse
model Aptamer-Fe3O4@CMCS [87] c, T2

NIRF
(n = 6)

4T1 (m) breast cancer mouse model 800CW-TRC105 [97] a

a. Antibody
b. Fab fragment
c. Nanoparticle
d. Peptide

MNNG/HOS (h) osteosarcoma mouse model FITC-nABP296 [98] d,**

MDA-MB-231 (h) breast cancer and HT1080
(h) fibrosarcoma mouse models

End-IL-Liposomes-DY-676-COOH [100] c

Bi-FAP/mEND-IL liposomes-DY-676-COOH [102] c

MDA-MB-231 (h) breast cancer mouse model Anti-CD105 ILp-liposomes [103] c

U87MG (h) glioblastoma (EGFR/CD105+/+)
tumors ZW800-NOTA-(anti-CD105 and anti-EGFR Fab) [55] b
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Table 1. Cont.

Imaging
Principle Specific Model

(h) = Human, (m) = Murine Imaging Agent Class

Ultrasound
(n = 7)

bEND.3 endothelial cells (in vitro) Anti-CD105-avidin-PESDA-Microbubble [119] e

e. Microbubble

Pan02 (m) pancreatic cancer mouse model Anti-CD105-avidin-PESDA-Microbubble [120] e

SKOV3 (h) ovarian adenocarcinoma mouse
model Anti-CD105-streptavidin-Microbubble [123] e

MDA-MB-361 (h) breast adenocarcinoma
mouse model Anti-CD105-streptavidin-Microbubble [123] e

MiaPaCa2 (h) pancreatic adenocarcinoma
mouse model Anti-CD105-streptavidin-Microbubble [123] e

B16-F10 (m) melanoma mouse model Anti-CD105-streptavidin-Microbubble [124] e

U87MG (h) glioblastoma mouse model Anti-CD105-avidin-Microbubble [127] e

HepG2 (h) hepatoblastoma mouse model Anti-CD105-streptavidin-Microbubble [128] e

TFK-1 (h) and EGI-1 (h) cholangiocarcinoma
mouse model Anti-CD105-streptavidin-Microbubble [129] e

Dual imaging
(n = 13)

PET/NIRF
(n = 11)

4T1 (m) breast cancer mouse model

64Cu-NOTA-TRC105-800CW [104] a

89Zr-Df-TRC105-800CW [105] a

64Cu-CuS@MSN-TRC105 [110] c

64Cu-hMSN-TRC105-ZW800 [111] c

64Cu-NOTA-QD@hMSN-PEG-TRC105 [71] c,**
UCNP@89Zr-hMSN-PEG-TRC105 [72] c

64Cu-NOTA-ZnO-TRC105 [115] c
a. Antibody
b. Fab fragment
c. Nanoparticle

4T1 (m) lung metastatic mouse model (breast
cancer)

89Zr-Df-TRC105-800CW [106,107] a

64Cu-NOTA-TRC105-800CW [108] a

BxPC-3 (h) and PANC-1 (h) pancreatic tumor
mouse models

64CU-NOTA-(anti-CD105 and anti-TF Fab’
immunoconjugate)-ZW800 [112] b

PET/MRI
(n = 1) 4T1 (m) breast cancer mouse model 64Cu-NOTA- Mn3O4@PEG [73] c c. Nanoparticle

NIRF/MRI
(n = 1)

SMMC-7721 (h) hepatic cellular carcinoma
mouse model Gd-DTPA-aptamer-dendrimer-IR783 [113] c c. Nanoparticle

* Only ex vivo study in human organs included, ** the absorption/emission spectra of FITC (494/518 nm) and some quantum dots officially
fall outside the range of NIRF.

