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Abstract: Development of differential and early (preclinical) diagnostics of Parkinson’s disease (PD)
is among the priorities in neuroscience. We searched for changes in the level of catecholamines and
a-2-macroglobulin activity in the tear fluid (TF) in PD patients at an early clinical stage. It was shown
that TF in patients is characterized by an increased level of noradrenaline mainly on the ipsilateral
side of pronounced motor symptoms (72%, p = 0.049), a decreased level of adrenaline on both sides
(ipsilateral—53%, p = 0.004; contralateral—42%, p = 0.02), and an increased x-2-macroglobulin activity
on both sides (ipsilateral—53%, p = 0.03; contralateral—56%, p = 0.037) compared to controls. These
changes are considered as potential biomarkers for differential diagnosis. Similar changes in the TF
were found in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice when modeling
clinical and preclinical stages of PD. These data show the adequacy of models to the pathogenesis
of PD along the selected metabolic pathways, and also suggest that the found TF changes can be
considered as potential biomarkers for preclinical diagnosis of PD. In Parkinsonian mice, the level of
catecholamines also changes in the lacrimal glands, which makes it possible to consider them as one
of the sources of catecholamines in the TF.

Keywords: Parkinson’s disease; tear fluid; patients; mice; MPTP; biomarkers; lacrimal glands;
catecholamines; «-2-macroglobulin

1. Introduction

One of the global issues in the XXI century is the fight against socially significant,
still incurable neurodegenerative diseases. In this context, Parkinson’s disease (PD) holds
second one in terms of incidence and severity. It is diagnosed by the manifestation of
motor symptoms (tremor and bradykinesia) [1], which appear decades after the onset of
pathological processes [2]. By that time, most of the nigrostriatal dopaminergic neurons, a
key link in the regulation of motor function, have degenerated. This explains the limited
efficacy of current symptomatic pharmacotherapy [3,4].

The main hope for increasing the efficacy of PD treatment is associated with the
development of early (preclinical) diagnosis and preventive neuroprotective therapy. It
is believed that neuroprotective therapy at the preclinical stage of PD should slow down
the death of neurons and thereby significantly prolong the period of physical and social
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activity of patients [4-6]. The most widely used methodology for developing an early
diagnosis of PD is based on the fact that this disease is systemic. In addition to the
nigrostriatal dopaminergic system, pathological processes extend to other areas of the
central and peripheral nervous system, which results in the impairment of sleep and
olfaction, constipation, orthostatic hypotension, as well as changes in body fluids that can
be used as diagnostic biomarkers [4,7-13].

The above systemic manifestations of PD in untreated patients at the early clinical
stage are considered not only as biomarkers of the clinical stage, but also as potential
biomarkers of the preclinical stage of PD. However, there are no evidence for this, and all
biomarkers detected so far are non-specific [9,14]. Moreover, this paradigm does not take
into account the fact that as pathological processes spread throughout the body and the
disease progresses, the range of biomarkers should expand significantly.

To solve this problem, we have recently proposed the use of animal models of PD
to validate blood changes found in patients as biomarkers of the preclinical stage of
PD [4,14-16]. According to this methodology, the presence of common biomarkers in
patients and in animals in a model of the early clinical stage indicates an adequate repro-
duction of the pathogenesis of PD, at least along this metabolic pathway. The detection of
the same biomarker in animals in a model of the preclinical stage of PD suggests that it is
also a characteristic of patients at the preclinical stage of the disease [14].

Until recently, the development of a differential and early diagnosis of PD has been
based on the search for changes in the cerebrospinal fluid and blood in PD patients at an
early clinical stage [4,17]. However, in recent years, the search for changes in the TF has
also been considered promising for the development of the PD diagnosis [18-20]. The
attractiveness of using the TF is explained by the fact that its collection is a non-invasive,
easily reproducible procedure without negative consequences [20].

It has been shown that in the TF of PD patients, the levels of proteins associated with
neurodegeneration change significantly. In fact, when doing proteomics [18], it was shown
that in the TF of PD patients (1 = 36) the levels of 21 proteins increase and the levels of
19 proteins decrease in comparison with the control (n = 18). More specifically, Comoglu [21]
found in the TF a doubling of the TNF-« protein level, a biomarker of neuroinflammation,
in a cohort of 17 PD patients compared with 17 control subjects, and Hamm-Alvarez [22]
found in the TF of PD patients (84 PD patients vs. 84 controls) a 4-fold increase in x-
synuclein, which in PD becomes toxic due to aggregation and phosphorylation [7,8]. Along
with these proteins, x-2-macroglobulin, a protease inhibitor, which is also involved in the
pathogenesis of PD, was found in human TF [23,24]. Moreover, the gene encoding this
protein is considered as a PD risk gene [25-27]. It is noteworthy that in PD, the level of o-2-
macroglobulin in the CSF changes, which is considered as a diagnostic marker [24,28,29].
Based on these data, one of the objectives of this study was to assess for the first time the
activity of a-2-macroglobulin in the TF in PD patients.

According to our preliminary data obtained in a rather small cohort of patients [15],
besides proteins the level of some catecholamines in the TF can change in PD, in addition to
protein levels [15]. This is probably due to the fact that central and peripheral catecholamin-
ergic neurons, degenerating in PD, play a key role not only in the regulation of motor
function, but also in the regulation of the eye [30,31]. In fact, the eye, including the conjunc-
tiva and cornea, and surrounding tissues have extensive sympathetic innervation [20,32,33],
and catecholamines have been found in the TF [15,34-36]. This idea is supported by our
previous observation of the degradation of the catecholaminergic systems of the eye in
parkinsonian mice [37].

