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Abstract: Platelets are components of the blood that are highly reactive, and they quickly respond
to multiple physiological and pathophysiological processes. In the last decade, it became clear that
platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity.
Protein composition, localization, and activity are crucial for platelet function and regulation. The
current state of mass spectrometry-based proteomics has tremendous potential to identify and quan-
tify thousands of proteins from a minimal amount of material, unravel multiple post-translational
modifications, and monitor platelet activity during drug treatments. This review focuses on the role
of proteomics in understanding the molecular basics of the classical and newly emerging functions
of platelets. including the recently described role of platelets in immunology and the development
of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet
biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion
mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in
platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.

Keywords: platelets; signaling; mass spectrometry; LC-MS/MS; PTMs; phosphoproteomics; targeted
proteomics; platelet transfusion proteomics; precision medicine

1. Platelets Biology and Functions
1.1. The Platelet’s Origin

Platelets are small, anucleated cell fragments, and besides erythrocytes, they are
the second most abundant in blood circulation. They are derived from the cytoplasm of
megakaryocytes (MK), the large cells in the bone marrow and lungs. They circulate in
the bloodstream for 7 to 10 days, and are cleared in the spleen or liver after they become
senile [1-3]. The platelet production process—thrombopoiesis—is spatially regulated by
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the bone marrow vasculature and stimulated by thrombopoietin, a glycoprotein hormone
primarily produced in the liver parenchymal cells and kidney [4]. Thrombopoietin bind-
ing to myeloproliferative leukemia protein (c-Mpl or CD110) predominantly expressed
on megakaryocyte surface induces the receptor’s homodimerization, and activates JAK-
STAT and MAPK signaling cascades that subsequently control cellular proliferation and
differentiation to platelets [5,6]. Additionally, it was described to induce changes in the
mitochondrial metabolism of hematopoietic stem cells and prime them to undergo direct
differentiation to megakaryocytes [7]. Platelet-derived extracellular vesicles from platelets
activated during inflammation have been shown to infiltrate the bone marrow and activate
MKs and MK-precursor cells for rapid reconstitution of a number of circulating platelets [8].

1.2. Platelets in Hemostasis

The first described and main role of platelets is hemostasis (from “hemo”—Greek
blood, “stasis”—stable) or prevention of blood loss. The primary steps of hemostasis are
performed by platelets, the secondary by proteases of the coagulation cascade. Fibrinol-
ysis is an additional process of dissolving the created clots, restoring the normal blood
circulation, and bringing the whole system to initial equilibrium. Platelet activation is
central for the execution of platelets” diverse functions from primary hemostasis to in-
flammation. Such activation is mediated by numerous receptors present on their surface
and bioactive molecules stored in different granules within platelets (Figure 1A,B). Upon
platelet activation, the cargo from different types of granules and microparticles is released
in a well-regulated manner, and the resulting specific platelet “releasates” create a mi-
croenvironment of biologically active metabolites and proteins. The specific content of
“releasates” is crucial during platelet aggregation and thrombus formation, due to the
efficient delivery of growth factors and immune modulators to their sites of effect, and the
enhancement of the coagulative response in a positive feedback loop [8]. Three types of
granules can be recognized within platelets that harbor molecules essential for their func-
tion: «-granules that contain diverse proteins, cytokines, chemokines, and growth factors;
d-granules that contain small molecules-serotonin, ADP, polyphosphates, calcium; and lyso-
somes that contain degrading enzymes [9]. The content of x-granules is secreted through
special surface-connected channels called the open canalicular system (OCS). It facilitates
membrane remodeling and shape changes during platelet adhesion, including filopodia
formation and irreversible spreading [10,11]. The platelet dense tubular system (DTS) is
central in the initiation and modulation of platelet activation. The platelet prostaglandin
and thromboxane synthesis and an internal calcium store critical to platelet activation are
both found in the platelet DTS [12]. Visualization of platelet thin frozen sections shows
DTS membranes as small vesicular structures termed T granules [11]. T-granules contain
toll-like receptor 9 (TLR9), protein disulfide isomerase (PDI), and VAMP-8, and it has been
suggested that these are recruited to the cell surface contributing to the secretion [11,13].

Platelets are activated when exposed to extracellular matrix proteins in the areas
of endothelial damage. Platelets surveil the endothelium surface within the blood ves-
sels and are especially important to stop bleedings in the small capillaries. Endothelial
cells contribute to keeping them inactivated by secreting prostaglandin 12 (prostacyclin,
PGI2) and nitric oxide (NO), as well as expressing CD39 (ectonucleotidase that cleaves
ADP/ATP). Upon vessel wall injury, platelets quickly recognize the damage; they adhere to
the damaged areas and are activated to seal the injury [14]. Platelet adhesion is initiated by
detecting extracellular matrix proteins, such as collagen or fibronectin, which are exposed
to the circulating blood upon endothelial injury. The platelets’ binding mechanisms depend
on the rate of shear stress that differ in arterial and venous systems. Under high shear
conditions, the plasma-derived von Willebrand factor (VWEF) changes its conformation and
binds to the exposed collagen at the damaged site [14,15]. Under the high shear conditions,
the GPIb-V-IX receptor complex is required to stabilize platelet adhesion to the vessel sur-
face, besides collagen receptor glycoprotein (GP) VI and «lIb{33 integrin, which indirectly
interact with collagen via VWF [16]. Recent proteomics studies describe both the positive
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and negative influences of N-glycosylation on collagen-platelets interactions [17]. At low
shear conditions, the binding to collagen via 0231 integrin has a major role in platelet
adhesion to the injured endothelium.
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Figure 1. (A) Electron micrograph of resting platelet. Indicated: open canalicular system (OCS), dense tubular system

(DTS), a-granules, 8-granules that contain small molecules. (B) Graphical representation of the main secretory granules of
platelets and their contents. Indicated: protein disulfide isomerase (PDI), with toll-like receptor 9 (TLR), vesicle-associated
membrane protein 8 (VAMP-8). (C) A platelet forming filopodia and (D) a fully spread platelet. Platelets were stained for

F-actin with phalloidin-Alexa Fluor 488, and visualized by a confocal laser scanning microscope.

Initial engagement of receptors leads to the activation of platelets through multiple
signaling pathways that precede cytoskeletal rearrangements. Upon activation, platelets
change their shape from discoid to more spherical, form filopodia, and fully spread into
fried-egg shape lamellipodia (Figure 1C,D). Following adhesion, activated platelets act
in a paracrine and autocrine way to recruit additional platelets from circulation and to
further activate themselves. This process is mediated via the production of thromboxane
A2 (TxAZ2) and the release of ADP from &-granules, stimulating TxA2 and P2Y (1 and 12)
receptors. In this way, additional platelets will adhere to the site of the injury, aggregate,
and build up three-dimensional clots with the tightly regulated hierarchical architecture of
activated platelets, coagulation factors, regulatory factors, and fibrin [18].

