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Abstract: Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glu-
cose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family,
mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes
to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant
growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions
in autophagy regulation and cell death inhibition that are independent of its enzymatic activity.
The recent definition of HK2 localization to contact points between mitochondria and endoplasmic
reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in
regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor
cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic
and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can
constitute a promising anti-tumor strategy.

Keywords: hexokinase 2; mitochondria; MAMs; Ca2+; tumor metabolism; apoptosis; chemothera-
peutics; cell-penetrating peptides

1. Introduction

Hexokinases (HKs) are evolutionarily conserved enzymes that phosphorylate six-
carbon sugars (hexoses). Phosphorylated glucose (glucose-6-phosphate) is metabolized
in glycolytic, glycogenic, pentose phosphate and hexosamine biosynthesis pathways,
playing key roles in ATP synthesis, glucose storage, NADH pool enrichment and protein
glycosylation. In mammals, four HK isozymes (HK1-4) have been characterized [1], and a
fifth isozyme named HKDC1 (HexoKinase Domain Containing protein 1) has been more
recently described [2]. HK1-3 and HKDC1 are 100 kDa proteins that probably result
from the duplication of an ancestral HK gene similar to HK4, a 50 kDa enzyme with a
single catalytic moiety expressed at high levels in liver and pancreatic β-cells, where it
controls glycogenesis and insulin secretion, respectively. In contrast to HK4, all other HKs
have two enzymatic pockets, but these are both functional only in HK2, whereas HK1,
HK3 and HKDC1 retain activity only in the C-terminal catalytic site. HK1 is ubiquitous
and constitutes the predominant HK form in most tissues; HK2 is broadly present but
less expressed than HK1, and it is the main isozyme in insulin-sensitive districts such as
heart, skeletal muscle and adipose tissue, and in a wide range of tumors; HK3 and HKDC1
have a more limited pattern of expression and have been less characterized [3,4]. All HKs
are cytosolic, but HK1 and HK2 can also dock to mitochondria through a N-terminal
motif absent in the other isoforms. When bound to mitochondria, HK1 and HK2 exert
cytoprotective effects in healthy and neoplastic cells and increase their efficiency in glucose
usage [5,6].
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2. HK2 Regulation: Where, How and Why

HK2 levels and activity are dynamically regulated by many factors that act at tran-
scriptional, translational and post-translational levels (Figure 1). In general, HK2 confers
protection from stress states and contributes to proper tissue development. It is induced
by growth factors such as FGF [7] or TGF-β [8] that impinge upon activation of the tran-
scription factor c-MYC, of which the HK2 gene is a target [9]. FGF signaling is important
for vascularization, and HK2 ablation in endothelial and lymphatic cells leads to blood
and lymphatic vascular defects mirroring FGF receptor (FGFR)-KO mice [7]. In fibrob-
lasts, HK2 enhances the pro-fibrotic effect of TGF-β, whereas HK2 knock-down decreases
the TGF-β-stimulated fibrogenic process [8]. Ectopic overexpression of the HK2 gene in
brain substantia nigra protects dopaminergic neurons from degeneration in acute mouse
models of Parkinson’s disease [10]. In cardiomyocytes, HK2 protects from H2O2 injury
and prevents heart maladaptive hypertrophy increasing the pentose phosphate pathway
(PPP) flux [11]. Conversely, HK2+/− mice are vulnerable to ischemia/reperfusion car-
diac damage [12] and are affected by ROS-mediated cardiac hypertrophy [13]. However,
heterozygous animals have a proper development without defects in insulin sensitive
tissues [14]. Genetic models are poorly informative on HK2 functions, as HK2 knock-out
mice undergo embryonic lethality [14] and knocking-out HK2 in adult mice does not cause
evident defects [15].
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Figure 1. HK2 regulatory pathways in healthy cells. Continuous lines indicate direct effects; dashed
lines indicate indirect effects. FGF: Fibroblast Growth Factor; FGFR: Fibroblast Growth Factor
Receptor; TGF-β: Transforming Growth Factor β; TβR: Transforming Growth Factor β Receptor;
PI3K: PhosphoInositide-3-Kinase; mTORC: mammalian Target of Rapamycin Complex; p70S6K:
p70-S6 Kinase 1; GSK-3β Glycogen Synthase Kinase 3 β; PHLPP: PH domain and Leucine rich repeat
Protein Phosphatase; ∆Ψm: mitochondrial membrane potential; mPTP: mitochondrial Permeability
Transition Pore.