Although there are still no studies of catecholamines in TF in PD patients, numerous,
though conflicting data were accumulated on a change in the level of catecholamines
in the cerebrospinal fluid and blood in PD patients (n = 9-53), which are considered
as potential diagnostic markers [38-43]. Based on the above, the next objective of this
study was to definitely determine in the enlarged cohort of PD patients whether changes
in catecholamine levels in the TF are characteristic of PD and could be considered as
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potential diagnostic biomarkers. Interestingly, catecholamines and «-2-macroglobulin,
selected in this study as potential biomarkers in TF, can be functionally linked in PD. In
fact, monoamine-activated x-2-macroglobulin can stimulate the release of dopamine in the
striatum [44].

The third objective of this study was to compare TF changes in PD patients with those
in animals in neurotoxic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of
the early clinical stage and preclinical stage of PD according to the methodology outlined
above [16].

The last objective of this study was to test whether catecholamines are synthesized in
the lacrimal glands in mice and their metabolism is changed when modeling PD. This might
clarify if the lacrimal glands can be considered as one of the sources of catecholamines in
the TE.

2. Results
2.1. Clinical and Ophtalmological Characteristics of PD Patients and Control Subjects

In this study, TF was obtained for analysis in 31 PD patients, male and female, at an
early clinical stage (Hoehn and Yahr, stage 1-2) before starting antiparkinsonian therapy,
as well as in 32 age-matching control subjects of both sexes. Main clinical characteristics of
studied cohorts are presented in Table 1.

Table 1. Clinical evaluation, tear fluid volume and intraocular pressure in PD patients and controls.

Cohort

Early Symptomatic Control
Untreated Subjects
Parameter PD Patients
N 31 32
Gender, male/female 18/13 11/21

Age, years 604 +19 56.6 +£ 2.0
Hoehn-Yahr scale 1.7 +0.1 -
PD stage assessment UPDRS II (daily activity) 8.0+ 09 -
UPDRS 1III (motor activity) 228 +£22 -
Motor symptoms duration since onset, years 24+03 -
side of onset, right/left 15/16 -

Total volume of tear fluid collected from both eyes, uL 11.7 £ 09* 16.8 £ 1.7

Intraocular pressure in right/left eye, mm hg 23.6 £0.8/23.7 £ 0.7 221+£0.7/225 £ 0.7

* p < 0.05 to control, evaluated with two-tailed unpaired Student’s ¢-test.

According to our data, the TF volume in the PD patients was lower than in controls
by 30% (p = 0.011). However, there were no differences in intraocular pressure between the
PD patients and the control group (Table 1). Considering that TF volume in PD patients
differs from that in control subjects, we evaluated both the concentration and the content
(concentration x tear fluid volume) of catecholamines and metabolites. Evaluation of the
content makes it possible to be sure that the observed changes in concentration are due to a
change in the secretion of the detected substances, and not only to a change in TF volume.

2.2. Quantification of Catecholamines and Metabolites and Activity of a-2-Macroglobulin in the
Tear Fluid in PD Patients and the Control Group

Catecholamines (dopamine, noradrenaline, and adrenaline) and some metabolites,
L-3,4-dihydroxyphenylalanine (L-DOPA) (dopamine precursor) and dihydroxypheny-
lacetic acid (DOPAC) (product of dopamine degradation) were measured in the TF of
PD patients and control subjects. Since PD develops asymmetrically [45], data on the
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content/concentration of catecholamines in TF in patients were assessed separately for the
eye on the side of pronounced motor symptoms (ipsilateral side) and on the side of no or
less pronounced motor symptoms (contralateral side). Since there is no asymmetry in the
tear fluid composition in control subjects (Appendix A Figure A1), the control data were
used as the average for the right and left eyes.

According to our data, the average concentration of noradrenaline in the TF of PD pa-
tients on the ipsilateral side was more than 2 times higher than in the control (0.12 pmol/uL
versus 0.05 pmol/uL, p = 0.018, n = 30) (Figure 1a). The concentration of L-DOPA in
PD patients on the ipsilateral side was 60% higher than in the control (0.17 pmol/uL
versus 0.11 pmol/uL, p = 0.024, n = 30) (Figure 1a). On the contrary, the concentration
of adrenaline in the TF of PD patients was approximately half as much on both sides
as in the control group (ipsilateral PD—0.78 pmol/pL; contralateral PD—0.75 pmol/uL;
control—1.54 pmol/uL; PD ipsilateral versus control: p = 0.023; PD contralateral versus
control: p = 0.019, n = 30) (Figure 1a). No changes in dopamine and DOPAC concentrations
were found in PD patients as compared to controls (Figure 1a).
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Figure 1. (a) Concentration and (b) content of catecholamines and metabolites and the activity of
a-2-macroglobulin (c) in the tear fluid of PD patients on the ipsilateral and contralateral side and in
control subjects. DOPAC, dihydroxyphenylacetic acid; L-DOPA, L-3,4-dihydroxyphenylalanine.

When assessing the content of catecholamines and metabolites in the TF, we found an
increase in the content of noradrenaline on the ipsilateral side (PD ipsilateral—0.50 pmol
versus control—0.29 pmol, p = 0.049, n = 30) (Figure 1b), as well as a decrease in adrenaline
content on both sides (PD ipsilateral—4.71 pmol, PD contralateral—5.84 pmol, control—
10.08 pmol, PD ipsilateral versus control: p = 0.004, PD contralateral versus control: p = 0.02,
n = 30) (Figure 1b). The content of dopamine, L-DOPA, and DOPAC in TF in PD remained
at the control level (Figure 1b).

The activity of x-2-macroglobulin in TF in PD patients is increased by approxi-
mately 50% on both sides compared to control (PD ipsilateral—6.81 nmol/minxmL; PD
contralateral—6.97 nmol/min x mL; control—4.46 nmol/minxmL; PD ipsilateral versus
control: p = 0.031, PD contralateral versus control: p = 0.037, n = 15) (Figure 1c).
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2.3. Comparison of Gender Differences in Biomarkers in the Tear Fluid of PD Patients and Controls
and Correlation Analysis with the Severity of Disease

We did not find gender differences in the concentration and content of catecholamines
and metabolites, as well as in the activity of «-2-macroglobulin in the TF of PD patients and
control subjects (Appendix A Table A1). When evaluating possible correlations between
changes in TF collected in PD patients on the ipsilateral side and the severity of PD the
only correlation was found between the concentration of dopamine and the patient status
on the UPDRS III scale (Table 2).