3.3. Endoglin-Based Imaging of Cardiovascular Diseases
3.3.1. Imaging of Angiogenesis in Cardiovascular Diseases

Besides the crucial role for angiogenesis in tumor progression, angiogenic processes
are involved in multiple cardiovascular diseases, including atherosclerosis (peripheral
and coronary artery disease, vein graft disease) and aortic aneurysms (both thoracic and
abdominal) [132–137]. Endoglin/CD105 has a high sensitivity for the detection of mi-
crovessels in atherosclerotic plaques, is involved in the pathophysiology of atherosclerotic
lesions, is upregulated in aortic aneurysms, and contributes to shear-induced collateral
artery growth [138–140]. The combination of the regulatory role of endoglin in intraplaque
angiogenesis together with the fact that intraplaque angiogenesis is increasingly related
to plaque instability, supports the quantification of plaque destabilization by means of
endoglin-based imaging [134,141–143]. With such imaging modalities, the identification
of unstable plaques would not rely on the function of endoglin but rather on its high
expression on the activated endothelium. Whereas angiogenesis in cardiovascular diseases
acts as a disease promoting, inflammation facilitating, and vessel wall weakening process,
it may also be harnessed as a therapeutic option to overcome ischemia-related symptoms
such as ischemic heart disease or ischemia of muscles in peripheral artery disease [144–147].
In both cases, imaging of angiogenesis would enable accurate monitoring of disease in a
clinical as well as preclinical setting. In the context of abdominal aortic aneurysms (AAAs),
current decision-making regarding treatment is based on a balance between patient charac-
teristics, invasiveness of the procedure, and risk of rupture upon a certain aortic diameter
(female: >5.0 cm, male: >5.5 cm) [114]. In that regard, noninvasive, endoglin-based PET
imaging of intra-aortic angiogenic processes could be of added value in tailoring this
decision to a patient-specific level, by possibly identifying patients at increased levels
of rupture risk [148,149]. Another example would be endoglin-based imaging of carotid
artery plaques to assess lesion stability, as it is known that unstable lesions have a high
risk of embolization, which may result in transient ischemic attacks and strokes. If asymp-
tomatic but unstable plaques could be identified via the quantification of angiogenesis,
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a preventive surgical endarterectomy could be advocated. In case of peripheral artery
disease patients, angiogenesis is of paramount importance for treatment and follow-up.
Angiogenic wound healing mechanisms, effects of supervised walking therapy, surgical
reconstruction, and novel medicinal therapies can potentially be imaged and quantified to
predict clinical effects. In the past decade, multiple PET-, MR- and NIRF-based tracers have
been developed, but still need improvement to achieve (pre) clinical success (reviewed
in [134]). The endoglin-targeting chimeric antibody TRC105 could therefore serve as a
non-immunogenic, rapid, and effective method to implement preclinically developed,
sophisticated imaging techniques in the clinic.

3.3.2. Endoglin-Based Nuclear Imaging of Cardiovascular Diseases
64Cu-NOTA-TRC105-(Fab) has been employed in three different cardiovascular dis-

ease models to achieve endoglin-based PET imaging: murine hindlimb ischemia, rat my-
ocardial infarction (MI), mouse calcium-phosphate-induced AAA. In the murine hindlimb
ischemia model, the right femoral artery was ligated and excised to mimic peripheral
artery disease and image disease-related angiogenesis based on endoglin expression
(Table 2) [150]. Gradually decreasing, ischemic hindlimb-specific signal in time (t = 3,
10, 24 days; 48h post-injection) was reported as compared to the contralateral control
limb upon PET imaging of the injected tracer in vivo. The highest uptake of 64Cu-NOTA-
TRC105 was found in the ischemic hindlimb at days 3 and 10, coinciding with near-full
compensatory angiogenic mechanisms, as was shown by laser doppler imaging (Figure 3B).
Although promising, the results also demonstrated that the relatively long half-life of the
tracer caused some background signal in the circulation at 4 h post injection [150]. In a
comparable study, it was shown that the 64Cu-NOTA-TRC105 tracer could be effectively
employed to monitor therapeutic effects of the cholesterol-lowering drug pravastatin in
the ischemic hindlimb mouse model [151]. This result, together with its highly specific
expression on angiogenic vasculature, make endoglin a promising tracer for monitoring
of both progression and treatment of peripheral artery disease. The 64Cu-NOTA-TRC105
tracer was also studied in the context of neovessel formation after MI (Figure 3C) [152].
64Cu-NOTA-TRC105 was injected intravenously in rats that underwent ligation of their
left anterior descending artery. PET imaging enabled quantification of neovessel density in
the ischemic zone, demonstrating significantly higher signal in the rats that received the
MI-inducing surgery compared to sham-operated rats 3 days post-surgery. Tracer uptake
remained higher in the MI group on days 10 and 17 post-operation, albeit not significantly,
and was confirmed via CD105 immunohistochemistry. Comparable to the hindlimb is-
chemia model, at 4 and 24 h post-injection, high background signal resulting from the
blood impaired effective imaging, while at 48 h, clear visualization of post-MI angiogen-
esis was possible. An additional signal was observed from the incision in the intercostal
muscles, most likely related to angiogenic wound healing processes (Figure 3C) [152]. In
the calcium phosphate-induced AAA mouse model, a Fab fragment of TRC105 conjugated
with 64Cu was used to evaluate angiogenesis in a calcium phosphate-induced AAA mouse
model (Table 2) [153]. The advantage of the Fab fragment compared to an intact antibody
was, according to ex vivo biodistribution studies, reduced clearance and minimal uptake
by the intestines, resulting in reduced background noise. In vivo, the AAA was effec-
tively targeted by 64Cu-NOTA-TRC105-Fab and corresponding tracer uptake correlated to
immunofluorescent stainings for CD105 [153].