HK2 induction is part of the anabolic program elicited by insulin in muscle tissues
(Figure 1). Insulin prompts HK2 expression following activation of PI3K and p70 S6 protein
kinase (p70S6K) downstream to mTOR complex 1 (mTORC1) [16,17], a central coordinator
of cellular biosynthetic programs [18]. Consistently, HK2 expression is decreased in type
I and type II diabetes [4,14]. In addition, activation of the mTORC2 complex elicits HK2
mitochondrial docking in insulin-treated cells [19].
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HK2 activity and localization are dynamically regulated by its phosphorylation
(Figure 1). In cardiomyocytes, mitochondrial HK2 displays an anti-apoptotic function
mediated by AKT [20], a serine/threonine kinase that acts downstream to a variety of
growth factors as a central anabolic and survival effector [21]. AKT enables HK2 docking
to mitochondria by directly phosphorylating its Thr-473 residue [22] and by inhibiting
glycogen synthase kinase-3β (GSK-3β) activity that prevents HK2 mitochondrial localiza-
tion [23]. While the phosphatases that target the HK2 Thr-473 amino acid are still unknown,
the PH domain leucine-rich repeat protein phosphatase (PHLPP) inhibits AKT, reducing
the levels of HK2 bound to mitochondria in heart [24]. When on the outer mitochondrial
membrane (OMM), HK2 exerts an anti-apoptotic function by inhibiting the mitochondrial
Permeability Transition Pore (mPTP) [25], a mitochondrial channel the opening of which
triggers cell death [26,27]. Under oxidative stress conditions, HK2 association to mito-
chondria in rhabdomyosarcoma cells is regulated by Myotonic Dystrophy Protein Kinase
(DMPK) and Src kinase in a multi-molecular complex characterized by antioxidant and
pro-survival properties involved in muscle fiber differentiation [28].

Mitochondrial binding is crucial for the protective effects of HK2 in heart. Knocking-out
PHLPP increases AKT activity and decreases the infarcted area after ischemia/reperfusion
damage [24]. Several cardioprotective interventions such as ischemic preconditioning,
morphine and insulin increase the mitochondrial binding of HK2, whereas its disrup-
tion abrogates the protective potential of ischemic preconditioning [29]. More in general,
mitochondrial HK2 shields from cardiac ischemia/reperfusion injury [22], at least partially
by slowing adenine nucleotide exchange via inhibition of Voltage Dependent Anion Chan-
nel (VDAC) on the OMM [30,31]. In further accord with an important survival role of
mitochondrial HK2, the AKT/HK2 axis shields neurons from ischemia [32,33].

In case of nutrient paucity, cells can activate autophagy through mTORC1 inhibi-
tion [18] in order to guarantee cellular homeostasis and survival [34]. HK2 contributes
to autophagy induction in conditions of glucose starvation by binding and inhibiting
mTORC1. As a result, mTORC1 inhibition leads to activation of ULK1, a kinase that trig-
gers the first steps of the autophagic process [4,35]. HK2 exerts its pro-autophagic action by
binding the Raptor subunit of mTORC1 through a TOS (mTOR signaling) motif unrelated
to the HK catalytic site and to the mitochondrial binding sequence and not present in the
other HK isoforms [35]. HK2 involvement in autophagy induction in heart and tumors
and in hypoxic conditions was further confirmed and characterized [36–38]. Moreover,
HK2-induced autophagy was proposed to be involved in chemotherapeutic resistance of
some tumor models [39,40].

HK2-dependent inhibition of mTORC1 leads to inactivation of the mTORC1 substrate
p70S6K [35], a key stimulator of protein synthesis and cell growth [41] also involved
in the anabolic induction of HK2 [16,17]. Hence, p70S6K inhibition acts as a feedback
inhibitory mechanism to block HK2 induction in case of nutrient shortage, with a potential
relevance in the fluctuating conditions of metabolic supply occurring during the process of
neoplastic growth.