Table 2. Correlation analysis of changes in the composition of the tear fluid in PD patients on the
ipsilateral side and the patient status according to the Hoehn and Yahr and UPDRS III scales.

Parameter 1 Hoehn and Yahr Score UPDRS III Score
(Range: 1-3) (Range: 4-36)
Parameter 2 r p-Value r p-Value
g Noradrenaline 0.33 0.15 0.36 0.12
*é‘ L-DOPA 0.17 0.45 0.28 0.22
g DOPAC 0.00 1.00 -0.02 0.97
§ Dopamine 0.31 0.20 0.50 0.04 *
v Adrenaline 0.35 0.24 0.37 0.22
Noradrenaline 0.31 0.18 0.21 0.37
‘q;:: L-DOPA -0.01 0.96 -0.04 0.85
‘g DOPAC -0.02 0.94 -0.02 0.95
) Dopamine 0.18 0.44 0.06 0.81
Adrenaline -0.38 0.22 -0.50 0.09
a-2-macroglobulin activity ~ -0.12 0.78 -0.33 0.39

* p < 0.05, evaluated with two-tailed Spearman’s test; n = 31 for concentration and content of catecholamines;
n = 15 for the a-2-macroglobulin activity UPDRS, Unified Parkinson’s Disease Rating Scale.

2.4. ROC Analysis of Biomarkers in the Tear Fluid in PD Patients and Control Subjects

We used receiver operating characteristics (ROCs) to assess the diagnostic accuracy
of markers found in the TF on the ipsilateral side of PD in this study. The area under the
ROC curve (AUC) for potential biomarkers, which is represented by statistically significant
changes in the concentration of noradrenaline, adrenaline, and L-DOPA, as well as the
activity of a-2-macroglobulin, was 0.7 or higher. This means a good ability to discriminate
between PD patients and control subjects (Figure 2). When using statistically significant
changes in the content of catecholamines in the TF of PD patients for ROC analysis, the
diagnostic efficacy for noradrenaline decreased (AUC = 0.66), and that for adrenaline
increased (AUC = 0.87).

Analysis of the sensitivity and specificity at the selected cutoff points showed that
concentration and content of adrenaline are characterized by the greatest sensitivity value
(>80%), whereas noradrenaline concentration and «-2-macroglobulin activity show a very
high specificity (>85%) (Figure 2).

2.5. Motor Behavior and Dopamine Levels in the Nigrostriatal System in MPTP-Treated and
Control Mice

The distance traveled in the open field test did not change in mice treated with MPTP
twice in a single dose of 7 mg/kg, compared with the control (Figure 3a). However, this
parameter decreased by 44% in mice treated with MPTP four times in a single dose of
7 mg/kg (584 cm versus 943 cm, p = 0.002, n = 10). In the same experiments, the dopamine
concentration in the striatum decreased by 40% and 77%, respectively (MPTP 2 x 7—
60.3 pmol/mg, MPTP 4 x 7—22.9 pmol/mg, control—100.1 pmol/mg, MPTP 2 x 7 versus
control: p = 0.001, MPTP 4 x 7 versus control: p = 0.0013, n = 10) (Figure 3b). In contrast to
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the striatum, there was no change in the dopamine content in the substantia nigra in both

experiments (Figure 3c).
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Figure 2. ROC curves of tear fluid biomarkers, collected on the ipsilateral side, for discriminating PD patients from controls.
The area under the curve (AUC) and the percentage of sensitivity (Sens.) and specificity (Spec.) at cutoff points are indicated

on each plot.
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Figure 3. Behavioral and metabolic changes in mice two weeks following MPTP administration: (a) total distance in the
open field test, (b) dopamine concentration in striatum, and (c¢) dopamine content in substantia nigra.
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2.6. Concentration and Content of Catecholamines and Metabolites, as well as the Activity of
«-2-Macroglobulin in the Tear Fluid in MPTP-Treated and Control Mice

We were able to evaluate noradrenaline, dopamine, and DOPAC in mice TF samples,
whereas adrenaline and L-DOPA were undetectable in our assay. Considering that there
is a tendency (p = 0.11) to increase the volume of TF in mice receiving four injections of
MPTP at a single dose of 7 mg/kg, we also estimated, in addition to the concentration,
the content of catecholamines and metabolites in TF in mice in both experiments (MPTP:
2 x 7mg/kgor 4 x 7 mg/kg).

The concentration of noradrenaline in the TF in mice that received MPTP twice in
a single dose of 7 mg/kg, increased by 56%, and in mice that received MPTP four times
in the same single dose, the concentration rose by 76%, compared to the control (MPTP
2 x 7—0.35 pmol/L MPTP 4 x 7—0.4 pmol/uL, control—0.23 pmol/uL, MPTP 2 x 7
versus control: p = 0.036, MPTP 4 x 7 versus control: p = 0.024, n = 5) (Figure 4a). Moreover,
in both experiments, we found an almost 3-fold increase in dopamine concentration in the
TF compared to the control (MPTP 2 x 7—0.08 pmol/uL, MPTP 4 x 7—0.09 pmol/uL,
control—0.03 pmol/uL, MPTP 2 X 7 versus control: p = 0.004, MPTP 4 x 7 versus control:
p = 0.008, n = 5), whereas the DOPAC concentration did not change (Figure 4a).
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Figure 4. (a) Concentration and (b) content of catecholamines and metabolites, as well as (c) the
activity of a-2-macroglobulin in the tear fluid in mice two weeks following MPTP administration.
DOPAC, dihydroxyphenylacetic acid.
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From our analysis of the content of catecholamines and metabolites in the TF in mice
it follows that noradrenaline content increased by 73% only in mice that received MPTP
four times at a single dose of 7 mg/kg compared to control (2.58 pmol versus 1.49 pmol,
p = 0.024, n = 5) (Figure 4b). The content of dopamine in the TF of MPTP-treated mice was
also increased compared to the control (MPTP 2 x 7—0.46 pmol, MPTP 4 x 7—0.74 pmol,
control—0.2 pmol, MPTP 2 x 7 vs. control: p = 0.012, MPTP 4 x 7 vs. control: p = 0.002,
n = 5), whereas the DOPAC content did not change (Figure 4a).