The release of a-granules from activated platelets increases platelet surface expres-
sion of P-selectin and CD40L that enables them to interact with circulating leukocytes
and endothelium. An increased level of circulating monocyte-platelet aggregates (MPAs)
represents one of the most robust platelet activation markers [19]. Upon platelet activation,
integrin «IIbp3 adopts open conformation and binds to the fibrinogen and VWEF. This
binding enables interconnecting platelets to each other and additionally stabilizing aggre-
gates. Finally, exposed damaged tissue releases tissue factor that will stimulate thrombin
formation. Thrombin cleaves and stimulates PAR (protease-activated receptor, in humans
1 and 4; in mice 3 and 4) on platelets and cleaves fibrinogen into fibrin that will further
strengthen aggregates [20]. The clot’s final stabilization is mediated via actin-myosin
platelet retraction as part of secondary hemostasis.

1.3. Platelets Activation and Inhibition

Receptor engagement triggers multiple intracellular signaling and cytoskeletal path-
ways that result in platelet activation (Figure 2). Collagen initiates platelet activation
through GPVI, a member of the immunoglobulin family, which is coupled to Fc recep-
tor v (FcRy). The cytoplasmic tail of FcRy contains an immune receptor tyrosine-based
activation motif (ITAM) that is phosphorylated by Src kinases [21]. On the other hand,
soluble agonists (ADP, TxA2, thrombin) activate G-protein coupled receptors (GPCRs) that
accelerate the platelet response. The activation of G-protein- and ITAM-coupled receptors
will signal intracellularly via activation of phospholipase C (PLC, 3 or ) that will generate
second messengers inositol 1,4,5,-triphosphate (IP3) and diacylglycerol (DAG) from the
membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). IP3 will induce the
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release of Ca?* from intracellular stores, while DAG will activate diverse protein kinase
C isoforms [22]. The rise in Ca?* propels several platelet responses, such as cytoskeletal
changes, integrin activation, and degranulation. An increase in Ca?* activates the small
GTPase Rap1 via the guanine nucleotide exchange factor CalDAG-GEFI [23]. Subsequently,
Rapl1 recruits talin to the plasma membrane, thereby further activating integrin xlIlb@3. In
turn, binding of activated «IIb3 to its ligands (e.g., fibrinogen) will transfer outside-in
signals, regulating further cytoskeletal remodeling needed for full platelet spreading and
clot retraction [24].
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Figure 2. Platelet activation and inhibition. Stimulation with major platelet agonists (ADP, TxA2,
thrombin, collagen, VWF) activates phospholipase C (PLC), and increases downstream signals,
resulting in increased P-selectin expression and integrin activation. Major inhibitory signals include
prostacyclin 12 (PGI2), and nitric oxide (NO), that increase cAMP, or cGMP, resulting in the activated
protein kinase A (PKA), or protein kinase G (PKG), respectively. PKA and PKG phosphorylate
multiple downstream targets, e.g., VASP, or CalDEG-GEFI and, thus, mediate negative effect on
platelet activation. Tight regulation of signaling pathways leading to the activation or inhibition
of platelets is required for their proper function. Abbreviations: VWEF, Von Willebrand Factor;
ADP, adenosine diphosphate; TxA2, thromboxane A2; PLC, phospholipase C; DAG, diacylglycerol;
IP3, inositol trisphosphate; PKC, protein kinase C; PGI2, prostacyclin 12; NO, nitric oxide; AC,
adenylyl cyclase; sGC, soluble guanylyl cyclase; PKA, protein kinase A; PKG, protein kinase G; VASP,
vasodilator-stimulated phosphoprotein.

In certain pathological conditions, when the balance between platelet stimulatory and
inhibitory (for details on inhibitory signaling see below) pathways is impaired, unbalanced
clot formation (thrombosis) could lead to the occlusion of the vessels, and thereby lead
to myocardial infarction or stroke (in arteries thrombi are rich in platelets) or to venous
thromboembolism [25]. Conclusively, the tight regulation of platelet activation is crucial to
ensure proper platelet function and prevent the formation of unwanted thrombi that could
cause severe pathological outcomes.

1.4. Immunoregulatory Function of Platelets

In the last decade, there has been increasing evidence that platelets do much more
than just maintain hemostasis and thrombosis. Many studies demonstrated their con-
tribution to immunity and a pivotal role in developing inflammation, infections, and
cancer [26-31]. Circulating platelets function as guardians sensing pathogens by a set of
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pattern recognition receptors (PRRs), including TLR, nod-like receptors (NLR), and C-
type lectin receptors (CLR). These receptors sense pathogen-associated molecular patterns
(PAMPs) such as lipoproteins, lipopolysaccharides (LPS), flagella, nucleic acids, proteins,
or damage-associated molecular patterns (DAMPs) [32-34]. Ligation of platelets PRRs to
the pathogens PAMPs effectively eliminates the pathogen or presents them to other cells
of the immune system (Figure 3). For instance, stimulation of platelet TLR2 increased the
P-selectin surface expression, activation of integrin allbf33, generation of reactive oxygen
species, and formation of platelet-neutrophil heterotypic aggregates in human blood [35].
The activation of platelets TLR4 receptor by bacterial LPS is still controversial. On the one
hand, it activates MyD88 /cGMP-dependent protein kinase signaling, which initiates the
platelet secretion and potentiates platelet aggregation [36]. On the other hand, platelets
activated by LPS have been described to form aggregates with polymorphonuclear (PMN)
cells and inhibit the weak platelet activation by ADP [37]. The activation by LPS also pro-
motes platelet-neutrophil adhesion and rapid formation of neutrophil extracellular traps
(NETS) to eliminate bacteria from the bloodstream [36,38,39]. Similar to TLR2, platelets
primed with endosomal receptors TLR3 agonists expose P-selectin/CD40L on the surface
and have enhanced procoagulant responses to thrombin or other traditional agonists [40].
TLR7, located in the platelets endolysosomes, senses various RNA viruses such as in-
fluenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [41-43]. The
activation of platelets through TLR7 can decrease platelet count (thrombocytopenia) and
cause hypercoagulation. The detailed mechanism of this activation is not yet investi-
gated [44,45]. Although numerous studies indicated that platelets express the full set of
PRRs, there is a limited evidence of their presence in MS-based proteomics data [46,47].
This is probably due to the methodological limitations, membrane nature, and the multiple
post-translational modifications of these receptors, limiting its detection by mass spectrom-
etry. It could also be because some TLRs are expressed mainly after platelet activation,
while first comprehensive platelet proteome analyses with deep coverage were performed
on resting platelets [32,46,47].
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Figure 3. The immunoregulatory function of platelets. Platelets possess a set of pattern recognition
receptors (PRRs) sensing pathogen-associated molecular patterns (PAMPs), such as lipoproteins (LP),
lipopolysaccharides (LPS), nucleic acids, including double-strand RNA (dsRNA) and single-strand
RNA (ssRNA).
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In different disease settings, platelets have been identified as both friends and foes.
On the one hand, they could be a vehicle for disseminating viral infections, such as
influenza, hepatitis C, dengue virus, or HIV [30,44,48-50]. On the other hand, they can kill
pathogens directly by wrapping, activated trapping, and producing anti-microbial peptides
or indirectly through activation of other immune cells. One of the most abundant platelet
proteins with estimated copy numbers ~ 600,000/ cell is platelet factor 4 (PF4), released
from «-granules, binds the membrane of Gram-negative and Gram-positive bacteria,
leading to their elimination [47,51,52]. The interaction of platelets with pathogens causes
rapid platelet activation. Following activation, platelets secrete pro- and anti-inflammatory
molecules and several types of platelet-derived extracellular vesicles, recruiting neutrophils,
macrophages, and dendritic cells to the site of infection [28]. For example, infection
with dengue virus activates platelets via CLEC2, a tyrosine kinase (Syk)-coupled C-type
lectin receptor, to release extracellular vesicles, which activate CLEC5A and TLR2 on
neutrophils and macrophages, thereby inducing NET-formation and proinflammatory
cytokine release [53]. Platelets are also activated by interaction with the spike protein of
SARS-CoV-2. This interaction directly stimulates platelets to release coagulation factors,
secrete inflammatory factors, and form leukocyte—platelet aggregates. Polyphosphates
(inorganic polymers composed of phosphate units) are exposed on procoagulant platelets
and trigger coagulation by activating the intrinsic pathway of coagulation. Recently, the
phosphate exporter XPR1 was identified as the first regulator of platelet polyphosphate
with critical implications for thrombosis [54,55]. Platelets of COVID-19 patients showed
increased activation and aggregation, partly attributed to the increased MAPK pathway
stimulation and TxA2 generation [56,57]. There appears to be increased rates of thrombotic
events including microvascular thrombosis, venous thromboembolic disease, and stroke in
COVID-19 patients [58].