Little is known about HK2 functions in the immune system. It was found that HK2
can act as an innate immune receptor for bacterial-derived N-AcetylGlucosamine (NAG) in
macrophages. NAG binding to HK2 elicits its detachment from mitochondria and leads to
NLRP3 inflammasome activation and to the ensuing pro-inflammatory IL-1β secretion [42].
This unprecedented HK2 function highlights the diversity of the biological processes in
which the enzyme can be involved.

In an in vitro model, HK2 elicits monocyte differentiation through induction of au-
tophagy, and this effect is antagonized by the sirtuin SIRT6 [43]. As macrophage differenti-
ation requires a complex metabolic reprogramming, with an induction of glycolysis that
characterizes the pro-inflammatory and anti-tumoral M1 type macrophages [44], a wider
role of HK2 in tuning this process can be envisaged and needs further investigation.
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Furthermore, during the process of hepatocarcinogenesis hexokinase expression can
switch from isozyme HK4 to HK2, making hepatocellular carcinoma (HCC) cells insensitive
to the anti-neoplastic activity of Natural Killer (NK) cells [45], even if the mechanisms
underlying this regulation of innate immunity remain to be elucidated.

A recent study shows that genetic ablation of HK2 in mouse T cells does not affect
their activation and in vivo viral immunity, and that HK2 is not required for Treg function.
This suggests that HK2 can constitute a target for antineoplastic therapy, as its inhibition
would not interfere with T cell activity [46].

Interestingly, displacement of HK2 from mitochondria of dendritic cells was proposed
to be involved in their death during SARS-CoV2 infection [47].

3. HK2 on Mitochondria of Neoplastic Cells: Maintaining the Bad Guy in Perfect Shape

During neoplastic growth, tumor cells need to sustain a deregulated cell replication
even in a harsh metabolic milieu by adjusting their biochemical responses to rapid fluctua-
tions in oxygen and nutrient availability [48]. In this scenario, mitochondrial HK2 intersects
both metabolic and survival pathways, thus allowing neoplastic cells to cope with stressful
environmental cues. In accord with its relevance in tumor settings, HK2 de novo expres-
sion or overexpression is related to poor prognosis, stage progression, metastasis and/or
treatment resistance in a variety of malignancies [49]. As an example, during the evolu-
tion of HCC, HK2 expression replaces glucokinase (HK4) in hepatocytes, concomitantly
with their metabolic switching towards aerobic glycolysis [50]. HK2 expression already
occurs in precancerous lesions [51] and may be considered as a predictive biomarker for
HCC development [52]. HCC treatment with thyroid hormone T3 in a rat model of hep-
atocarcinogenesis switches back to HK4 expression and is associated with a metabolic
reprogramming towards an oxidative phosphorylation (OXPHOS) phenotype, abrogating
HCC progression [53]. In addition, HK2 is connected to poor prognosis (Table 1) in col-
orectal cancer [54], glioblastoma multiforme [55], pancreatic cancer [56], cervical squamous
cell carcinoma [39,57], prostate cancer [58], head and neck squamous cell carcinoma [59],
HCC [45] and other tumor types [3], and two independent meta-analyses in tumors of the
digestive system indicate HK2 as a negative prognostic marker associated with shorter
overall survival and progression free survival [60,61]. (Over)expression of HK2 is also
linked to tumor progression and/or metastasis in a variety of diverse neoplastic models
(Table 1) including HCC [62], colorectal carcinoma [54], lung cancer, breast cancer [15],
prostate cancer [58,63,64], diffuse large B-cell lymphoma [65] and glioblastoma [66].

Table 1. Correlation of HK2 (over)expression with prognosis, tumor progression and treatment
resistance in different type of human and murine neoplasms.

Tumor Type HK2 Expression Resistance References

Hepatocellular carcinoma
(HCC)

Poor prognosis;
tumor progression Sorafenib [45,60–62,67]

Colorectal cancer Poor prognosis;
tumor progression [54,60,61]

Glioblastoma Poor prognosis;
tumor progression Radiotherapy [55,66]

Pancreatic cancer Poor prognosis Gemcitabine [56]
Cervical squamous cell

carcinoma Poor prognosis Radiotherapy;
4-hydroxytamoxifen [39,57]

Prostate Cancer Poor prognosis;
tumor progression [58,63,64]

Head and neck squamous cell
carcinoma Poor prognosis [59]

Gastric cancer Poor prognosis [60,61]
Lung cancer Tumor progression [15]
Breast cancer Tumor progression Paclitaxel [15,38]
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Table 1. Cont.