The activity of a-2-macroglobulin increased by 53% in TF in mice receiving MPTP
twice at a single dose of 7 mg/kg compared to the control, and it increased almost 3-fold in
mice receiving MPTP four times at the same single dose (MPTP 2 x 7—4.04 nmol/minxml,
MPTP 4 x 7—7.51 nmol/minxmL, control—2.63 nmol/minxmL, MPTP 2 x 7 vs. control:
p = 0.048, MPTP 4 x 7 vs. control: p = 0.0004, n = 5) (Figure 4c).

2.7. Concentration of Catecholamines in Lacrimal Glands in MPTP-Treated and Control Mice

We were able to evaluate only noradrenaline and adrenaline in exorbital lacrimal
glands of mice and noradrenaline and dopamine in Harderian glands (Figure 5). Other
catecholamines and metabolites were undetectable in our assay.
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Figure 5. Concentration of catecholamines in the (a) lacrimal exorbital and (b) Harderian glands in
mice two weeks following MPTP administration.
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The concentration of noradrenaline decreased approximately by 5 times in the exor-
bital lacrimal glands in mice after 2-fold and 4-fold administration of MPTP at a single
dose of 7 mg/kg compared with control (MPTP 2 x 7—0.55 pmol/mg, MPTP 4 x 7—
0.63 pmol/mg, control—2.99 pmol/mg, MPTP 2 x 7 versus control: p = 0.0003, MPTP
4 x 7 versus control: p = 0.0001, n = 10) (Figure 5a). The concentration of adrenaline
also decreased in the exorbital lacrimal glands in mice after 2-fold and 4-fold administra-
tion of MPTP at a single dose of 7 mg/kg by 23% and 50%, respectively (MPTP 2 x 7—
2.41 pmol/mg, MPTP 4 x 7—1.57 pmol/mg, control—3.12 pmol/mg, MPTP 2 x 7 versus
control: p = 0.0004, MPTP 4 x 7 versus control: p = 0.00001, n = 10) (Figure 5a).

The concentration of noradrenaline in the Harderian glands of mice that received
MPTP twice increased by 55% compared with the controls (0.28 pmol/mg versus
0.18 pmol/mg, p = 0.0241, n = 10) (Figure 5b). In mice that received four MPTP in-
jections, the noradrenaline level in the Harderian glands did not change. Moreover, no
change was found in the concentration of dopamine in mice receiving twice or four times
MPTP (Figure 5b).

3. Discussion
3.1. Catecholamines and Metabolites in the Tear Fluid as Potential Biomarkers of PD

The main trend in the development of an early and differential diagnosis of PD is the
search for biomarkers as changes in the level of certain substances in the body fluids, mainly
in the blood and cerebrospinal fluid. However, data published by various authors are often
contradictory [14,17,38-43,46—-48]. This is probably due to the fact that the concentration of
analytes in the blood and, to a lesser extent, in the cerebrospinal fluid is an integral index of
a wide range of metabolic processes associated with degeneration and plasticity of central
and peripheral neurons, as well as desympathization of the internal organs [8,20]. In this
context, the use of the TF for searching PD biomarkers has certain advantages over the use
of the cerebrospinal fluid and blood. These include non-invasive atraumatic collection and
a smaller spectrum of substances contained in the TF [20,49].

Given that the eye, including the conjunctiva and cornea, which are one of the most
important sources of substances in the TF, receives sympathetic innervation [20,50-53], we
assumed that in PD associated with systemic degeneration of catecholaminergic neurons,
the levels of catecholamines and their metabolites in the TF should change. However,
considering the decrease in TF volume in PD patients, which was observed in this and
previous studies [18,21,22], we have evaluated the change in the TF not only in the con-
centration, but also in the content of catecholamines and metabolites. The need for this
is explained by the fact that a change in the concentration of certain substances in the TF
of PD patients can be the result of a decrease in TF volume rather than a change in their
secretion due to pathology. This idea was supported by the observation that, despite the
difference in the concentration of L-DOPA in the TF in PD patients and the age-matched
control observed in this study, the content of L-DOPA did not change (Table 3).

In the TF of PD patients, but only on the side of pronounced motor disorders (ip-
silateral side), we found an increase in the concentration and content of noradrenaline
compared to the control (Table 3). Considering that adrenergic receptors are expressed
in the cells of the conjunctiva and cornea facing the TF [54,55], an increase in the level of
noradrenaline in the TF can be a compensatory mechanism under their desympathization
associated with PD (Figure 6). In addition, we found a decrease in the concentration and
content of adrenaline in the TF of PD patients, both in the ipsilateral and contralateral sides
(Table 3). These data are difficult to interpret, although it is possible that adrenaline enters
the TF from the blood (Figure 6), overcoming a blood-tear barrier, which becomes more
permeable in pathology [56].
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Table 3. Comparison of the level of catecholamines and the activity of x-2-macroglobulin in the
tear fluid in PD patients and/or in mice treated with MPTP with the corresponding parameters

in controls.