Accumulating evidence suggests that platelets interact with neutrophils and monocytes
and function as antigen-presenting cells (APCs) to prime T-cell lymphocytes [27,59-62]. The
first drafts of human and mouse platelets proteome clearly showed that platelets are fully
equipped for antigen presentation. They possess proteasome proteins, a transporter of
antigen peptide (TAP), and major histocompatibility complex (MHC) class I molecules
themselves [46,47]. Lately, it was shown that platelets acquired all machinery for antigen-
presenting through megakaryocytes [63]. Even though megakaryocytes are found to
express both MHC class I and II molecules, the platelets proteome and experimental
evidence show only active MHC class I presentation [59,63,64]. Interestingly, the declined
level of MHC class I molecules on the surface could indicate platelet aging [65].

2. Platelets Proteomics

Two decades ago, the term platelet proteomics was mainly referred to two-dimensional
gel electrophoresis (2-DE), where the proteins are separated according to their isoelectric
point in the first and by molecular weight in the second dimension [66-68]. This technology
was used to identify proteins and mapping protein phosphorylation of rested and activated
platelets, the composition of platelets subcellular organelles, e.g., lipid rafts, membrane,
secreted granules, and platelet microparticles [69-73]. Additional comparison of proteins
staining or pre-labeling the proteins from different biological samples and mixing them
before separation allowed for rough relative quantification and monitoring the platelet dif-
ferences at diverse physiological and pathophysiological conditions [69,70,74-77]. Despite
popularity gained in the platelet research community and multiple studies for analysis
of platelets and their suborganelles, 2-DE has some limitations, such as detecting and
identifying low-abundant and highly hydrophobic proteins (Figure 4). The 2-DE platelet
studies are comprehensively reviewed elsewhere [78-80]; therefore, in the following chap-
ters, we will focus mainly on the gel-free liquid chromatography (LC) mass spectrometry
(MS)-based proteomic works and frontier technologies in MS for future perspectives in
studying platelet biology.
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Figure 4. Advantages and limitations of basic methods in proteomics.

2.1. Basics of LC-MS-Based Proteomics

Current MS-based proteomics approaches rely on two main ionization techniques
e.g., matrix-assisted laser desorption/ionization (MALDI) [81] and electrospray ionization
(ESI) [82]. Both methods are frequently used in proteomics research, but ESI-MS has
garnered popularity in the recent past. Furthermore, proteomics workflows can be broadly
classified as top-down and bottom-up to analyze intact proteins and peptides, respectively.
In a typical bottom-up proteomics setup, the biological sample, e.g., platelets, are lysed
and subjected to enzymatic (mostly trypsin) proteolysis to generate peptides. To minimize
this mixture’s complexity, a high-performance liquid chromatography (HPLC) is used
upfront in combination with ESI as an interface and coupled to the MS. The peptide ions
enter the MS for subsequent mass analysis and detection. MS analysis of peptides can
be further divided into peptide mass fingerprinting and tandem MS (MS/MS); the latter
approach will be explained in detail (Figure 5A). Presently, there are three main modes
for tandem MS data acquisition: data-dependent acquisition (DDA), data-independent
acquisition (DIA), and targeted acquisition by selected or multiple reaction monitoring
(SRM/MRM), and recently developed parallel reaction monitoring (PRM). The DDA and
DIA are mainly employed in the so-called discovery phase, aiming to analyze global
proteome profiles or changes at different time points or conditions in a relative manner.
Targeted methods, also called hypothesis-driven methods, are directed to monitor from
one to a couple of hundreds of proteins of interest with high selectivity, specificity, and
sensitivity [83]. Typically, the shift from discovery to targeted phase leads to a reduction in the
number of protein candidates, i.e., from several thousand to a few dozen, which corresponds
to the detection and validation of biomarkers in the clinical samples (Figure 5B).

In DDA, the precursor ions, usually the top 10-20 peptides per duty cycle of MS
instrument (~1 s), are consecutively selected from a full mass MS1 scan for fragmentation,
and the information on product ions is acquired during MS2 scans. Precursor ions (MS1)
are fragmented in a semi stochastic manner in order of decreasing intensity, and database
search is then performed on the MS2 fragmentation spectra to identify the sequence
of corresponding MS1 precursor ion [84]. The technology was applied to detect and
quantify proteins and their post-translational modifications, creating a comprehensive
map of platelet cytosolic and membrane proteins [46,47,80,85]. For quantifying differences
in proteome among biological samples or during the time course of platelet activation,
isobaric labeling, such as tandem mass tags (TMT) or isobaric tags for relative and absolute
quantitation (iTRAQ), are applied [86-88]. Both types of tags use stable isotope-labeled
molecules that can be covalently bound to the N-terminus and side-chain amines of proteins
or peptides. Each label has the same molecular weights and chemical properties and
comprises a reporter and balanced groups. The peptides of the same sequence, but labeled
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with different isobaric tags, could be differentiated during fragmentation by yielding
reporter ions with different masses [89]. The labeling allows for multiplexing of samples on
protein or peptide levels, reduces experimental variation, and, thus, quantification errors.
The prefractionation of multiplexed samples additionally increases the total coverage of
platelets proteome. The methodology was applied to study ADP-mediated signaling [90,91]
and cAMP/PKA-dependent signaling in platelets [92]. It was a main method of choice to
study platelets of patients with Scott syndrome [93], gray platelet syndrome [94], Albright
hereditary osteodystrophy syndromes [95], and type I Glanzmann thrombasthenia [96].
Alternatively to TMT and iTRAQ, unlabeled samples can be compared by monitoring the
relative abundance of peptides assessed by comparing either intensity or the integrated
peptide peak area in extracted ion chromatogram (XIC) using special software for data
processing. Despite the robustness of the method, high sequencing speed of new generation
of MS instruments, and well-established pipelines for data analyses, DDA'’s stochastic
precursor selection leads to inconsistent detection of peptides, especially those from low-
abundant proteins. This data acquisition mode results in missing peptide identification
and reduces the number of quantifiable proteins [97]. Despite the lower reproducibility
at the low abundance protein level, the DDA is still the main method of choice for most
platelet studies.

