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Abstract: The fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A)
demethylase, is an important regulator of central nervous system development, neuronal signaling
and disease. We present here the target-tailored development and biological characterization of
small-molecule inhibitors of FTO. The active compounds were identified using high-throughput
molecular docking and molecular dynamics screening of the ZINC compound library. In FTO binding
and activity-inhibition assays the two best inhibitors demonstrated Kd = 185 nM; IC50 = 1.46 µM
(compound 2) and Kd = 337 nM; IC50 = 28.9 µM (compound 3). Importantly, the treatment of mouse
midbrain dopaminergic neurons with the compounds promoted cellular survival and rescued them
from growth factor deprivation induced apoptosis already at nanomolar concentrations. Moreover,
both the best inhibitors demonstrated good blood-brain-barrier penetration in the model system,
31.7% and 30.8%, respectively. The FTO inhibitors demonstrated increased potency as compared
to our recently developed ALKBH5 m6A demethylase inhibitors in protecting dopamine neurons.
Inhibition of m6A RNA demethylation by small-molecule drugs, as presented here, has therapeutic
potential and provides tools for the identification of disease-modifying m6A RNAs in neurogenesis
and neuroregeneration. Further refinement of the lead compounds identified in this study can also
lead to unprecedented breakthroughs in the treatment of neurodegenerative diseases.
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1. Introduction

Chemical modifications of RNA have a critical impact on many cellular functions, such
as proliferation, survival, and differentiation [1,2]. In eukaryotic messenger RNA, the most
abundant modification is N6-methyladenosine (m6A), which affects RNA splicing, intracel-
lular transport, translation, and cytoplasmic degradation of RNA [3,4]. The levels of m6A in
RNA are regulated by specific enzymes, methyltransferases and demethylases. These in-
clude m6A writers such as the methyltransferase-like protein 16 (METTL16) [5] as well as the
RNA methyltransferase enzyme complex METTL3/METTL14/WTAP usually composed of
three components: METTL3 (methyltransferase-like 3), METTL14 (methyltransferase-like 14)
and WTAP (Wilm’s tumor-1-associated protein) [6,7]. RNA m6A eraser enzymes include the
RNA demethylases FTO (fat mass and obesity-associated protein) [8,9] and ALKBH5 (alky-
lation repair homolog protein 5) [10]. Additionally, the fate of RNA in post-transcriptional
processes is determined by the m6A reader proteins that recognize specific m6A-modified
RNA sequences and affect the stability, translation, and/or cellular localization of the tran-
script. Several RNA reader proteins have been identified [7,11], including three members
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of YTH N6-Methyladenosine RNA Binding Protein (YTHDF)-family (YTHDF 1-3) and two
members of the YTH domain-containing protein (YTHDC)-family (YTHDC1-2) [12]. Collec-
tively, these three types of proteins coordinate the m6A RNA methylome and its fate in the
eukaryotic cells.