Tumor Type HK2 Expression Resistance References

Diffuse large B-cell lymphoma Tumor progression

R-CHOP regimen:
Rituximab +

cyclophosphamide,
doxorubicin,

vincristine and
prednisone

[65,68]

Ovarian Cancer Cisplatin [40]

HK2 induction associates with resistance to radiation therapy [57,66], to chemothera-
peutics (Table 1) including the pyrimidine analog gemcitabine [56], the DNA alkylating
compound cisplatin [40], the microtubule stabilizing agent paclitaxel [38], estrogen receptor
modulation with 4-hydroxytamoxifen [39], and to targeted therapies such as the kinase
inhibitor Sorafenib [67] and the anti CD20 antibody Rituximab alone or in combination with
cyclophosphamide, doxorubicin, vincristine and prednisone (the R-CHOP regimen) [68].

Noteworthy, HK2 pharmacological inhibition or genetic downregulation suppress
tumor growth or reactivate therapeutic sensitivity in a number of tumor cell models [3].
For instance, knocking-out HK2 expression prevents or strongly inhibits tumor formation
in genetic mouse models of lung and breast cancer [15] and of PTEN-negative prostate can-
cer [63], while liver-specific ablation of HK2 decreases tumor incidence in a mouse model
of hepatocarcinogenesis [62]. Altogether, these observations point towards a mechanistic
connection between HK2 expression and neoplastic growth. The functions of HK2 in tumor
cells encompass metabolic rewiring towards aerobic glycolysis, tuning of autophagy for
handling nutrient shortages and shielding from cell death stimuli [4]. Overall, this broad
range of activities can presumably concur in explaining HK2 remarkable association with
a multiplicity of tumor types and with their elevated malignancy, as well as with the
resistance to diverse antineoplastic treatments.

It is therefore of paramount importance to finely dissect HK2 regulation, subcellu-
lar distribution and biochemical functions in tumor models, with the ultimate goal of
identifying a selective and efficient mode of targeting it.

HK2 induction in cancer is strictly intertwined with several pathways and factors
(Figure 2), the deregulation of which drives neoplastic progression. When tumor cells must
cope with hypoxic conditions or with pseudohypoxia elicited by a rise in oncometabolite
levels [69], stabilization of HIF1α and the consequent orchestration of the HIF1-dependent
transcriptional program confer them increased motility, while favoring angiogenesis,
decreasing OXPHOS and enhancing glucose usage [70]. HK2 is a transcriptional target of
HIF1 that contributes to this metabolic rewiring under (pseudo)hypoxic conditions [50,71].
Oncogenic hyperactivation of key proto-oncogenes, including RAS, c-MYC or ERBB2,
increases HK2 levels in several neoplastic models [7,15], and induction of the RELA/p65
transcription factor drives HK2 and lymphomagenesis in the central nervous system [72].
Loss of the tumor suppressors PTEN and p53 induces HK2 in prostate cancer [64]. In a
model of KRAS-driven lung cancer, antioxidants stabilize the transcription factor BACH1,
enhancing HK2 transcription and triggering a metastatic spread favored by glycolytic
metabolism of cancer cells [73]. It is possible to envisage a positive feedback loop in
metastatic cells where the KRAS-induced HK2-expression decreases oxidative stress [74],
possibly by increasing the activity of the PPP, stabilizes BACH1 and further enhances
HK2 expression.
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Ub: Ubiquitination.

HK2 levels are also post-transcriptionally regulated by miRNAs. HK2 expression
is enhanced by pro-tumorigenic miR-155 that decreases the tumor suppressor miR-143,
which targets HK2 mRNA and reduces its protein levels [75]. Other miRNAs, such as
miR-216a-5p, miR-125a and miR-185 down-regulate HK2 levels and aerobic glycolysis in
models of HCC, osteosarcoma and melanoma [76–78].