MS
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Figure 5. (A) LC-MS/MS based bottom-up proteomic workflow. Platelets isolated from blood are subjected to lysis,
enzymatic digestion, separation of peptides on a reversed-phase LC column, ionized (ESI), and mass analyzed (MS).
(B) Modes of MS data acquisition. Three main strategies for data acquisition: data-dependent acquisition (DDA), data-
independent acquisition (DIA), and targeted acquisition by multiple or parallel reaction monitoring (MRM or PRM). The
DDA and DIA are aimed to analyze global proteomic changes, whereas the targeted methods focused on monitoring

preselected target proteins with high precision and accuracy.
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The DIA is a newly emerging alternative to DDA strategy, which has higher repro-
ducibility of identification, improved sensitivity, and quantification accuracy, shown on
peptides and phosphopeptide levels [98,99]. In DIA, all ionized precursors within a spec-
ified mass range are fragmented in consecutive survey scans. Fragment ion spectra for
all the precursors in a predetermined isolation window are acquired [100,101]. Instead
of databases of sequenced organisms for DDA, the DIA typically requires information
about peptides to detect proteins, named peptide query parameters (PQPs). PQPs include
chromatographic elution time, called retention time (RT) of selected peptides and their MS
characteristics, such as charge state and m/z information of precursor ions and the four to
six most intensive fragmented ions.

The third common strategy-targeted analysis is applied when the proteins of interest
are predetermined and need to be quantified across multiple samples with a high degree of
reproducibility and quantitative accuracy [102]. Like in DIA, the pre-existing information
about proteotypic peptides, including RT, charge, and m/z of precursor and fragmented
ions, is required. Typically, this information is acquired from spectral libraries, the informa-
tional source about proteotypic peptides of interest. There are two main types of targeted
assays depending on instrumentation: MRM performs only one precursor ion/product ion
transition in time, while PRM analyzes all product ions derived from a precursor ion with
high resolution and mass accuracy. To date, PRM was mainly used for validation of DDA
discovery studies on platelets, such as validation of regulated proteins from Scott patients
platelets [93]; Glanzmann thrombasthenia patients [96]; alteration of specific phosphosite
phosphorylation in ADP activated platelets [90]; monitoring the coactivation of multiple
small GTPase isoforms in response to agonists [103]; reduction of apoptosis-related proteins
in the bone marrow of immune thrombocytopenia patients [104]. The study applying PRM
combined with isotope-labeled peptide standard quantified 99 proteins related to platelet
activation and functional disorders [105]. The PRM combined with the SILAC-labeled pro-
tein standard was also established for quantification of frataxin, a platelet protein marker
for autosomal recessive disease—"Friedreich’s ataxia” [106].

The recent introduction of a new type of mass spectrometer with ion mobility as an
additional dimension for peptide separation brings much promise in proteomic research in
general and particularly in platelet signaling biology. Introduced by Bruker, trapped ion
mobility spectrometry (TIMS) coupled to time-of-flight (TOF) mass analyzer in combination
with a new scan mode for data acquisition called Parallel Accumulation-Serial Fragmenta-
tion (PASEF) allows increasing the sequencing speed by approximately tenfold without
loss in sensitivity [107,108]. Following electrospray ionization, ion mobility discriminates
gas-phase peptide ions by their size and charge before mass analysis. PASEF does not
only increase the number of peptide identification per LC-MS run to over 6000 HeLa
proteins/120-min LC run, which, applicable to platelet proteome, theoretically could allow
achieving (almost) full coverage from a low amount of samples, but also allows for accu-
rate separation of isomers, e.g., phosphopeptides, and should facilitate the localization of
phosphosites, crucial for studies on activation and inhibition in platelet signaling.

2.2. Sample Preparation as a Crucial Step for Accurate Platelets Proteome Research

The sample preparation for accurate proteomic analysis of platelets is still a chal-
lenging task. The purity, number, and activation status of platelets are crucial for reliable
proteome analysis. The first comprehensive human platelet proteome, comprising almost
4000 unique proteins, was performed from 10° platelets yielding 1.5 mg of proteins [47].
Current advances in MS greatly improve the sensitivity and reduce the amount of required
starting material until almost one cell or a few ng of proteins [109-111]. Considering that
the physiological normal platelet count is between 150,000 and 350,000 platelets per micro-
liter [112], only a few microliters of blood should be sufficient for MS-based / platelets-based
analysis in the future. The separation of platelets from whole blood has improved during
the last decades. Most of the standard procedures for platelet preparation are based on
low-speed centrifugation, where the whole blood is separated by different densities of vari-
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ous blood components; herein, the small and light platelets remain suspended in the liquid
plasma [113,114]. Due to the platelet’s sponge-like open canalicular membrane system, the
contamination with plasma components cannot be completely excluded. In 2014, in an
initial proteome study on mouse platelets, M. Zeiler et al. monitored protein abundance
profiles across different purification steps that distinguished true platelet proteins from
plasma, leukocytes, and erythrocyte contaminants [46]. The clustering of proteins with
different stages of purification processes allowed for detecting more than 200 contaminants.
The majority of them belong to highly abundant plasma proteins (apolipoproteins, com-
plement factors) or components of erythrocytes [46]. The OptiPrep™ density gradient
centrifugation technique was reported to have 99.99% platelet purity and low leukocyte
contamination, recovering more than half of the platelet population, but has not been
applied for proteomic studies [115]. Alternatively to centrifugation techniques, microflu-
idic platelet preparation could be applied. A fully automated procedure for analyses
of platelet transcriptome, published in 2020, provides high yield and purity (>99%) with
lower platelet activation [116]. With protein low-binding tubing material, the method could
also be applicable for proteomic sample preparation. The additional controls, ensuring
complete platelet lysis and digestion [117,118], minimal loss of peptide during sample
preparation, and automation for the analysis of hundreds or thousands of samples should
be established for high-throughput studies [119]. Finally, quality control systems of mass
spectrometry-based proteomics data acquisition should be introduced in the labs dealing
with platelets” biomedical and translational applications, e.g., a cloud-based quality control
system [120] or web-based applications [121,122].