RNA m6A modifications have been assigned key orchestrating roles in brain de-
velopment, neuronal signaling and neurological disorders [13–18]. For example, m6A-
dependent mRNA decay has been shown to be critical for proper transcriptional pre-
patterning in mammalian cortical neurogenesis [19]. Weng et al. demonstrated that axonal
injury-induced m6A methylation and downstream signaling enhances the synthesis of
regeneration-associated proteins essential for functional axon regeneration of peripheral
sensory neurons [20]. Moreover, it has been shown that genes associated with m6A control
may play a role in conferring risk of dementia [21]. However, because the homeostasis of
RNA m6A methylation in neurons is controlled on multiple levels, unselective or global
modification of m6A levels can yield contradictory results. For example, through the
actions of the reader protein YTHDF1, m6A residues have been shown to directly facilitate
adaptive processes such as learning and memory in the adult mouse hippocampus [22].
Deficiency of the m6A eraser FTO has been demonstrated to lead to impaired learning
and memory through reduced proliferation and neuronal differentiation of adult neural
stem cells in FTO full-knockout mice [23]. In addition, conventional and dopamine (DA)
neuron-specific Fto gene knockout mice show impaired DA receptor type 2 (D2R)- and type
3 (D3R)-dependent control of neuronal activity and behavioral responses [24]. Treatment of
PC12 cells derived from a pheochromocytoma of the rat adrenal medulla in vitro as well as
the rat striatum in vivo with the 6-OHDA neurotoxin in a rat model of Parkinson’s disease
(PD) results in a global reduction of the m6A residues in mRNAs [25]. Reduction of m6A
levels in pheochromocytoma PC12 cells by treatment with the non-selective nucleoside
methylation inhibitor, cycloleucine, or alternatively by FTO overexpression induced apop-
totic cell death through increased expression of N-methyl-D-aspartate (NMDA) receptor
1, oxidative stress and Ca2+ influx [25]. However, these results do not directly demon-
strate the dysregulation of m6A in dopamine neurons. However, because the striatum
contains the fibers of dopamine neurons, it is possible that the dysregulation of m6A is
related to neurodegeneration in PD. Available data indicate that either the compensatory
upregulation or downregulation of m6A could be needed in neuronal cells, depending on
their physiological or pathological state. However, the precise role of the RNA demethy-
lases FTO and ALKBH5 in the regulation of survival and regeneration of DA neurons has
remained enigmatic. One reason for this is the lack of highly specific inhibitors of these en-
zymes. As shown in the rat 6-OHDA PD model, the downregulation of m6A in the striatum
occurs in parallel with the axonal degeneration and DA neuron death [25]. Therefore, it is
logical to hypothesize that inhibitors of the RNA m6A demethylases FTO or ALKBH5 that
increase the m6A methylation level of mRNA should support the homeostasis of m6A in
DA neurons and their survival under stress. Only a very limited number of FTO inhibitors
are presently known, mostly of a non-specific nature [26–31].

We used in silico-based rational target-tailored development of small-molecule FTO
inhibitors and determined their binding affinity, kinetics, and their effect on enzymatic
functions experimentally. We identified unique small-molecule ligands that bind to FTO
and very potently inhibit its enzymatic activity. In particular, two of these FTO inhibitors,
already at 10 nM concentration, supported the survival of growth factor-deprived primary
DA neurons in culture. Two ALKBH5 inhibitors that we have described earlier [32], were
less potent in rescuing DA neurons. This is the first demonstration that inhibitors of FTO,
and in general m6A regulators can support the survival and protect dopamine neurons
from growth factor deprivation induced death in vitro. These compounds may further
serve as lead molecules for development of novel drugs for neurodegenerative diseases
such as PD.
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2. Results and Discussion
2.1. Computational Modeling of FTO Ligand Binding Site and Virtual Screening

The regions of probable interactions between a ligand and FTO protein were found
by carrying out the molecular docking using AutoDock 4.1. As shown by the molecular
docking calculations, the amino acid residues of the protein Asp233, Tyr106, Glu234, Arg96,
and Arg322 were involved in specific interactions between the protein and ligand (Figure 1).
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Figure 1. Docking modeling FTO binding sites of the inhibitors: (a) compound 2, 4-amino-8-chloroquinoline-3-carboxylic
acid and (b) compound 3, 8-aminoquinoline-3-carboxylic acid.

A virtual screening on ZINC compound library [33] was carried out using the best
known FTO inhibitors from the ChemBL database [34] as templates (Figure 2). The docking
free energies ∆G and ligand efficiencies LE of the best binding compounds are given and
their molecular structures are given in Table 1.
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Table 1. Compounds with the highest docking efficiencies DE to FTO protein.