In several tumor types AKT is constitutively active [21], leading to HK2 phosphoryla-
tion on Thr-473 and to its localization on the OMM [22], where it inhibits cell death blocking
mPTP opening [25,79]. It was recently shown that also a second kinase, PIM2, can phospho-
rylate the same HK2 Thr-473 residue [38]. The importance of this post-translational modi-
fication is highlighted by the observation that a non-phosphorylatable HK2T473A mutant
decreases tumorigenesis and metastasis in colon and breast cancer xenograft models [80].

HK2 localization to mitochondrial surface is further promoted through the ubiquiti-
nation of the Lys-63 residue by HECTH9 E3 ligase, which elicits HK2 binding to VDAC
on the OMM and the consequent expansion, metabolic rewiring and chemoresistance of
cancer stem cells in a prostate cancer model [58]. Both Thr-473 and Lys-63 are absent in the
other HK isozymes, suggesting that HK2 binding to mitochondria underpins unique and
distinct biochemical functions. In addition, it was recently demonstrated that HK2 can be
SUMOylated at Lys-315 and Lys-492 residues and that de-SUMOylated HK2 preferably
binds to mitochondria [81].

The AKT/HK2 signaling pathway is tuned by PHLPP, the only known phosphatase to
form a complex with AKT and HK2 on the mitochondrial surface. PHLPP decreases HK2
phosphorylation, inducing its translocation from mitochondria to the cytosol, and reverts
the glycolytic phenotype of colon cancer cells, repressing their proliferative potential [82].
PHLPP switches off AKT through its dephosphorylation, and it is unclear whether it can
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also directly act on the Thr-473 residue of HK2 [82]. Interestingly, PHLPP is induced by
mTORC1 and in turn inactivates the mTORC1 substrate p70S6K [83]. This scenario opens
the possibility of complex regulatory networks that tune HK2 levels and subcellular local-
ization in order to match them with the metabolic status of the cell. Indeed, HK2 is induced
by the mTORC1/p70S6K axis, which can instead inhibit HK2 under conditions of glucose
paucity, when AKT is presumably more dephosphorylated by PHLPP. These dynamic
and intricate feedback loops could play a role in autophagy regulation and in neoplas-
tic cell survival under stress conditions, and their detailed dissection deserves further
investigations.

Under hypoxia HK2 can form a complex on the mitochondrial surface with TIGAR,
a fructose-2,6-bisphosphatase that inhibits glycolysis and promotes PPP [84]. The HK2/
TIGAR complex lowers mitochondrial ROS levels, stimulates HK2 activity and protects
colorectal carcinoma cells from death. [85]. Hence, this functional interaction is relevant in
maintaining redox homeostasis, even though the underlying molecular mechanisms for
mitochondrial ROS regulation are still elusive.

Similarly, how mitochondrial HK2 antagonizes death stimuli remains poorly under-
stood. HK2 inhibits the activity of pro-apoptotic proteins of the Bcl-2 family [4], even if
it can protect cells from death also independently of them [86], suggesting the presence
of multiple mechanisms of action. HK2 displacement from mitochondria triggers cell
death through mPTP opening [25]. However, the functional interplay between HK2 and
mPTP must be indirect, as the enzyme binds to the external surface of the OMM through a
hydrophobic sequence of 15 amino acids at its N-terminal domain [87], whereas the mPTP
is in the inner mitochondrial membrane, where it is probably constituted by the F-ATP
synthase [26]. Increased ROS levels and Ca2+ accumulation in the mitochondrial matrix
are among the factors that elicit mPTP opening and could be kept under control by the
mitochondrial HK2 fraction.

Disruption in HK2 binding to the OMM with small molecules or selective peptides
leads to tumor cell death or sensitization to chemotherapeutic agents [25,86,88,89], making a
precise definition of HK2 docking site(s) on mitochondria mandatory to understand how it
shields tumor cells from noxious stimuli. Several experimental evidences indicate that HK2
interacts with VDAC1 [5,90], and HK2 binding to VDAC1 lowers the probability of detri-
mental mPTP opening and consequent cell death under stress conditions [90,91]. However,
HK2 detachment from mitochondria elicits apoptosis also in double VDAC1/3−/− knock-
out cells [25], implying that other HK2 interactors on mitochondria exist and contribute to
its pro-survival function.