2.3. Strategies to Study Protein Post-Translational Modifications in Platelet Biology

Post-translational modifications (PTMs) refer to the modification of proteins after
biosynthesis and are known to control multiple biological functions, including protein
activity, folding, localization, and interaction with other biomolecules. PTM is described as
an attachment, removal, exchange, or rearrangement of functional groups to amino acid
side chains and protein N- and C-termini [123-125]. Although more than 400 PTMs are
described, their physiological roles are only partially unraveled [123,126,127]. For platelets,
the intensively studied PTMs are phosphorylation, ubiquitylation, and proteolysis. Less
attention is paid to glycosylation, acetylation, and palmitoylation. Of special interest is also
the interplay of platelet PTMs during activation.

2.3.1. Phosphorylation

Phosphorylation is one of the most occurring and well-studied platelet PTM. Mod-
ulation of signaling pathways during platelet activation significantly changes the phos-
phorylated proteins’ landscape that directs platelet function. The processes of protein
phosphorylation and dephosphorylation are catalyzed by kinases and phosphatases, re-
spectively. The phosphorylation can occur on serine, threonine, and tyrosine residues
through phosphoester bond formation. Rarely histidine, lysine, and arginine could be
modified through phosphoramidate bonds side. The phosphopeptides could be detected
directly in peptide digest only with very low extend [87]; therefore, multiple phospho-
peptide enrichment strategies were employed to remove the bulk of unphosphorylated
peptides and, thus, increase the sensitivity of detection. The most common methods
employed for phosphopeptides enrichment include Fe3*- immobilized metal ion affinity
chromatography (IMAC) [73], metal oxide affinity chromatography using titanium dioxide
(TiOy) or zirconium dioxide (ZrO;) [128,129]; electrostatic repulsion-hydrophilic interac-
tion chromatography (ERLIC) [130], strong cation and anion exchange chromatography
(5CX, SAX), and enrichment of phosphorylated proteins by immunoprecipitation [131].

A peptide with the same sequence could undergo different combinations of phospho-
rylations. The accurate localization of these sites was a challenge in phosphoproteomics
for many years. Targeted proteomics overcame this complication and allowed for accurate
localization of phosphorylation sites and calculation of phosphorylation ratios [132].
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Enormous progress in the field was establishing phosphoproteome DIA studies (Phos-
phoDIA), allowing for routine quantification of ~7000 phosphopeptides of Hela digest
in just 15min of LC-MS/MS analysis. DIA-based phosphoproteomics achieves an order
of magnitude broader dynamic range, higher reproducibility of identification, and im-
proved sensitivity and accuracy of quantification compared to state-of-the-art DDA-based
phosphoproteomics. The phosphosite localization algorithm based on peptide-centric
analysis utilizing information is established for cell lines, but still not applied for platelet
studies [98].

Identification of Key Players of Platelet Activation Pathways by Proteomics Approaches

The first phosphoproteomic studies based on the phosphopeptides enrichment method
revealed new phosphorylation sites in resting [73,133] and thrombin-stimulated platelets [133].
Further proteome analysis was done upon platelet stimulation of GPVI receptor with
collagen-related-peptide (CRP) [134], or by activating with a monoclonal antibody specific
for GPVI [135]. Later, changes in 214 unique phosphotyrosine sites and oligophenin-1
(OPHN1) were determined as one of the key regulators of platelet filopodia formation
upon GPVI stimulation [136].

Platelet signaling cascades were studied with TRAP (thrombin-receptor activated
peptide, activates PAR1 receptor) stimulation of human platelets by nanoLC-MS/MS that
revealed for the first time phosphorylation of the regulator of G protein signaling (RGS)
proteins, GTPase-activating proteins that regulate G-protein-coupled receptors [137].

ADP receptors are important drug targets, especially in preventing thrombosis in
high-risk patients [138]. Temporal quantitative phosphoproteomics of ADP-stimulated
platelets showed that phosphorylations occur within 10 s and are transient in most cases.
The study suggested several central hubs (e.g., CalDAG-GEFI, phosphodiesterase type III)
that represent control points of platelet activation and inhibition since they were inversely
phosphorylated by ADP and cAMP-elevating compound iloprost (a stable prostacyclin
analog) [90]. A recent study utilized fluorescence 2-D Fluorescence Difference Gel Elec-
trophoresis and analyzed the human non-secretory platelet proteome after TRAP and
ADP activation, cAMP /protein kinase A-mediated inhibition (prostaglandin I2 or CTAD
formulation), and compared it to resting platelets [139]. The study discovered that upon
platelet activation or inhibition, proteome changes are mainly related to the phosphory-
lations (induced by both activation and inhibition on different phosphosites) and that
inhibition induces qualitatively and quantitatively stronger changes (explained in more
details below) than platelet activation. In addition, new and more robust potential biomark-
ers were suggested to more effectively discern platelet activation, such as phosphorylated
integrin-linked protein kinase (ILK) and pleckstrin (PLEK) instead of P-selectin [139].

Identification of Key Players of Platelet Inhibitory Pathways by Proteomic Approaches

Cyclic nucleotides (c(AMP and ¢cGMP) and corresponding protein kinases, protein
kinase A (PKA), and protein kinase G (PKG) are the main mediators of platelet inhibitory
pathways [140,141]. Endothelial cells release short-lived mediators such as a nitric oxide
(NO) and prostacyclin (PGI2), which activate soluble guanylate cyclase (sGC) and adeny-
late cyclase (AC), respectively (Figure 2). First quantitative platelet proteomic analysis
revealed expression of three isoforms of AC (ADCY3, ADCY5, and ADCY6), four PKA reg-
ulatory (PKARIA, PKARIB, PKARIIA, and PKARIIB), and three catalytic subunits (PKACA,
PKACB, and PKACG) [47]. Concerning NO/sGC/PKG pathway, none of the known NO
synthase isoforms were found to be expressed in platelets [142,143], and sGC (sGC«1, and
sGCp1) is the only enzyme responsible for cGMP synthesis in platelets [144]. From three
known mammalian PKG isoforms, only PKG1p is expressed in platelets [47]. The devel-
opment of phosphoproteomic techniques allowed the identification of new PKA /PKG
substrates directly involved in different platelet inhibitory pathways. By analyzing phos-
phorylated proteins of resting human platelets, 564 phosphorylation sites from more than
270 proteins were identified, and among them, 23 proteins contain putative PKA /PKG
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phosphorylation consensus (R/KIR/KIXI|S/T) sites [73]. However, these data needed
additional validations, and even in the comprehensive review on PKA /PKG signaling in
platelets, only 15 proteins are mentioned as established substrates of these kinases [141].