Tear Fluid Exorbital Blood Plasma
Glands (from [14])
Source ,
v £ o0 b0 b0 b0 b0 50
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- DOPAC =/= =/= =/= =/= - - | | |
a-2-macroglobulin activity 1 1 1 i n/s n/s n/s n/s n/s

1, increased compared to control; |, decreased compared to control; =, no difference compared to control;
-, tundetectable; n/s—non-studied.

Degeneration of some central and peripheral
neurons in Parkinson’s disease

— T~

4 N\
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Figure 6. Schematic diagram of hypothetical mechanisms of observed changes in the tear fluid (TF).

Data on the contrasting changes in the level of noradrenaline—an increase in the TF

and a decrease in the plasma [14,15], respectively—attract special attention (Table 3). As for
the interpretation of these data, one should proceed from the idea that the noradrenaline
concentration in body fluids is an integral indicator of the complementary processes,
neurodegeneration and neuroplasticity. This means that an increased level of noradrenaline
in TF can suggest the local prevalence of compensatory processes over neurodegeneration
(Figure 6). A decreased level of noradrenaline in the blood can be an indicator of the
systemic prevalence of neurodegeneration over neuroplasticity.

We believe that changes in the levels of noradrenaline and adrenaline in the TF can
be considered as potential biomarkers for a differential diagnosis of PD. It should be
emphasized that we have shown, for the first time, significant differences in the level
of noradrenaline and adrenaline, as well as in the a-2-macroglobulin activity in tears
in untreated PD at the early clinical stage (Hoehn and Yahr, stages 1-2), despite great
difficulties in selecting these patients.
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3.2. Catecholamines and Metabolites in the Tear Fluid as Potential Biomarkers of PD at the
Preclinical Stage

One of the objectives of this study was to determine whether changes in the content
of catecholamines in the TF in untreated PD patients at an early clinical stage can be
considered as potential diagnostic biomarkers of the preclinical stage. To address this
issue, biomarkers found in the body fluids of patients have been validated in mice used
for modeling PD at the preclinical and clinical stages MPTP. It should be noted that the
neurotoxic effect of MPTP is similar to that of isoquinoline derivatives and paraquat,
endogenous and exogenous neurotoxins, respectively, which cause the development of
PD [57,58]. This new methodology was recently first applied to validation of the biomarkers
of PD, catecholamines and amino acids, in the blood [14].

Despite the fact that the MPTP models of the preclinical and clinical stages of PD have
been developed and used for ten years [16], they should be tested in every new study at
least for motor behavior and dopamine content in the striatum. This is due to variations in
the sensitivity to MPTP in mice of different generations [59]. In this study, the preclinical
stage of PD was modeled in mice by a double subcutaneous injection of MPTP at a single
dose of 7 mg/kg, which was lower than in our previous study (8 mg/kg) [15]. This model,
in which the level of dopamine decreased by 40%, was better at reproducing the preclinical
stage of PD, since in the previous study, the level of dopamine decreased by 65%, which is
close to the threshold of 70%, at which there is a transition to the clinical stage, associated
with the appearance of movement disorders. When modeling the early clinical stage of PD,
mice were injected with MPTP 4 times at the same single dose and with the same interval
between injections. This resulted in the threshold loss of dopamine (>70%) in the striatum
and the appearance of motor disorders.

For the assay of catecholamines, TF was pooled from two mice under short-term mild
anesthesia. It follows from our results that in mice on both PD models, as in PD patients, the
level of noradrenaline in the TF was increased as compared to the corresponding controls
(Table 3). Given the unidirectional changes in the level of noradrenaline in the TF in PD
patients and MPTP-treated mice, we believe that mild anesthesia did not significantly affect
the mice.

Based on the above methodology for validating biomarkers found in the body fluids
of patients with the help of animal models, we believe that an increase in the level of nora-
drenaline in the TF in PD patients and animals used for modeling clinical and preclinical
stages of PD can be considered as a potential biomarker of the preclinical stage. Indeed,
a decrease in the level of noradrenaline in the TF of PD patients and in MPTP-treated
mice at modeling an early clinical stage may indicate an adequate reproduction of the
pathogenesis of PD, at least along this metabolic pathway. In turn, a decrease in the level
of noradrenaline in the TF in the model of the PD preclinical stage allows us to consider
this indicator as a potential diagnostic biomarker of the PD preclinical stage.

In contrast to noradrenaline, we were unable to validate in mice the change in the
adrenaline content observed in the TF in PD patients, since adrenaline was undetectable in
the TF in control and MPTP-treated mice (Table 3). Nevertheless, this weak point of our
study does not exclude the possibility that a 2-fold decrease in the adrenaline content in
the TF of PD patients can be considered biomarker for the preclinical stage of PD.

3.3. Activity of a-2-Macroglobulin in Tears as a Biomarker of PD

We have shown for the first time that in PD patients, the activity of x-2-macroglobulin
is almost doubled. Interestingly, in contrast to the asymmetric change in the noradrenaline
level in the TF, the change in «-2-macroglobulin activity is symmetrical (Figure 6). This
is probably due to the fact that even with asymmetric degradation of catecholaminergic
systems, at least of the nigrostriatal dopaminergic system [45], the pathogenesis of PD is
characterized by general symmetric manifestations, such as neuroinflammation, circulation
of aggregated a-synuclein, and neuroplasticity. a-2-macroglobulin is involved in the regu-
lation of these asymmetric processes (Figure 6) [24]. A significant increase in the activity of
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a-2-macroglobulin in the TF was also shown in mice in the model of the preclinical stage
of PD and, to an even greater extent, in the model of the clinical stage of PD.