A further characterization of HK2 binding to mitochondria came with the recent
demonstration [92] that it lodges in domains called Mitochondria-Associated Membranes
(MAMs; Figure 3), small subcellular compartments where the OMM is in close contact with
the endoplasmic reticulum (ER), with the two membranes separated by a space of only 10 to
50 nm (tight and loose MAMs, respectively). MAMs are involved in several metabolic and
signaling pathways, encompassing glucose and lipid homeostasis, ER stress, autophagy
and cell death, and they tune Ca2+ signaling to mitochondria [93]. Remarkably, up to 80% of
HK2 localizes in MAMs of diverse neoplastic cell types, including cervix, colon and breast
carcinoma models and cells derived from neurofibromas and from malignant peripheral
nerve sheath tumors, whereas only about 30% of HK2 colocalizes with MAMs in non-
tumor cells such as macrophages and myoblasts [92]. It is therefore possible to envision
that MAM localization of HK2 could contribute to specific processes required for the
fitness of cancer cells, such as the tight maintenance of intracellular and mitochondrial
Ca2+ homeostasis. Mitochondria require basal Ca2+ uptake for enzymatic activities and
survival [94], and cancer cells are particularly vulnerable to any interference to Ca2+

transfer to mitochondria, as they rapidly undergo a lethal bioenergetic catastrophe [95].
This indicates that neoplastic cells are endowed with a strict dependence from basal Ca2+

supply to mitochondria for their metabolic functions, such as the optimal activity of
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dehydrogenases, whereas at the opposite side a rapid Ca2+ surge in the matrix can prompt
mPTP opening and cell death [96].
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Ca2+ transfer from ER to mitochondria requires the activation of Ca2+ channels in the
ER membrane called IP3 receptors (IP3Rs), which are largely localized in loose MAMs [97],
i.e., in close proximity to HK2 [92]. Ca2+ released from ER through IP3Rs is taken up
by the mitochondrial Ca2+ uniporter (MCU), and its flux across MAMs is regulated by a
multimeric complex including IP3Rs on the ER side, VDAC in the OMM and the connecting
chaperone GRP75. Further layers of control exist in order to avoid an unrestrained Ca2+

flux into mitochondria, such as AKT-dependent phosphorylations (for a complete review
see [98]). In many tumor cells, HK2 displacement from MAMs rapidly elicits a massive
Ca2+ flux to mitochondria that leads to mPTP opening and apoptosis and can be blocked
by IP3R inhibition [92]. These observations strongly suggest that HK2 is involved in
handling ER-mitochondria Ca2+ fluxes, and highlight the vital importance of keeping them
under control for neoplastic cells. HK2 interacts with the chaperone GRP75 [92] and with
AKT, which inhibits IP3R opening by directly phosphorylating it in MAMs [98]. All these
experimental clues lead to hypothesize that HK2 participates in an IP3R-GRP75-VDAC1
complex in MAMs, where it could prevent harmful Ca2+ fluxes to mitochondria without
affecting physiological Ca2+ transfer. An extensive study on the dynamics and regulation
of this protein complex is mandatory to unveil its roles in favoring tumor cell adaptations
to environmental challenges that mobilize Ca2+.