Table 2. Overview of current endoglin-based cardiovascular disease imaging studies, categorized by imaging modality,
disease model, and imaging agent.

Imaging Principle Specific Model Tracer Class

Nuclear imaging
(n = 4)

PET
(n = 4)

Murine hindlimb ischemia 64Cu-NOTA-TRC105 [150,151] a

a. Antibody
b. Fab fragment

Rat myocardial infarction (LAD ligation) 64Cu-NOTA-TRC105 [152] a

Abdominal aortic aneurysm mouse
model (calcium phosphate-induced)

64Cu-NOTA-TRC105-Fab [153] b
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Figure 3. Endoglin-based imaging in three different animal models. (A) Dual-modality positron emission tomography
(PET) and near-infrared fluorescence (NIRF) imaging of CD105 in the 4T1 murine breast cancer model with 64Cu-NOTA-
TRC105-800CW. Arrowheads indicate the 4T1 tumor. Adapted from Zhang et al., 2012 [104]. (B) 64Cu-NOTA-TRC105 PET
imaging of CD105 in the murine hindlimb ischemia model. Tracer uptake peaked in the ischemic hindlimb (arrowheads) at
around 3 days after surgery. CD105-specificity of tracer uptake was confirmed by successful blocking experiments and
strong CD105 staining. Adapted from Orbay et al., 2013 [150]. (C) In a rat model of myocardial infarction, confirmed by the
gap in the 18F-FDG PET image (arrowhead), 64Cu-NOTA-TRC105 PET allowed for noninvasive imaging of CD105 in vivo
(arrowhead). The wound was also delineated by the tracer since it has a high level of angiogenesis and CD105 expression.
Adapted from Orbay et al. 2013 [152].

Regarding MR and NIRF imaging for endoglin-based cardiovascular applications,
similar results to those above could be achieved in the future, especially when considering
the developments in the oncologic research field such as the use of dual-imaging. An
interesting application for ultrasound would be to monitor vessel wall stabilization and
remodeling upon therapy (e.g., statins). Ultimately, while the optimal choice of tracer
(antibody, Fab fragment, nanoparticle) and imaging system (PET, MRI, NIRF, ultrasound)
requires additional research, it is clear that endoglin has potential as a target for visualiza-
tion of cardiovascular diseases.

4. Discussion
4.1. Summary of Evidence

Based on predominantly preclinical data, endoglin-based imaging shows promising
results in both cancer and cardiovascular diseases. PET and MR imaging offer (preopera-
tively) high-resolution, whole-body, three-dimensional in vivo mapping of lesions, while
NIRF imaging has the benefit of real-time visualization, allowing for IGS. CEUS is especially
interesting due to the manageability of the appliance in combination with the relatively
fast acquisition times and appropriate resolution. The results from the literature search
clearly demonstrate that there is a widespread preference for endoglin-based PET imaging.
The most commonly researched in vivo model is that of (4T1) breast cancer bearing mice,
but the general feasibility of endoglin-based imaging has been demonstrated in many other
cancer models, including melanoma, glioma, pancreatic cancer, teratoma, hepatocellular
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carcinoma, osteosarcoma, and cholangiocarcinoma. Consistent with the preclinical status
of the research field, only one paper described endoglin-based imaging in ex vivo human
organs, showing effective visualization of renal cell carcinoma vessels in excised human kid-
neys of patients. As a target of predominantly the neovasculature in cancer, endoglin would
be most suited to both (i) serve as a diagnostic and disease monitoring imaging target, to
improve current measures of MVD and improve existing diagnostic imaging techniques,
(ii) and to function in image-guided surgery, with a potential future to assist surgeons in
resecting tumors based on imaging of tumor stroma and neovessels. Neovascularization
also plays a central role in the development of cardiovascular diseases and could therefore
be harnessed to monitor the development of these pathologies. Although the numbers
are limited, the existing studies support the potential of endoglin-based (PET) imaging of
angiogenesis in atherosclerosis, in aortic aneurysm, and after myocardial infarction.