No. Compound Structure ∆G (kcal/mol) DE

1
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The molecular dynamics simulations were carried out for two compounds, the com-
pounds with the best enzymatic inhibition activity (2 and 3). In the case of compound 2,
several molecular dynamics simulation runs were carried out with the length of 10 ns. This
system was stable throughout the calculation time (Figure 3a). A very strong hydrogen
bond is detected between the pyridine nitrogen atom of the ligand and the ammonium
group of Arg96 residue of the FTO protein (Figure 3b). The simulation interactions diagram
(Figure 3c) indicates that the most important interactions for this compound are hydrogen
bonds between ligand and residues Arg96, Glu234, Arg322, and Asp233 of FTO. Further-
more, there are additional hydrophobic interactions between ligand 2 and FTO protein. The
bars in diagram Figure 3c characterize the time fraction that a particular specific interaction
is maintained during the simulation. Based on this, we can assume that the compound 2 is
bound to tight specific pocket at the active site of FTO protein (Figure 3d) [35].
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Figure 3. Results of the molecular dynamics simulation of the FTO complex with compound 2. (a) The protein and ligand
position root mean square deviation (RMSD) plot against time in the case of the FTO complex with compound 2 for a
representative 10 ns run. (b) Desmond 2D profile data for the compound 2 binding to FTO protein. (c) Normalized stacked
bar chart representation of interactions and contacts over the course of trajectory (values over 1.0 are possible as some
residues make multiple contacts of same subtype with ligands); interactions occurring more than 50% of the simulation
time. Interaction diagram between the compound 2 and FTO protein. (d) The position of the compound 2 in the structure of
FTO, related to Figure 1a.

The results of the molecular dynamics simulation of compound 3 are summarized
in Figure 4. Again, five molecular dynamics simulation runs were carried out with the
length of 10 ns, and the trajectory analysis shows the stability of the system during the
calculation (Figure 4a). The results indicate the presence of hydrogen bonds between the
ligand carbonyl group of compound 3 and Glu234 and Asp233 of the FTO protein. In
addition, a water bridge with Arg96 and salt bridge with Arg322 (Figure 4b) is suggested.
The simulation interactions diagram (Figure 4c) reveals a very stable hydrogen bonding
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(Asp233 and Glu234) and several ionic bridges (His231, Asp233, His307, and Arg322) and
water bridges (Arg96, Ser229, and Arg322) between the compound 3 and protein. The
compound is bound to tight specific pocket at the active site of FTO protein (Figure 4d).
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position root mean square deviation (RMSD) plot against time in the case of the FTO complex with compound 3 for a
representative 10 ns run. (b) Desmond 2D profile data for the compound 3 binding to FTO protein. (c) Normalized stacked
bar chart representation of interactions and contacts over the course of trajectory (values over 1.0 are possible as some
residues make multiple contacts of same subtype with ligands); interactions occurring more than 50% of the simulation
time. Interaction diagram between the compound 3 and FTO protein. (d) The position of the compound 3 in the structure of
FTO, related to Figure 1b.

2.2. Enzyme Activity Inhibition

The enzyme inhibition measurements were carried out for the predicted FTO strongly
bound compounds 1–6. A significant concentration-dependent inhibitory effect was ob-
served for quinolone derivatives 2 and 3 (Figure 5). The inhibitory concentrations were
IC50 = 1.46 µM for compound 2 and IC50 = 28.9 µM for compound 3. No significant in-
hibitory effect was noticed for the other three predicted compounds (1, 4, 5, and 6) up to
the 100 µM concentration.

2.3. Protein Binding of Compounds

Furthermore, we studied the binding of the two active inhibitors 2 and 3 to the FTO
protein using MST. Both compounds are binding at sub-micromolar concentrations. The
protein binding Kd values Kd = 185 ± 77 nM for compound 2 and Kd = 337 ± 184 nM for
compound 3 (Figure 6) are in good agreement with the respective enzymatic inhibition
IC50 values for these compounds.
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2.4. Neuronal Survival Experiments