Given the wide variety of x-2-macroglobulin functions, it is difficult to unambiguously
interpret the changes in its activity that we found in PD patients and in animal models of PD
(Figure 6). Indeed, these changes can be the result of the x-2-macroglobulin ability to inhibit
proteolytic enzymes, bind cytokines, growth factors, apolipoproteins, and other proteins,
which can be associated with PD [60]. In the pathogenesis of neurodegenerative diseases
and, in particular, PD, the neuroprotective chaperone activity of «-2-macroglobulin is of
particular interest. In this case, x-2-macroglobulin serves to stabilize malformed proteins
(B-amyloid and aggregated «-synuclein), preventing their aggregation and transformation
into neurotoxins [24]. It should be noted that x-2-macroglobulin, in addition to neuropro-
tective processes, is involved in neurotoxic processes, e.g., suppressing the neuroprotective
activity of nerve growth factor [61]. In any case, the data obtained in this study from PD
patients and MPTP-treated mice suggest that the increased x-2-macroglobulin activity in
the TF can be considered as a potential diagnostic biomarker for both clinical and preclinical
stages of PD (Table 3).

3.4. Diagnostic Accuracy of Tear Fluid Biomarkers

The ROC analysis was used in this study to assess the accuracy of biomarkers found
in the TF of PD patients. It is considered that the diagnostic efficacy of the biomarker is
higher as the AUC increases. The diagnostic value of a biomarker is considered high if its
specificity exceeds 80% [1]. The AUC of TF biomarkers tested in this study (catecholamines,
a-2-macroglobulins) ranged from 0.66 to 0.87. This index is slightly lower than the AUC for
biomarkers in the plasma of PD patients [14], but higher than that for TF biomarkers calcu-
lated in previous studies [22,43]. The most promising TF biomarkers found in this study are
changes in noradrenaline concentration (specificity = 88.9%, AUC = 0.73), adrenaline con-
tent (specificity = 81.2%, AUC = 0.87) and «-2-macroglobulin activity (specificity = 92.3%,
AUC = 0.77). These biomarkers are characterized by the highest values of specificity
and AUC.

The most effective, but challenging approach to validating changes in body fluids
found in PD patients at the clinical stage and in animal models of clinical and prelcinical
stages of PD as biomarkers of the preclinical stage is to search for these biomarkers in
risk subjects at the prodromal stage of PD [4]. In accordance with this approach, a risk
group is first created. This includes the elderly subjects without motor disorders, but
with premotor symptoms, mainly with sleep, smell, and peristalsis impairments. Risk
subjects who manifest the same changes in body fluids as patients at the clinical stage of
PD and animals on models of clinical and preclinical stages of PD undergo an examination
of the nigrostriatal dopaminergic system with positron emission tomography. Changes
in body fluids detected in risk subjects with a failure of the nigrostriatal dopaminergic
system are considered diagnostic biomarkers of PD at the preclinical stage. Recently, this
approach was used to validate changes in the cerebrospinal fluid and blood as biomarkers
of the preclinical stage of PD. However, so far this approach has not been used to validate
potential biomarkers in tears [4]. We intend to overcome this weakness in future research.

3.5. Lacrimal Glands as Potential Sources of Catecholamines in the Tear Fluid

When searching for biomarkers of PD in body fluids, in terms of applied neuroscience,
it is enough to detect changes in the level of any substance. In terms of fundamental
neuroscience, it is important to understand which cells are the sources of biomarkers and
which pathological processes lead to their appearance. The lacrimal glands, which receive
sympathetic innervation from the upper cervical ganglia, are generally considered one of
the sources of catecholamines in TF [20,33,54].

Since obtaining the lacrimal glands (biopsy) in humans is impossible for ethical
reasons, we evaluated for the first time the change in the content of catecholamines in the
lacrimal glands in mice using PD models. It was shown that in MPTP-treated and control
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mice the lacrimal glands are characterized by both similarities and differences in the content
of catecholamines. The similarity lies in the fact that both glands contain noradrenaline.
The differences are that only the exorbital gland, in addition to noradrenaline, contains
adrenaline, and only the Harderian gland, in addition to noradrenaline, contains dopamine.
We have shown for the first time that a change in the metabolism of catecholamines in
the lacrimal glands in MPTP-treated mice is associated with a change in the content of
catecholamines in the TF. This suggests that lacrimal glands can be one of the sources of
catecholamines in the TF.

Thus, our data suggest that changes in the level of catecholamines and the activity of
a-2-macroglobulin in the TF can be considered as potential biomarkers for a differential
and preclinical diagnosis of PD, and the lacrimal glands can be regarded as one of the
possible sources of catecholamine in the TE.

4. Materials and Methods
4.1. Characteristics of PD Patients and Control Subjects Designed for Tear Fluid Sampling

PD was diagnosed by the definition of motor syndrome as bradykinesia in com-
bination with resting tremor, rigidity, or both, as well as its unilateral manifestation in
some patients, which met the Clinical Diagnostic Criteria for Parkinson’s Disease of the
Movement Disorders Society [1]. Motor symptoms were additionally assessed using the
United Parkinson’s Disease Rating Scales (UPDRS), parts II and III [62]. PD patients and
control subjects selected by neurologists were examined by ophthalmologists. Patients and
controls with ophthalmic diseases such as acute ocular inflammation, ocular trauma, and
non-PD retinal diseases were excluded from the study. The clinical protocol was approved
by the Ethics Committee of the Sechenov First Moscow State Medical University (protocol
Ne 34-20, date of approval—9 December 2020). The main criteria for the inclusion and
exclusion of patients and control subjects are presented in Table 4.

Table 4. Inclusion and exclusion criteria for the selection of PD patients and control subjects.

Ne Criteria PD Patients Control
Idiopathic PD + -

Secondary Parkinsonism - -

1
2
3. Other extrapyramidal and neurological diseases - -
4

Psychiatric disorders - -

Ophthalmic diseases (acute eye inflammation,
ocular trauma, PD related retinal disorders)

o
!
:

Endocrine diseases - -

Stroke and trauma over the past two years - .