4.2. Strengths and Limitations

The strength of this review is that it combines all existing studies on endoglin-based
imaging, providing a complete overview on (pre) clinically relevant imaging modalities
in various in vivo, in vitro, and ex vivo models. The limitation is the heterogeneity of the
included studies and its encompassing incomparable outcome measures, confining the
report of the results to a narrative synthesis approach.

5. Conclusions and Future Perspectives

Research in the field of endoglin-based imaging has mainly been performed by using
PET. The diagnostic nature of this modality suggests that there exists either a preference for
the development of diagnostic techniques or a lack of focus on endoglin for intraoperative
use. Although present in fewer numbers, other endoglin-based imaging techniques such as
MRI, NIRF, and ultrasound show effective visualization of the angiogenic endothelium. In
the future, multimodal tracers that may be visualized by different imaging techniques hold
great promise. Specifically, TRC105 offers the potential to cover the entire care pathway, by
using this vector molecule in conjunction with different labels, according to the desired
imaging purposes. A notable research field, which has not yet been evaluated in the context
of endoglin, is photoacoustic imaging. By exciting tissue with a strong laser of various
wavelengths, specific constituents emit sound waves that can be separately captured by
an ultrasound transducer. Molecular agents, including antibodies used for NIRF, can emit
sound waves upon excitation with these lasers in the NIRF range (700–900 nm), allowing
for enhanced contrast. It is evident that a combination of these techniques is of great use
in both a preclinical and clinical setting, by combining real-time structural ultrasound
visualization and pathophysiological quantification via a compact and manageable system.

The chimeric endoglin-targeting antibody TRC105 seems an ideal candidate to harness
the potential of endoglin-based imaging. Therefore, it is unfortunate that the developer
of TRC105, TRACON Pharmaceuticals, appears to have lost interest in the antibody’s
therapeutic capabilities [154]. As a result, nowadays only a limited number of clinical
studies are being performed [155], whereas, based on endoglin’s dynamic potential, this
should perhaps be extended to the field of imaging. The most important factor for the
latter to succeed is effective translational research. Regardless of the intended tracer, either
antibody, peptide or else, endoglin has proven itself as a valuable target for the imaging of
cancer and cardiovascular diseases.
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Abbreviations