To our knowledge, the direct effect of FTO and ALKBH5 inhibitors has never been
tested on DA neurons. Earlier data demonstrate that reduced m6A levels in 6-OHDA-
treated tyrosine hydroxylase-expressing rat pheochromocytoma PC12 cells having some
similarity to peripheral sympathetic neurons by overexpressing FTO result in apoptosis [25].
We therefore hypothesized that the inhibition of RNA m6A demethylases in DA neurons
could counteract this apoptotic process and support the survival of dopamine neurons. To
test this hypothesis, we carried out a study on the influence of the developed FTO inhibitors
on the survival of mouse midbrain dopamine neurons after inducing their apoptosis by
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growth factor deprivation [36–38]. This model has some limitations, as embryonic rodent
neurons are used and the growth factor deprivation or neurotoxin poisoning do not
replicate the real pathological situation in Parkinson’s disease. Nevertheless, it is a widely
used cellular model to test the efficacy of growth factors and small molecules before testing
them in animal models of Parkinson’s disease [39,40]. It has been demonstrated that the
preferred cellular substrate for FTO is not the m6A but its further modification N62′-O-
dimethyladenosine (m6Am), which is exclusively found adjacent to the 7-methylguanine
(m7G) cap in mRNA [41–43]. Furthermore, FTO is primarily, and potentially exclusively
localized in the nucleus [8,44]. Thus, the presently known main m6A demethylating
enzyme is the ALKB Homolog 5 (ALKBH5), belonging to the non-heme Fe(II-) and α-
KG-dependent dioxygenase ALKB family of proteins. Contrasting FTO, ALKBH5 has no
activity towards m6Am and appears to be localized to nuclear speckles [9]. There may be
also a significant difference in the target RNAs. In the case of FTO, the main target RNA
may not be mRNA, but snRNA [42].

Since mRNA and snRNA m6A modification may have impact on neuronal survival,
it was therefore interesting to compare the effects of inhibition of these two RNA m6A
demethylases on the survival of dopamine neurons in the in vitro model of Parkinson’s
disease. Thus, the experiments were carried out not only with two FTO inhibitors developed
in this study, compounds 2 and 3, but also with two our recently reported ALKBH5 inhibitors,
2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid 7 and 4-{[(furan-2-yl)methyl]amino}-
1,2-diazinane-3,6-dione 8. The inhibitory concentrations against ALKBH5 are IC50 = 0.840 µM
for the compound 7 and IC50 = 1.79 µM for the compound 8, respectively [32].

GDNF has been shown to protect cultured embryonic dopamine neurons from growth
factor deprivation induced apoptosis, as well as 6-OHDA-induced cell death in vitro and
in vivo [38,40]. We, therefore, assessed the neuroprotective ability of different concentra-
tions of FTO or ALKBH5 inhibitors in cultured growth factor deprived dopamine neurons.
Human recombinant GDNF (100 ng/mL) or a condition without any neurotrophic com-
pound added were used as positive and negative controls, respectively. Growth factor
deprivation caused cell death by 50–70%. The results expressed as % of cell survival com-
pared to GDNF-maintained neurons for the FTO inhibitors are presented in Figure 7A. Rep-
resentative images of mouse E13 wild-type midbrain cultures treated with vehicle, FTO or
ALKBH5 inhibitors, and GDNF (positive control) probed with anti-TH antibody are shown
on Figure 7B. Both FTO inhibitors 2 and 3 similarly to GDNF dose-dependently protected
embryonic midbrain dopamine neurons in culture from growth factor deprivation-induced
cell death. Both FTO inhibitors can also recued dopamine neurons from 6-OHDA induced
neuronal cell death (data not shown). A neuroprotective effect can be seen already at
10 nM, and statistically significant outcome is observed at the concentration 100 nM and
1000 nM concentrations of both the inhibitors 2 and 3. Hence, the inhibition of the m6A
demethylase FTO promotes on the survival of dopamine neurons and rescues them in
growth factor deprivation in vitro model of apoptosis without any signs of toxicity of the
tested compounds.