Future progress on establishing new platelet PKA /PKG substrates was achieved by
analysis of platelets upon stimulation of the cAMP/PKA pathway using a quantitative
phosphoproteomic approach [90,92]. Almost 300 proteins with changed phosphorylation
patterns, among which only 137 had PKA phosphorylation consensus sequence, were
identified by analysis of iloprost-stimulated platelets. The most important message of
these data is that more than half of differentially phosphorylated proteins are not direct
PKA substrates, indicating that PKA-induced platelet inhibition is a complicated multistep
process comprising not only direct PKA substrates, but involving also many other protein
kinases and phosphatases. Most of the new PKA substrates identified by phosphoproteomic
are involved in different intracellular platelet inhibitory pathways including inhibition
of calcium signaling, regulation of Ras/Rho family small GTPases, and reorganization of
the actin cytoskeleton. Several proteins involved in platelet calcium signaling, including
the IP3 receptor, IRAG, and TRP6, were already known as PKA /PKG substrates and their
phosphorylation is directly connected with inhibition of calcium mobilization [145,146].
Phosphorylation patterns of several other proteins potentially involved in calcium signaling
were found regulated by PKA. Interestingly, phosphorylation of calcium release-activated
calcium channel protein 1 (Orail) at Thr295 was decreased by PKA activation. However,
whether this was connected to the regulation of calcium release from intracellular stores
is not known [92]. Another finding of this study is related to the phosphorylation of
bridging integrator 2 (BIN2) protein at Ser259. After recently showing that BIN2 is an
interaction partner of STIM1 and IP3R it was further investigated that platelets deficient
in BIN2 had reduced calcium release and influx upon agonist stimulation [147]. Whether
phosphorylation of BIN2 by PKA is directly connected with inhibition of calcium signaling
in platelets warrant future analysis.

Small GTPases function as a molecular switch by cycling between active GTP-bound
and inactive GDP-bound states, which is controlled by GTPase activating proteins (GAPs)
and guanine nucleotide exchange factors (GEFs). RhoA, Racl, Cdc42, and Rap small
GTPases are activated in agonists-stimulated platelets and inhibited by PKA /PKG. Pre-
viously phosphorylation of RhoA at Ser188 by PKA /PKG was proposed as one of the
mechanisms of its inhibition [148-150]. However, in the phosphoproteomic analysis of
PKA /PKG-signaling direct phosphorylation of RhoA at Ser188 in platelets was not con-
firmed [90,92] and this phosphorylation is probably connected with unspecific binding
of phospho-specific antibodies to some other protein with similar molecular weight [151].
Future detailed analysis of RhoA inhibition by PKA /PKG will provide evidence that it
directly correlates with the phosphorylation of the RhoA-specific GTPase-activating protein
Myo9b at Ser1354 and the guanine nucleotide exchange factor GEF-H1 at Ser886. Phospho-
rylation of Myo9b enhances its GTPase activity thereby reducing active RhoA (RhoA-GTP)
levels and GEF-H1 phosphorylation inhibiting GEF function [151].

Moreover, inhibition of Racl activity by PKA /PKG in platelets is connected with the
phosphorylation of Racl specific GAPs and GEFs. PKA and PKG phosphorylate ARHGEF6
at Ser684 and ARHGAP17 at Ser702, which results in a reorganization of signaling com-
plexes involving CIP4 and 14-3-3 proteins and inhibition of Racl activity [152].

Rapl itself, as well as Rap1GAP2, and CalDAG-GEF1, which controls Rap1 activity,
are established PKA /PKG substrates [153-155]. Rap1B is phosphorylated by PKA at
Ser179 [153] and Rap1GAP2 is phosphorylated at Ser7 [156]. However, the kinetics of Rap1
phosphorylation and functional analysis of Rapl1GAP2 phosphorylation show that these
events are not directly related to PKA-mediated Rap1 inhibition. CalIDAG-GEF1 contains
four putative phosphorylation sites (Ser116/117, Ser147, and Ser587), and after PKA
activation of platelets, strong phosphorylation (more than 35 times increase of phosphate
incorporation) was detected on Ser587 by a quantitative phosphoproteomic analysis, which
correlates with inhibition of integrin «IIb33 activation and platelet aggregation [155]. Thus,
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the analysis of platelet proteins phosphorylated by PKA [90,92] already helps to identify
new important players in the platelet inhibitory pathway, and the herein identified proteins
with altered phosphorylation status will contribute to characterize platelet inhibition in
more detail.

Analysis of sGC/cGMP /PKG-induced phosphorylated proteins was the next impor-
tant step in characterizing platelet inhibitory mechanisms. After incubation of platelets
with different NO donors and a direct sGC stimulator riociguat they were analyzed by
quantitative phosphoproteomic methods ([140] and our still ongoing project) to unravel
platelet inhibitory mechanisms. Increased phosphorylation upon PKG stimulation was
detected on more than 150 proteins, including known PKG substrates like VASP, PDES5,
Rapl1GAP2, and others, and, similar to PKA effects, decreased the phosphorylation of
more than 60 proteins. PKA and PKG have an overlapping substrate specificity and all the
above-mentioned functionally validated PKA substrates are targets of PKG.

It is important to mention that although PKA/PKG is the most powerful platelet
inhibitory pathway, there is increasing evidence for other platelet-derived inhibitory mecha-
nisms. Several intracellular receptors including glucocorticoid receptors (GRs), peroxisome
proliferator-activated receptors (PPARs), liver X receptor (LXR), retinoid X receptor (RXRs),
and immunoreceptor tyrosine-based inhibitory motif (ITIMs) containing receptors such as
PECAM-1, CEACAM1/2, and G6b-B are also important modulators of platelet inhibitory
pathways [157-159]. Application of novel proteomic approaches will shed new light on
understanding the highly complex platelet activatory and inhibitory machinery and help
in developing new strategies for antiplatelet drugs.

2.3.2. Ubiquitylation and Proteolysis in Platelet Biology

An additional layer in platelet regulation is the ubiquitin-proteasome system, which
maintains cellular protein homeostasis, regulates signal transduction cascades, and supplies
MHC class I molecules with peptides for antigen presentation [64]. Platelets express
standard and immunoproteasome subunits and display three protease activities, caspase-
like, trypsin-like, and chymotrypsin-like activity, executed by the catalytically active {3
subunits [64,160]. To undergo proteasome degradation, proteins first need to be marked
by ubiquitination, a PTM where a small, highly conserved protein called ubiquitin (Ub) is
covalently bonded to a lysine residue. Ubiquitin itself encloses seven lysine residues, where
other ubiquitin moieties can bind, resulting in branched poly-Ub, or multi-Ub chains [161].
There are several techniques for proteomic identification of ubiquitination sites. The
most common are immune affinity enrichment of Ub- proteins and di-glycine remnant
detection. The first method utilized the Ub-specific specific antibody. The second method is
based on the idea that after digestion of ubiquitinated proteins with trypsin, on the place of
previously ubiquitinated lysine remains a short di-glycine remnant. The di-glycine remnant
leads to a peptide mass shift of (monoisotopic, 114.0429 Da) and can be used to localize
the ubiquitin attachment site [162]. Anti-K-e-GG (di-glycine remnant) antibodies can
additionally enrich peptides with a diglycine remnant motif before applying LC-MS/MS
identification [163]. Several functional studies elucidated the role of ubiquitination in
platelet signaling. For example, spleen tyrosine kinase (Syk) is rapidly ubiquitinated upon
activation of platelets by collagen, CRP, and convulxin, which lead to the increased activity
of this kinase [164]. A more detailed investigation of platelets stimulated with CRP was
performed by utilizing di-glycine remnant technology, confirming multiple ubiquitinylation
of Syk, and additionally ubiquitination of the components of GPVI signaling pathway [165].
So far, it is the first MS proteomic study for platelet ubiquitination.