Somatic symptom disorders - -

O X N

Neoplasms, including malignant tumors - -

Specific antiparkinsonian therapy (levodopa,
10. dopamine receptor agonists, monoamine oxidase - -
inhibitors, amantadine, etc.)

Antagonists of dopamine receptors

1. (metoclopramide, domperidone, cinnarizine, etc.) ) B
12. Sympatholytics (reserpine) - -
13 Agonists and antagonists of serotonin and ) .

adenosine receptors

+, inclusion criterion; -, exclusion criterion.

In the selected subjects (1 = 31 for PD patients and n = 32 for controls), the intraocular
pressure was first measured, and then the TF was collected using sterile filter paper (5 mm
wide), which was placed behind the lower eyelid, as in the Schirmer test [18,21]. TF was
collected for 5 min by spontaneous sorption on a test strip without stimulating lacrimation.
The length of the wetted portion of the strip was measured to calculate the sample volume
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by comparison with standard volume samples. Then the strips were placed in tubes with
100 nL 0.1 N HCIOy (for the assessment of catecholamines) or without it (for the assessment
of a-2-macroglobulin), frozen in liquid nitrogen, and stored at —70 °C. Samples collected
from each eye were stored and analyzed separately.

4.2. Animals and Experimental Procedures

We used 30 male mice C57Bl/6 at the age 2-2.5 months (22-26 g), purchased in the
“Pushchino” SPF animal facility (Pushchino, Moscow Oblast, Russia). The animals were
kept at 21-23 °C in a light-dark 12 h cycle at free access to food and tap water. PD at
the clinical and preclinical stages was modeled in mice by subcutaneous administration
of MPTP (Sigma-Aldrich, St. Louis, MO, USA), twice at the individual dose of 7 mg/kg
(n =10) or four times at the individual dose of 7 mg/kg (n = 10), respectively, witha 2 h
interval between injections. The control groups of animals received 0.9% NaCl instead of
MPTP three times (n = 10). Two weeks after the administration of MPTP or 0.9% NaCl, the
motor behavior of the mice was assessed in the open field test for 6 min using a PhenoMaster
device for analyzing animal behavior (TSE Systems, Bad-Homburg, Germany).

Experimental procedures were carried out in accordance with the NIH Guide for the
Care and Use of Laboratory Animals and were approved by the Animal Care and Use
Committee of the Koltzov Institute of Developmental Biology RAS (protocol Ne 38-20, date
of approval—30 July 2020).

4.3. Tear Fluid and Brain Tissue Sampling in Animals

To obtain TF, the animals were lightly anesthetized with isoflurane. Then the TF was
collected using strips of filter paper 2.5 mm wide, similar to Schirmer’s strips, for 3 min
without stimulating lacrimation. Lacrimal strips pooled from two mice served as one
sample for analysis. These strips were placed in tubes with or without 0.1 N HCIOy, frozen
in liquid nitrogen and stored at —70 °C.

After collecting the TF, the mice were decapitated, followed by dissection of the dorsal
striatum and substantia nigra. Samples were weighed, frozen in liquid nitrogen, and
stored at —70 °C. In addition to the striatum and substantia nigra, exorbital and Harderian
lacrimal glands were collected. To dissect exorbital glands, the scalp was cut behind the
lower jaw and ventrally from the auricle. Thereafter, the glands were removed through the
above-mentioned incision as previously described [63,64]. Harderian glands were collected
from the eye sockets after preliminary removal of the eyeballs and transection of the optic
nerve. Lacrimal gland samples were weighed, frozen in liquid nitrogen, and stored at
—70°C.

4.4. HPLC Assay of Catecholamines and Metabolites

The content/concentration of catecholamines and metabolites (noradrenaline, adrenaline,
dopamine, L-DOPA, and DOPAC) was measured using high performance liquid chro-
matography with electrochemical detection (HPLC-ED). First, samples of TF dissolved in
perchloric acid were thawed. Then the eluate was taken and 3,4-dihydroxybenzylamine
(DHBA)(Sigma-Aldrich, St. Louis, MO, USA), the internal standard, was added to a fi-
nal concentration of 25 pmol/mL. Tissue samples were homogenized using a Labsonic
M ultrasonic homogenizer (Sartorius, Goettingen, Germany) in 200 uL 0.1 N. HCIO4
with 25 pmol/mL DHBA, followed by centrifugation at 2000x g for 20 min. In the pre-
pared samples, catecholamines and metabolites were measured by HPLC, as previously
described [15].

4.5. In Vitro Assay of a-2-Macroglobulin Activity

The estimation of x-2-macroglobulin activity was based on the fact that the complex
of «-2-macroglobulin with trypsin retains proteolytic activity for the low-molecular-weight
substrate N-benzoyl-DL-arginine-p-nitroanilide, and this activity is not affected by the
soybean trypsin inhibitor. The «-2-macroglobulin activity was measured on a Synergy
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MX microplate photometer (BioTek, Winooski, VI, USA). Then it was calculated using
a calibration curve plotted against p-nitroaniline (range: 0-28 nmol) and expressed in
nmol/min per mL of the sample as previously described [65].

4.6. Reproducibility of the Assays

To increase the reproducibility of the HPLC assay and to compensate for possible
inter-assay variations, we used the internal standard DHBA. Intra-assay coefficients of
variation (CV) calculated based on DHBA peak area in each sample were less than 5%
for tissue samples (for the reported assay of striatum CV = 0.96%, for nigra CV = 2.1%,
n =10 for each assay), and less than 10% for TF samples (for mice TF CV =9.41%, n = 15,
for human TF CV =9.82%, n = 42). Day-to-day variability of DHBA standard peak was
characterized by CV = 2.84% (n = 5). The lower limit of detection for catecholamines and
metabolites was 5 pmol/mL (5:1, S:N). Calibration curves with DHBA were evaluated in
blank samples (r? = 0.9999), striatum homogenate (r? = 0.9953) and human TF (r? = 0.9999),
which means no significant matrix effect.