Similarly, in growth factor deprivation model, ALKBH5 inhibitors 7 and 8 at three
tested concentrations increased the number of TH-positive neurons (Figure 7). Compound
8 rescued growth factor deprivation challenged dopamine neurons at 10 nM and at 1000 nM,
but showed only a trend at 100 nM. Compound 7 on the other hand showed only trend in
the neuroprotection of apoptosis induced E13 dopamine neurons.

It is interesting to note that the potency of FTO inhibitors 2 and 3 in protecting and
rescuing DA neurons in vitro is comparable to that of GDNF. Since GDNF, when directly
injected into the midbrain, protects dopamine neurons also in animal models of PD [40,45],
it is logical to assume that FTO and ALKBH5 inhibitors can also be neuroprotective in vivo.
The main limitation in the clinical use of GDNF and other neurotrophic proteins in the
treatment of PD is their inability to pass through the blood–brain barrier (BBB). As the first
step towards in vivo testing of the neuroprotective activities of FTO inhibitors we assessed
their ability to penetrate through the artificial BBB. Since FTO and ALKBH5 are expressed
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in addition to dopamine neurons also in many other types of neurons it is logical to assume
that FTO and ALKBH5 inhibitors described in this study can support their survival as well.
Further studies are needed to test this hypothesis.
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TH at DIV 5. Scale bars: 1 mm.
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2.5. Penetration of the FTO Inhibitors Through the Blood-Brain Barrier in Artificial In Vitro Model

The effects of FTO inhibitors were studied in the artificial in vitro BBB model, where
murine endothelial cells bEnd3 were co-cultured with murine HIFko astrocytes on hanging
cell culture inserts. The BBB penetration % defined as the ratio of the concentration of the
compound in the well (‘brain’) side and the concentration in the insert, were 31.7 ± 3.3%
for compound 2 and 30.8 ± 1.9% for compound 3. Therefore, both compounds exhibit
good penetration ability.

3. Materials and Methods
3.1. Compounds

4-aminoquinoline-3-carboxylic acid (1); Vitas M Chemical Limited, Causeway Bay,
Hong Kong, China, Cat. No. STK660776, Purity: >90%.

4-amino-8-chloroquinoline-3-carboxylic acid (2); Vitas M Chemical Limited, Causeway
Bay, Hong Kong, China, Cat. No. STK787835, Purity: >90%.

8-aminoquinoline-3-carboxylic acid (3); Ark Pharm Inc., Arlington Heights, IL, USA,
Cat. No. AK200350, Purity: 98%.

(2E)-4-[(3-methylphenyl)formohydrazido]-4-oxobut-2-enoic acid (4); Vitas M Chemical
Limited, Causeway Bay, Hong Kong, China, Cat. No. STK120795, Purity: >90%.

8-hydroxyquinoline-5-carboxylic acid (5); Enamine Ltd., Monmouth Jct., NJ, US, Cat.
No. Z233564176, Purity: >90%.

3-methyl-N’-(3-methylbenzoyl)benzohydrazide (6); Vitas M Chemical Limited, Cause-
way Bay, Hong Kong, China, Cat. No. STK087016, Purity: >90%.

2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid (7); Enamine Ltd., Monmouth
Jct., NJ, US, Cat No. EN300-14040, Purity: >90%.

4-{[(furan-2-yl)methyl]amino}-1,2-diazinane-3,6-dione (8); Vitas M Chemical Limited,
Causeway Bay, Hong Kong, China, Cat. No. STL352808, Purity: >90%.

3.2. FTO Protein

FTO protein was provided by ProteoGenics SAS (Schiltigheim, France, www.ProteoGenix.
science.com accessed on 25 April 2021). The details of the protein synthesis are given in
Supplementary Material. This includes the map of the vector for FTO-6His protein (Figure S1),
the protein expression test (Figure S2) and the protein purification test (Figure S3). The purity
of the FTO protein was >90%.