4. Spotting and Picking off HK2 in Tumors: A Matter of Precision

The functions carried out by mitochondrial HK2 are required to confer tumor cells the
ability to thrive and adapt even under harsh conditions of metabolic fluctuations and expo-
sure to noxious stimuli. Consequently, targeting HK2 constitutes a fascinating perspective
for the development of novel anti-neoplastic tools (Figure 3). In the last years, several
HK inhibitors have been investigated, including the catalytic inhibitors 3-Bromopyruvate
(3-BrPyr) and Lonidamine and the glucose-analogue, competitive inhibitor 2-Deoxyglucose
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(2-DG). These molecules target HK2 in many in vitro and in vivo tumor models, detach it
from mitochondria and elicit tumor cell death [3]. In the case of 3-BrPyr, the best character-
ized of these molecules, it perturbs the HK2-VDAC interaction on the mitochondrial surface
of cancer cells [99] and kill them by apoptosis or necrosis [100]. 3-BrPyr has anti-tumor
activity in several in vivo models [56], with a certain degree of selectivity for malignancies,
probably explained by the overexpression of its transporter MCT1 in high glycolytic tumors
cells [101], and in association with classical antitumor drugs, 3-BrPyr can revert cancer
cell chemoresistance [67,102,103]. However, 3-BrPyr can have multiple additional effects
caused by its alkylating nature and high reactivity toward a variety of proteins, such as
dehydrogenases, whereas its conjugation with reduced glutathione perturbs intracellular
redox homeostasis [104]. These non-specific targets could explain the reported adverse
effects, including liver and gastrointestinal toxicity in animal models [105] and hepatic
and renal toxicity in humans [106], as well as the death of three oncological patients after
3-BrPyr administration by a nonmedical practitioner [104]. Consequently, no clinical trials
were approved for 3-BrPyr. 2-DG can sensitize chemoresistant cancer cells to cisplatin or
paclitaxel, but its use was abandoned after the onset of adverse effect and toxicity during
clinical trials, while Lonidamine turned out to be ineffective in Phase II and III clinical
trials [3]. Importantly, these molecules inhibit all HKs without any specificity for HK2,
with the evident risk of decreasing or suppressing glucose phosphorylation and utiliza-
tion in crucial organs such as brain, heart, kidney and liver. To circumvent this problem,
experiments are under way with new formulations in order to specifically deliver HK
inhibitors to tumors [3]. The antifungal azole derivatives ketoconazole and posaconazole
have shown some efficacy in targeting HK2 and inducing apoptosis in cancer cell mod-
els [107], and one phase 0 and two early phase 1 clinical trials are starting in glioma patients.
However, non-specific effects were reported in tumor cells with the similar compound
clotrimazole [23], and at present no HK inhibitor has progressed toward more advanced
trial phases, nor it has reached the clinical practice.

An alternative strategy for targeting HK2 in tumor cells is the use of specific pep-
tides that displace HK2 from OMM without affecting the catalytic activity of any HK.
These molecular tools carry cell-penetrating sequences in order to cross the plasma mem-
brane [108] and are extremely effective in eliciting a fast and massive death of cells derived
from diverse tumor models [25,28,86,92,109]. The death pathway activated by HK2 detach-
ment from MAMs has been shown to rely on a rapid Ca2+ release from IP3Rs in the ER and
on a further Ca2+ entry through plasma membrane channels. The ensuing mitochondrial
Ca2+ overload results in calpain activation, mPTP opening, mitochondrial depolarization
and death of all tumor cells in less than one hour [92]. However, these peptides lack
specificity for tumor cell entry as cell-penetrating sequences can transport cargoes inside
any cell, which makes such molecules not suitable for in vivo utilization.

A possibility to bypass this problem is offered by the use of activatable cell penetrating
peptides that become effective only in the tumor microenvironment [110,111]. We have
conceived a modular tool, dubbed HK2pep, constituted by four moieties: the active portion
that mimics the N-terminal sequence of HK2 and detaches it from mitochondria; a polyca-
tion stretch required for crossing the plasma membrane, which is shielded by a polyanion
sequence to avoid non-specific uptake in healthy cells; and a connector between these two
charged domains that contains a cleavable consensus sequence for Matrix Metalloproteases
Proteases 2 and 9 (MMP-2/9) that are often overexpressed in the milieu of many neoplasms,
where they can detach the protective sequence and unleash the cell-penetrating HK2pep.
This structure makes HK2pep suitable for intraperitoneal and intravenous administration
and blood flow circulation, and indeed it turned out to be effective in inhibiting growth of
colon and breast cancer cells allografted in nude mice without any evident off-target effect
on healthy organs and tissues [92].
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5. Conclusions

Mitochondrial HK2 modulates glycolysis and ROS levels, participates to Ca2+ sig-
nalling/homeostasis to control cell bioenergetics survival and to autophagy induction
when nutrients are scarce. These variegated activities place HK2 at center stage in the
unfolding process of growth and survival of neoplastic cells, contributing to their plasticity
and adaptability in reacting to environmental changes.

These considerations make HK2 an interesting target for the development of novel
antineoplastic approaches. Even if we need to go through more steps for reaching effective
chemotherapeutics, the evolution of HK2-targeting peptides and/or the design of new
molecules allosterically targeting HK2 is a promising perspective. HK2 targeting molecules
could also synergize with traditional antitumor therapies, with the potential of erasing
chemoresistant malignancies and limiting the minimal residual disease.
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