For the reported assay of «-2-macroglobulin activity, intra-assay CV calculated based
on standard concentrations of p-nitroaniline was 2.25% (n = 5), day-to-day variability
was 2.5% (n = 5). The calibration curve was characterized by a correlation coefficient of
r=1 (p=0.00005, n = 8, evaluated with Spearman’s test) meaning it was linear on the
selected range.

4.7. Statistical Analysis

Data are presented as group mean =+ standard error of the mean. Data normality
was checked using the Shapiro-Wilk test. Unpaired parametric data were processed using
the unpaired Student’s t-test, and unpaired nonparametric data were processed using the
Mann-Whitney test. Paired analysis was performed using the Wilcoxon signed-rank test.
Correlation of TF biomarker levels in PD patients with Hoehn and Yahr and UPDRS scale
scores was assessed by the Spearman’s test. Moreover, an analysis of the receiver operating
characteristic (ROC) was performed to assess the diagnostic accuracy of biomarkers found
in PD patients. Data from the ipsilateral side for the PD group and average of the left and
right side values for the control was used. The optimal cutoff values of sensitivity and
specificity were determined using the Youden index.

In all tests, p-values were two-tailed, and p < 0.05 was considered statistically signifi-
cant. Analyses were performed using GraphPad Prism 6.0 (GraphPad Software, San Diego,
CA, USA).

5. Conclusions
The following important results were obtained in this study:

(1) Untreated PD patients at an early clinical stage manifest increased levels of no-
radrenaline and «-2-macroglobulin activity, as well as a decrease in the level of
adrenaline in the TF, which are considered as candidate biomarkers for the differential
diagnosis of PD;

(2) Changes in the level of noradrenaline were found in the TF of PD patients mainly on
the ipsilateral side, whereas changes in the level of adrenaline and «-2-macroglobulin
activity were observed in TF on both sides;

(3) Changes in the level of noradrenaline and x-2-macroglobulin activity in TF observed
in untreated PD patients at the clinical stage have been validated in animal models of
PD as potential biomarkers of the preclinical stage;

(4) The lacrimal glands in control animals and in PD models contain catecholamines;
their concentration in control animals differs from that in PD models, which suggests
that these glands are one of the sources of catecholamines in TF.
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Figure A1. Concentration of catecholamines and metabolites and the activity of x-2-macroglobulin
in the tear fluid collected from right and left eyes of control subjects. DOPAC, dihydroxyphenylacetic
acid; L-DOPA, L-34-dihydroxyphenylalanine.
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Table Al. The concentration and content of catecholamines and metabolites, as well as «-2-
macroglobulin activity in the tear fluid in control subjects and PD patients, males and females.

Control Right Eye Left Eye

Biomarker Male Female p-Value Male Female p-Value
g Noradrenaline 0.03+0.01 0.05+0.01 031 0.04+0.01 0.05+0.01 0.27
T3 L-DOPA  0.09+0.02 0.10+0.01 0.69 0.10+0.02 0.09+0.01 0.69
'Zgi' E DOPAC  0.05+0.03 0.06+0.01 0.66 0.05+0.03 0.06+0.01 0.81
¢ a.  Dopamine 0.64+0.30 053+0.16 071 0.57+0.11 042+0.08 0.26
S Adrenaline 144+0.59 210+050 045 1.15+0.25 1.86+0.39 0.27
@ Noradrenaline 0.23+0.06 0.31+0.05 029 023+0.06 0.36+0.08 0.28
é L-DOPA  0.89+0.13 0.77+0.10 048 0.59+0.09 0.73+0.10 0.37
g DOPAC  041+0.20 0.36+0.07 076 0.55+0.14 0.33+0.08 0.19
“g‘ Dopamine 3.11+0.83 2.75+047 0.69 2.63+0.38 2.68+0.60 0.95
>, Adrenaline 11.2+1.99 10.7+1.84 0.88 9.84+2.04 935+1.50 0.88

a-2-macroglobulinac- o - e 41194033 016 4.92+080 437044 053
tivity, nmol/minxmL
PD

Patients Ipsilateral Side Contralateral Side

Bi k
iomar er\ Male Female p-Value Male Female p-Value

g Noradrenaline 0.10+0.03 0.15+0.05 039 0.08+0.02 0.06+0.01 0.56
53 L-DOPA  0.18+0.03 0.17+0.05 093 0.14+0.03 0.09+0.02 0.29
'%’ E DOPAC  0.07+0.02 0.04+0.01 030 0.06+0.01 0.06+0.03 0.95
¢ a.  Dopamine 0.71+0.18 0.85+022 0.63 0.54+0.17 0.31+0.08 0.31
(.o) Adrenaline 0.73+0.09 0.85+0.25 0.60 0.84+0.11 0.63+0.19 0.31
'8 Noradrenaline 0.51+0.14 049+0.15 0.92 0.40+0.10 0.33+0.08 0.61
a L-DOPA  0.86+0.13 0.70+0.11 038 0.62+0.13 0.48+0.09 0.40
“g DOPAC  042+0.11 041+0.11 092 038+0.09 042+0.14 0.81
"g’ Dopamine 4.84+1.45 3.01+0.75 031 235+058 2.84+094 0.64
) Adrenaline 455+1.04 493+127 082 6.29+1.30 521+1.05 0.56

a-2-macroglobulin ac-

.. . 733+146 596+151 063 6.05+1.18 849270 046
tivity, nmol/minxmL

p-values are evaluated with Mann-Whitney test. For catecholamines and metabolites assay in control group
n (male/female) = 11/21; in PD patients group n (male/female) = 18/13. For x-2-macroglobulin assay in control
group: n (male/female) = 5/10; in PD patients group: n (male/female) = 6/9. DOPAC, dihydroxyphenylacetic
acid; L-DOPA, L-3,4-dihydroxyphenylalanine.
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