3.3. Computational Modeling

The crystal structure of the FTO in complex with 5-carboxy-8-hydroxyquinoline IOX1
(pdb:4IE4) [27] was chosen for the prediction of potential efficient ligands using molecular
docking modeling. The ligand IOX1 was removed from the complex in order to proceed
with the search of novel ligands. The catalytic center of the protein involves a bivalent
transition metal ion, either Mn2+, Fe2+, Ni2+, or Zn2+. In our molecular docking simula-
tions Zn2+ was used. The raw crystal structure was corrected and hydrogen atoms were
automatically added to the protein using Schrödinger’s Protein Preparation Wizard of
Maestro 10.7, (Schrödinger, Inc., New York, NY, USA) [46]. AutoDock 4.2 (The Scripps
Research Institute, La Jolla, CA, USA) [47] was used for the docking studies to find out
binding modes and binding energies of ligands to the receptor. The number of rotatable
bonds of ligand was set by default by AutoDock Tools 1.5.6 (The Scripps Research Institute,
La Jolla, CA, USA). However, if the number was greater than 6, then some of rotatable
bonds were made as non-rotatable, otherwise calculations can be inaccurate. The active
site was surrounded with a grid-box sized 80 × 80 × 80 points with spacing of 0.375 Å.
The AutoDock 4.2 force field was used in all molecular docking simulations. The docking
efficiencies (DE) were calculated as

DE =
∆Gdock

N
(1)

www.ProteoGenix.science.com
www.ProteoGenix.science.com
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where ∆G_dock is the docking free energy and N—the number of non-hydrogen (“heavy”)
atoms in the ligand molecule.

The structures of ligand molecules were optimized using the density functional theory
B3LYP method [48] with 6–31G basis set.

The molecular dynamics simulations were carried out using Desmond simulation
package of Schrödinger LLC [49]. The NPT ensemble with the temperature 300 K and
pressure 1 bar was applied in all runs. Five simulation runs with the length 10 ns and with
relaxation time 1 ps were carried out for each system. The OPLS_2005 force field parameters
were used in all simulations [50]. The long-range electrostatic interactions were calculated
using the Particle Mesh Ewald method [51]. The cutoff radius in Coloumb interactions was
9.0 Å. The water molecules were described using the simple point charge (SPC) model [52].
The types of physical interactions between the ligands and enzyme were analyzed using
the simulation interaction diagram tool implemented in Desmond molecular dynamics
package. The stability of molecular dynamics simulations was monitored by looking on
the root mean square deviation (RMSD) of the ligand and protein atom positions in time.

3.4. Protein Binding Study Using Microscale Thermophoresis

The microscale thermophoresis (MST) experiments were performed using Monolith
NT.115 instrument (NanoTemper Technologies GmbH, Germany). Recombinant human
FTO protein was labeled through His-tag using Monolith His-Tag Labeling Kit RED-tris-
NTA (NanoTemper Technologies GmbH; MO-L008). The labelled FTO protein (target) was
used at 20 nM in all the experiments and 10 µM starting concentrations of ligands FTO
inhibitors 2 or 3 were used in both series of experiments.

The measurements were done in a buffer containing 10 mM Na-phosphate buffer, pH
7.4, 1 mM MgCl2, 3 mM KCl, 150 mM NaCl, 0.05% Tween-20 in premium coated capillaries
(NanoTemper Technologies GmbH; MO-K025) using red LED source, power set at 100%
and medium MST power at 25 ◦C. Each data point represents mean fraction bound values
from n = 3 independent experiments per binding pair ±S.D, Kd values ± error estimations
are indicated. Data analysis was performed using MO.Affinity Analysis v2.3 software.

3.5. Enzyme Inhibition Assay

The enzymatic assay was modified from Huang et al. [29] The experiments were con-
ducted in reaction buffer (50 mM Tris-HCl, pH 7.5, 300 µM 2OG, 280 µM (NH4)2Fe(SO4)2,
and 2 mM L-ascorbic acid). The reaction mixture contained 200 ng methylated N6-adenine
RNA probe (SEQ ID NO: 1) (5′-CUUGUCAm6ACAGCAGA-3′, Dharmacon, Lafayette, CO,
USA) and 10 nM FTO protein and different concentrations of ligands (1 nM to 100 µM).
Reactions were incubated on 96-well plate for 2 h at RT. After that, the amount of m6A
that was measured using EpiQuik m6A RNA methylation Quantification Colorimetric Kit
(Epigentek, Farmingdale, NY, USA).