Understanding the mechanisms of proteolytic events in platelets and coagulation
cascade activated by platelets is also crucial, since protein proteolysis could lead to ac-
tivation, deactivation, or complete alteration of protein function. The proteolysis can
be studied by analyzing N- or C-termini and, similar to other PTM, requires an enrich-
ment step for more comprehensive coverage [166]. N-terminus selection, combined with
charge-based fractional diagonal chromatography (ChaFRADIC) was mainly employed for
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platelets [167]. The application of the ChaFRADIC demonstrated that activated platelets
from Scott-syndrome patients have enrichment of caspase-mediated proteolytic cleav-
ages [93]. In the context of cellular signaling, the simultaneous analyses of phospho-
rylation, ubiquitination, and proteolysis events during platelet activation would be of
special interest.

3. Platelets Proteomics in Health and Disease

The early studies on platelet proteomics comprehensively describe the composition
and copy numbers of mouse and human platelets, analyzed phosphorylation, and other
PTM in a steady-state, and stimulated with different agonists [46,47,85]. The proteomic
content of granules released by platelets during activation, collectively named “platelet
releasate”, was also defined and quantified [8]. A comprehensive map of human platelets
and inter- and intra-donor variation analysis showed the stability of ~ 85% of the platelet
proteome [47,74]. These provided the basics to study alteration of platelets caused by
different diseases and, ideally, for potential pharmaceutical targeting of the underlying
signaling pathways.

Platelets represent a critical factor in developing cardiovascular diseases, the lead-
ing cause of death in the industrialized world. Arteriosclerosis of the coronary arteries
is the underlying disease for acute and chronic coronary syndromes and platelets con-
tribute significantly to the progression of both entities. The underlying signal transduction
remains, however, incompletely understood and tools for the diagnosis and prognosti-
cation of disease progression are urgently needed. Scarce platelet proteomic evidence
is currently available. When comparing patients with acute and chronic coronary syn-
dromes, proteomic studies revealed that six out of 400 proteins studied were differently
expressed [168]. Additional studies assessed protein expression and small cohorts of 10-30
patients presenting with acute vs chronic coronary syndromes. It was demonstrated that
the differentially regulated proteins contribute to cell assembly processes, organization
and morphology, which are essential for platelet activation [169]. While these previous
studies indicate that platelet activation differs between specific cardiovascular diseases,
large scale validation studies are required to assess whether platelet proteomics may be a
useful tool in cardiology care and clinical routine. With latest technology, the unbalanced
platelet reactivity and potential subsequent thrombus formation could be assayed by moni-
toring the protein abundance in “platelet releasates”. Comparative proteomics of “platelet
releasates” has allowed differentiating acute coronary syndrome versus stable coronary
artery disease [170]. A proof-of-concept study applied on a small cohort of patients with
lung or pancreas cancer showed that platelet proteome harbors differentially expressed
proteins associated with early-stage cancer and identifies platelet proteins as a new source
of potential biomarkers [171].

Much attention was put to rare genetic diseases associated with a bleeding disorder.
The mechanisms of phenotypical changes in platelets of patients with Scott syndrome were
investigated by a comprehensive proteome, phosphoproteome, and N-terminome analysis
between resting and stimulated Scott and control platelets. Multipronged proteomic profil-
ing of Scott platelets discovered the reduction of calpain-induced cleavages of cytoskeleton-
linked and signaling proteins, and provided detailed insight into their protection against
detrimental Ca?*-dependent changes that are normally associated with phosphatidylserine
exposure [93]. Platelets of patients with Gray platelet syndrome compared to healthy
donors revealed a diminished abundance of “alpha-granules” and “releasate” proteins and
increased amounts of proteins normally resident in neutrophil granules [94]. Abnormality
of platelets in Wiskott-Aldrich syndrome (WAS) was studied in a mouse model lacking
WAS protein. The proteome profile of platelets showed inhibition of several metabolic
pathways and enhancement of ubiquitination and proteasomal activity that increases anti-
gen processing, contributing to triggering of autoimmunity. Studies performed in mice
were, in part, confirmed in WAS patients [172].
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Besides many already published studies describing a key role of platelets in cardio-
vascular disease by utilizing mass spectrometry based OMICS technologies an upcoming
are of interest is platelet dysfunction during kidney disease.

Chronic kidney disease (CKD) is associated with disturbances in platelet function,
leading to both thrombotic complications and bleeding [173,174]. Platelet dysfunction is
thought to be the major cause for these events and contributing to the high morbidity
and mortalities rates in CKD. Potential contributing factors involve platelet glycoproteins
GPIIb/IIla, ADP and serotonin release as well as metabolic disturbances of arachidonic
acid and prostaglandins [173]. Recently, the gut microbiota as a source of uremic toxins
has shown to be a risk factor for thromboembolic complications [175]. These include
metabolites of dietary tryptophan (indoxyl sulfate (IS), indole-3-acetic acid and kynure-
nine (KYN)), phenylalanine/tyrosine (p-cresol sulfate (PCS), p-cresol glucuronide (PCG),
phenylacetylglutamine (PAGIn)), and choline/phosphatidylcholine (trimethylamine N-
oxide (TMAOQ)) [176]. Uremic toxins have been shown to effect endothelial cells, vascular
smooth muscle cells, macrophages and platelets, leading to increased inflammation, platelet
activation and aggregation [177], e.g., via the release of endothelial microparticles [178], pro-
duction of reactive oxygen species (ROS) [178], or decreased production of nitric oxide [179].
Unraveling contributing factors of platelet dysfunction by mass spectrometry-based pro-
teomics for diagnostic and prognostic purposes would greatly contribute to identification
of risk factors and treatment options due to its multifactorial composition and disease
stage-associated and interpatient variability.