AAA Abdominal aortic aneurysm
ALK1/5 Activin receptor-like kinase 1/5
AuNP Gold nanoparticle
BMP Bone morphogenetic protein
bMSN Biodegradable mesoporous silica nanoparticle
CEUS Contrast-enhanced ultrasound
CMCS Carboxymethyl chitosan
CT Computed tomography
64Cu Copper-64 radioisotope
CuS Copper sulfide
dTE Differential targeted enhancement
DOTA 1:4:7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
EPR Enhanced permeability and retention
18F Fluorine-18 radioisotope
FAP Fibroblast activation protein
Fe2O3 Maghemite
18F-FDG 18F-Fluorodeoxyglucose
FITC Fluorescein-5-isothiocyanate
66Ga Gallium-66 radioisotope
Gd-DTPA Gadolinium-diethylenetriamine pentaacetic acid
HHT1 Hereditary hemorrhagic telangiectasia type 1
hMSN Hollow mesoporous silica nanoparticle
125I Iodine-125 radioisotope
IGS Image-guided surgery
iMRI Intraoperative magnetic resonance imaging
HUVEC Human umbilical vein endothelial cell
LAD Left anterior descending
mAb Monoclonal antibody
MI Myocardial infarction
mEND Magnetic endoglin aptamer
Mn3O4 Manganese oxide
MR(I) Magnetic resonance (imaging)
mSiO2 Mesoporous silica
MSN Mesoporous silica nanoparticle
MVD Microvessel density
NIR(F) Near-infrared (fluorescence)
NOTA 1,4,7-triazacyclononane-1,4,7-triacetic acid
PAMAM Poly(amidoamine)
PEG Polyethylene glycol
PESDA Perfluorocarbon-exposed dextrose albumin
PET Positron emission tomography
PHEMA Poly(2-hydroxyethyl methacrylate)
PLA Poly(l-lactide)
PPAA Plasma-polymerized allylamine
PVP Polyvinylpyrrolidone
RGO Reduced graphene oxide
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R-SMAD Receptor-regulated SMAD
QD Quantum dot
SPECT Single photon emission computed tomography
SPION Superparamagnetic iron oxide nanoparticle
SWCNT Single-walled carbon nanotube
99mTc Technetium-99m radioisotope
TGF-β Transforming growth factor-β
TβRI/II Transforming growth factor-β receptor I/II
201Tl Thallium-201 radioisotope
UCNP Upconversion nanoparticle
VEGF(R) Vascular endothelial growth factor (receptor)
86/90Y Yttrium-86/90 radioisotopes
89Zr Zirconium-89 radioisotope

Appendix A. Search Strategy

Appendix A.1. Component 1: Endoglin

(“Endoglin”[Mesh] OR “Endoglin”[tiab] OR “CD105”[tiab] OR “FLJ41744”[tiab] OR
“ORW”[tiab] OR “ORW1”[tiab])

Appendix A.2. Component 2: Imaging and Image-Guided Surgery

(“Image Guided Surgery”[tiab] OR “Surgery, Image-Guided”[tiab] OR “Image-Guided
Surgeries”[tiab] OR “Surgeries, Image-Guided”[tiab] OR “Surgery, Image Guided”[tiab]
OR “Image-Guided Surgery”[tiab] OR “Diagnostic Imaging”[Mesh] OR “CT”[tiab] OR
“Computed Tomography”[tiab] OR “PET”[tiab] OR “Positron Emission Tomography”[tiab]
OR “SPECT”[tiab] OR “Single Photon Emission Computed Tomography”[tiab] OR “Near-
infrared”[tiab] OR “Near infrared”[tiab] OR “NIRF”[tiab] OR “Ultrasonography”[tiab] OR
“Ultrasound imaging”[tiab] OR “Imaging, ultrasound”[tiab] OR “Ultrasonic imaging”[tiab]
OR “Imaging, ultrasonic”[tiab] OR “Ultrasonographic imaging”[tiab] OR “Imaging, ultra-
sonographic”[tiab])

Appendix A.3. Combined, Final Strategy

Date of search: 17 December 2020
References found: 476
Combined PubMed search strategy:
((“Endoglin”[Mesh] OR “Endoglin”[tiab] OR “CD105”[tiab] OR “FLJ41744”[tiab] OR

“ORW”[tiab] OR “ORW1”[tiab]) AND (“Image Guided Surgery”[tiab] OR “Surgery, Image-
Guided”[tiab] OR “Image-Guided Surgeries”[tiab] OR “Surgeries, Image-Guided”[tiab]
OR “Surgery, Image Guided”[tiab] OR “Image-Guided Surgery”[tiab] OR “Diagnostic
Imaging”[Mesh] OR “CT”[tiab] OR “Computed Tomography”[tiab] OR “PET”[tiab] OR
“Positron Emission Tomography”[tiab] OR “SPECT”[tiab] OR “Single Photon Emission
Computed Tomography”[tiab] OR “Near-infrared”[tiab] OR “Near infrared”[tiab] OR
“NIRF”[tiab] OR “Ultrasonography”[tiab] OR “Ultrasound imaging”[tiab] OR “Imaging,
ultrasound”[tiab] OR “Ultrasonic imaging”[tiab] OR “Imaging, ultrasonic”[tiab] OR “Ul-
trasonographic imaging”[tiab] OR “Imaging, ultrasonographic”[tiab]))
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