The inhibitory effect IE of compounds on RNA probe demethylation by FTO was
calculated as the enhancement of the m6A amount as compared to the negative control
(DMSO) relative to the difference between m6A amounts of the positive control (max
inhibition) and the negative control (Equation (2))

IE =
Cinh − CDMSO

Cinh(max)− CDMSO
(2)

where Cinh, Cinh(max), and CDMSO are the amounts of m6A at a given concentration of the
inhibitor, maximum inhibition and in the case of DMSO, respectively.

3.6. Primary Cultures of Midbrain Dopamine Neurons and m6A Regulator Treatment

The midbrain floors were dissected from the ventral mesencephalic of 13 days old
NMRI strain mouse embryos following the published procedure [38]. The tissues were incu-
bated with 0.5% trypsin (103139, MP Biomedicals, Inc, Thermo Fisher Scientific, Waltham,
MA, USA) in HBSS (Ca2+/Mg2+-free) (14170112, Invitrogen, Thermo Fisher Scientific,



Int. J. Mol. Sci. 2021, 22, 4537 12 of 15

Carlsbad, CA, USA) for 20 min at 37 ◦C, then mechanically dissociated. Cells were plated
onto the 96-well plates coated with poly-L-ornithine (Sigma-Aldrich, Merck KGaA, St.
Louis, MO, USA). Equal volumes of cell suspension were plated onto the center of the dish.
The dopamine neurons were cultured for five DIV in presence of cell culture media Dul-
becco’s MEM/Nut mix F12 (Invitrogen/Gibco; 21331–020), 100 × N2 serum supplement
(Invitrogen/ Gibco; 17502–048), 33 mM D-Glucose (Sigma; G-8769), 0.5 mM L-Glutamine
(Invitrogen/ Gibco; 25030–032), and 100 µg/mL Primocin (Invivo Gen, San Diego, CA,
USA)]. On 6 DIV, to deprive growth factors, the cultures were washed three times with nor-
mal medium and the FTO and ALKBH5 inhibitors and glial cell line-derived neurotrophic
factor (GDNF) were applied [38]. The cells were grown for five days with different con-
centrations of FTO and ALKBH5 inhibitors. Human recombinant GDNF (100 ng/mL)
(Icosagen AS, Tartu, Estonia) or a condition without any neurotrophic compound added
were used as positive and negative controls, respectively.

After growing five days, the neuronal cultures were fixed and stained with anti-
Tyrosine Hydroxylase antibody (MAB318, Millipore Bioscience Research Reagents, Temec-
ula, CA, USA). Images were acquired by CellInsight (Thermo Fisher Scientific) high-content
imaging equipment. Immunopositive neurons were counted by CellProfiler software and
the data was analyzed by CellProfiler analyst software [53]. The results are expressed as %
of cell survival compared to GDNF-maintained neurons [54].

All animal experiments were carried out following European Community guidelines
for the use of experimental animals and approved by the Finnish National Experiment
Board (License number: ESAVI/12830/2020) and also by the Laboratory Animal Center of
the University of Helsinki (license no. KEK20-015; 2.7.2020).