4. Platelets Proteomics in Transfusion Medicine

Platelet transfusion is a lifesaving medical procedure, normally used to restore platelet
counts in thrombocytopenic patients and patients with platelet dysfunctionality. Platelets
for transfusions are normally prepared either by centrifugation of the whole blood or by
a method called plateletpheresis-a type of apheresis, where the platelets are separated
from blood obtained from a single donor while returning to a donor the red blood cells
(RBCs), white blood cells (WBCs), and plasma components. Platelet collection, processing,
and storage could affect platelets” structure and function, causing multiple platelet storage
lesions (PSLs) and bacterial contamination [180,181]. During prolonged storage, platelets
and storage medium undergo drastic changes, e.g., the platelets decreased response to
agonists, changed the metabolism, and increased production of reactive oxygen species,
leading to platelet activation and dysfunction [182-184]. In recent years, the mechanism
underlying PSLs started to be investigated more intensively by the proteomic approach.
The early study utilized differential in-gel electrophoresis (DIGE) combined with mass
spectrometry showed the alteration of septin and gelsolin during platelet storage [185].
With the advancement of technology, the proteomic studies employing label-free quan-
tification revealed that prolonged storage (13-16 days) downregulates proteins involved
in platelet degranulation, secretion, exocytosis, and, at the same time, upregulates the
a-2-macroglobulin, glycogenin, and Ig u chain C region [186].

Likewise, proteomics is actively employed to characterize temperature-induced platelet
alterations. Not widely known, platelets, unlike other blood cells, rapidly leave the cir-
culation if refrigerated before transfusion [154]. The clearance occurs through triggered
surface up-regulation of neuraminidases, which perform the vWF-receptor complex’s de-
sialylation, specifically, the GPIb«x subunit leading to GPIbo-clustering and rapid platelet
clearance by liver phagocytes [154,187,188]. Although cryopreservation slows down the
metabolism, reduces the risk of bacterial contamination, and is therefore proposed as a
prominent alternative to the current storage standard at 22 °C, its application is still under
debate since the freeze-thawing-induced activation of platelets may promote the risk of
thromboembolic events [189]. Wang et al. compared the proteomic signature of platelets
stored at 22 °C, 10 °C, and —80 °C and concluded that different conditions caused different
PSLs. Endocytosis, Fc gamma R-mediated phagocytosis, and actin rearrangement were
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mainly affected by storage time, while cold storage alters SNARE interactions in vesicular
transport and vasopressin-regulated water reabsorption [190].

A recently suggested alternative to cold storage is antipathogen treatment of platelet
concentrates with Mirasol® in combination with UV light irradiation was also shown to
induce the PLSs and change the platelet biology. Although the technique aims to target
nucleic acid, the platelet proteome and protein oxidation were affected [191,192]. The
proteomics of platelets, as well as platelet-derived extracellular vesicles upon storage and
treatment with Mirasol®, revealed induction of platelet activation, visible by affected basal
platelet degranulation, upregulation of platelet factor 4, and chemokines. The elevated
activation state in platelet concentrates treated with Mirasol® was evident already after
four days of storage [193,194]. Additionally, agitation, platelet storage containers, and
solutions, alkaline conditions (pH > 7.4) could influence platelet biology and cause adverse
reactions in transfusions.

In the coming era of precision medicine, platelet concentrates for personalized trans-
fusions could become a reality. The biomarkers of platelets PSL could be monitored by
targeted MS integrated into a platelet transfusion medicine routine.

5. Future Perspective: Platelet Proteomics in Precision Medicine

Cardiovascular thromboembolic disease such as myocardial infarction, ischemic
stroke, and pulmonary embolism have remained a major cause of dead and disability
in Europe. Thus, it constitutes a priority to improve diagnostics and therapy in a person-
alized medicine setting. While classical platelet-activation markers are sensitive to pick
up excessive or defective activation state, e.g., cell-surface P-selectin as a biomarker for
a-granule release currently available markers have limited disease specificity. In contrast
recent analyses of platelet mRNAs, microRNAs (miRNAs), and phosphoproteomics sig-
natures show increased disease-specificity. Interestingly, mRNAs and miRNAs derived
from platelets and ribosomes from are useful in assessing myeloproliferative diseases [55].
Recently the authors have shown that targeted platelet proteomics allows for quantifying
cardiovascular disease biomarkers in human platelets [105] based on comparisons of a sub-
set of peptides and corresponding proteins in diseased versus human platelets. It will be of
increasing importance to assess the individual variability in the proteome of healthy sub-
jects and patients in a personalized and precision medicine setting. Bioinformatics-based
integration of “omics”, biochemical, and functional data will provide detailed information
for development of novel diagnostic and pharmacologic targets that might improve patient
care in precision medicine.

6. Conclusions

In the past years, it has become evident that platelet proteomics can provide novel
insights into basic research questions and, thus, improve our understanding about the
fundamental processes that regulate platelets, and contribute to treatment of platelet
dysfunction. Quantitative proteomics studies will deliver detailed information about
protein distributions in healthy volunteers and patients. Furthermore, the phosphorylation
patterns of platelets will be useful to understand platelet activation and investigate novel
therapeutic interventions. In particular, quantitative phosphoproteomic studies will pave
the way for a better understanding of platelet signaling beyond the classical description of
linear pathways. Although these novel technological approaches have made and will make
important discoveries, the past decade showed that signaling is much more dynamic than
classical approaches predicted. As future direction, unsupervised elucidation of signaling in
platelets using artificial intelligence may become more important to detect so far unknown
between posttranslational modifications. The vast amount of data that are produced by
quantitative proteomics studies require novel data analyses strategies to integrate classical
biochemical knowledge and unexpected insights from big data approaches.

This will lead to the molecular description of inhibitory and activation pathways,
which are known to be modulated in disease. Given the function of platelets to facili-
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tate thrombosis and hemostasis, quantitative (phospho)proteomic analyses will lead to
molecular markers for diagnosis and prognosis of platelet dysfunction.
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Abbreviations

PTMs Post-translational modifications
0cCs open canalicular system

DTS dense tubular system

TLRs toll-like receptors

PDI protein disulfide isomerase

vWF von Willebrand factor
TxA2 thromboxane A2
FcRy Fc receptor y

ITAM tyrosine-based activation motif
PLC phospholipase C

1P3 inositol 1,4,5,-triphosphate
PRRs pattern recognition receptors

NLRs nod-like receptors

CLRs C-type lectin receptors

DAMPs damage-associated molecular patterns
MALDI  matrix-assisted laser desorption/ionization

ESI electrospray ionization

HPLC high-performance liquid chromatography

MS mass spectrometry

DDA data-dependent acquisition

DIA data-independent acquisition

MRM multiple reaction monitoring

PRM parallel reaction monitoring

SRM selected reaction monitoring

TMT tandem mass tags

iTRAQ  isobaric tags for relative and absolute quantitation
XIC extracted ion chromatogram

TIMS trapped ion mobility spectrometry coupled to time-of-flight
TOF time-of-flight mass analyzer

PASEF  parallel accumulation—aerial fragmentation
IMAC immobilized metal ion affinity chromatography
ERLIC  electrostatic repulsion-hydrophilic interaction chromatography
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SCX strong cation exchange chromatography
SAX strong anion exchange chromatography
CRP collagen-related-peptide

GAPS GTPase activating proteins

ChaFRADIC charge-based fractional diagonal chromatography
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