3.7. Artificial Blood–Brain Barrier Model

Artificial in vitro blood–brain barrier (BBB) was established as described by Le Joncour
et al. [55] Murine endothelial cells bEnd3 (ATCC CRL-2299) were co-cultured with murine
hypoxia-inducible factor knock out (HIFko) astrocytes (passage 12, received from Le
Joncour) on hanging cell culture inserts (BD Falcon 353091, Franklin Lakes, NJ, USA) for
five days in fetal bovine serum (FBS)-free conditions. 2.5 mL of FTO inhibitors (final
concentration of 10 µM) were added into the insert (representing the ‘blood’ side) of
the BBB cell. After 1 h incubation, 1 mL of the sample was taken from the insert and
from the well (‘brain’ side), and the concentration of the compounds was measured by
high-performance liquid chromatography (HPLC). Penetration % was defined by dividing
the concentration of the compound in the well compared to the concentration in the
insert. The concentration of the studied compounds is each side of the BBB cell were
analyzed using LC-MS system consisting of Agilent 1290 UHPLC (Agilent, Inc., Santa
Clara, CA, USA) and Agilent 6460 Triple Quadrupole MS (Agilent, Inc., Santa Clara, CA
95051, USA). Chromatographic separation was carried out on XBridge Shield RP18 3.5 µm,
3.0 × 150 mm (Waters Corporation, 34 Maple Street, Milford, MA, USA) column using
5 mM aqueous ammonium acetate (pH adjusted to 5.13 with formic acid) and methanol as
eluent components. Linear gradient from 3% to 50% methanol in 12 min followed by 5 min
isocratic segment. Eluent flow rate was 0.3 mL/min and sample injection volume was 2 µL.
Electrospray ion source (Agilent Jet Stream, Agilent, Inc., Santa Clara, CA 95051, USA)
was operated in positive ionization mode using default values for gas flows, temperatures,
and potentials. For each compound one transition was selected and respective collision
energies coarsely optimized.

3.8. Quantification and Statistical Analysis

Enzymatic assay curve-fitting analysis and determination of the IC50 and EC50 values
were performed using AAT Bioquest, Inc. Quest Graph™ IC50 Calculator (v.1, Sunnyvale,
CA, USA). MST data analysis was performed using MO.Affinity Analysis v2.3 software
(NanoTemper Technologies GmbH, Munich, Germany). Statistical significance in cell
survival experiments was assessed using one-way ANOVA and unpaired t-test with
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the GraphPad Prism8 software (GraphPad Software, Inc., 2365 Northside Dr., Suite 560,
San Diego, CA, USA). Results were considered statistically significant at p values lower
than 0.05.

4. Conclusions

The m6A RNA modifications and their dynamics in the cell has been recently related
to numerous cell developmental, physiological and pathological processes, including
neurogenesis and neuronal survival. Here we demonstrated that the inhibition of the m6A
demethylation by inhibiting FTO or ALKBH5, that supposedly takes place predominantly
in the cell nucleus supports the survival of the dopamine neurons and protects them from
growth factor deprivation-induced apoptosis. The neuroprotective efficacy of two FTO
inhibitors in this in vitro model of PD is similar to that of GDNF. Since both neuroprotective
FTO inhibitors have the effect on the permeability of artificial BBB in vitro, it is of great
interest to test their activity in animal models of PD in future studies. Differently from
GDNF, these compounds have the potential to penetrate the BBB, so they can potentially
be delivered systemically avoiding risky and complicated brain surgery. It has been
demonstrated earlier that the substrate RNA targets for the two RNA m6A demethylases,
FTO and ALKBH5 are different, m6Am and m6A, respectively. Therefore, it is exciting
to observe a very similar (although of different intensity) effects by the inhibitors of
both these enzymes on the dopamine neuron survival. The dopamine neurons have
complicated neurite network with extensive number of synaptic contacts that require
very demanding intracellular RNA transport and mRNA translation. Further studies
in order to identify these specific RNA targets in neuronal cells could give new basic
information about the neurogenesis and neuroregeneration. Another important outcome
of the present study is the demonstration of possibility to employ a completely new type
of neuroprotective compounds, the small-molecule RNA m6A demethylase inhibitors for
the further development of drugs against Parkinson’s and possibly Alzheimer’s diseases,
amyotrophic lateral sclerosis, and other neurodegenerative disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094537/s1.
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