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Abstract: The 20S proteasome, which is composed of layered α and β heptameric rings, is the core
complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the
α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings.
However, the structure of the α7 double ring in solution has not been fully elucidated. We applied
cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a
structure different from the previously reported crystallographic model. The D7-symmetrical double
ring was stacked with a 15◦ clockwise twist and a separation of 3 Å between the two rings. Two more
conformations, dislocated and fully open, were also identified. Our observations suggest that the α7
double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α
subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.

Keywords: α7 subunit; cryo-electron microscopy; conformational fluctuations; double ring; 20S
proteasome

1. Introduction

Proteasomes are huge protein complexes involved in proteolysis in cells, and they
are widely distributed across the three domains of life [1–3]. The 20S core particle of the
proteasome preserves a common architecture composed of two heptameric α rings and
two heptameric β rings, which are arranged into a four-layered αββα structure [4–6].
The proteolytic function of 20S core particle is executed within a cavity of this cylindrical
chamber, which is dynamically controlled through opening the gate at the central pore of
the α ring for substrate entry. In the closed form of the proteasome, the 20S core particle
topologically blocks the entry of polypeptide substrates with the N-terminal tail of the
α-subunits. To allow for substrate degradation, the core particle gate is opened upon
association with proteasome activation factors [7–12].

In eukaryotic cells, this process is regulated by proteasome activating complexes, as
best exemplified by the 19S regulatory particle. The 19S regulatory particles can attach at

Int. J. Mol. Sci. 2021, 22, 4519. https://doi.org/10.3390/ijms22094519 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8628-4267
https://orcid.org/0000-0002-4493-4978
https://orcid.org/0000-0002-1431-3484
https://orcid.org/0000-0001-7187-9612
https://orcid.org/0000-0001-9446-3652
https://doi.org/10.3390/ijms22094519
https://doi.org/10.3390/ijms22094519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094519
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094519?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4519 2 of 9

both ends of the 20S core particle, forming the 26S active proteasome, and thereby recog-
nizing substrates and promoting their unfolding and translocation in an ATP-dependent
manner [9–11].

Structural dynamics of the 20S core particle and its complex with the regulatory
particles are characterized by cryo-electron microscopy (cryo-EM) [9–12], atomic force
microscopy [13–15], and NMR spectroscopy [16,17], revealing the dynamics of the gate
opening of the 20S core particle by interaction with activators.

In archaea, the α ring consists of seven identical α subunits, whereas the β ring
is composed of one or two kinds of β subunits [6,17]. Archaeal proteasomal subunits
are autonomously assembled into the 20S core particle [18]. In contrast, the α and β

rings in eukaryotic proteasomes are hetero-heptamers, composed of seven different but
homologous subunits, named α1–α7 and β1–β7 [5,9–11]. The assembly of these 28 subunits
into the 20S core particle (seven α subunits in each of the two α rings and seven β subunits
in each of the two β rings) does not proceed spontaneously; rather, it is assisted by multiple
dedicated chaperones that function as molecular matchmakers and checkpoints [19,20].

Interestingly, the human α7 subunit, one of seven heterogeneous α subunits, self-
assembles exclusively into a homo-tetradecamer with a double heptameric ring struc-
ture [21–24], while the α1–α6 subunits are under equilibrium between the monomeric and
dimeric forms in vitro [25]. In the crystal structure of the α7 homo-tetradecamer, the two α

rings are tightly connected with each other via hydrophobic and electrostatic interactions
mediated by extended α-helices, which are involved in the interactions with the β subunits
in the 20S core particle [22]. Similar to the interdigitation between the α-ring and β-ring,
the crystal structure of the two α rings are structurally stabilized. On the other hand, the
results of a previous high-speed atomic force microscopy analysis revealed that stacked
α7 double-ring structures are unstable and wobble significantly in solution [26]. Further,
the mobile α7 double ring can be disrupted by the addition of α4 and α6 subunits [22,25].
The biological significance of the self-assembling property of α7 remains elusive. However,
these findings imply that the α7 double ring fluctuated in solution has a special mechanism
for preventing and/or disassembling the formation of α7 homo-oligomers and converting
them to the hetero-heptameric α-rings.

In this study, we performed cryo-EM analysis to delineate the structural fluctuations
of the human proteasome α7 homo-tetradecamer in solution. The results provide mecha-
nistic insight into the molecular interactions between the proteasome components that are
important for the assembly of the functional 20S proteasome.

2. Results
2.1. The α7 Tetradecamer Double Ring Shows Three Different Structures in Solution

The structure of the α7 tetradecamer in solution was investigated by using single
particle cryo-EM. Approximately 80,000 particles picked from 100 micrographs were sub-
jected to 2D classification (Supplementary Figure S1A,B). The 2D class averages showed
a dislocated α7 double ring called “dislocated” and a symmetric one called “symmetric”
(Figure 1A). A fully open α7 double ring called “open” was also identified. The ratios of
these three distinct types in 2D images were 23% symmetric, 62% dislocated, and 5% open
(Figure 1B). “Others” includes intermediate particles between each type, broken particles,
or unknown particles ((d) in Figure 1B). In these particle images, no single-ring structure
was apparently observed. Based on the 2D class average images and the crystal structure
of the α7 tetradecamer (PDB ID: 5DSV), the 3D structures of the symmetric, dislocated,
and open types were reconstituted at resolutions of 5.9 Å, 8.1Å, and 12.1 Å, respectively
(Figures 1C and S1C,D). All three cryo-EM maps confirmed that each α7 ring consisted of
seven subunits, although the two rings were differently connected (Figure 1C). The sym-
metric type showed that the D7-symmetric double ring was approximately similar to the
previously reported crystal structure. Regarding the dislocated type, the two heptameric
rings were offset by 11 Å. Regarding the open type, the two rings were fully opened,
appearing like a cooked clam, with an open angle of approximately 40◦.
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type of the α7 homo-tetradecamer classified by 2D classification (a–c). Others (d) include intermediate particles between 
each type, broken particles, or unknown particles. (C) 3D reconstructions of the three types of the α7 homo-tetradecamer. 
Scale bar, 50 Å. 
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The crystal structure of the α7 tetradecamer shows a D7-symmetric double ring, and 

each subunit is composed of six α-helices and two β-sheets, where a pair of three α-helices 
sandwiches two β-sheets [22]. The density of the single α7 subunit was segmented from 
the cryo-EM map, and the crystallographic model (PDB ID: 5DSV) of the α7 subunit was 
fitted to the map (Figure 2A). All α-helices and β-sheets of the crystallographic model 
showed close agreement with the map with a few exceptions (Figure 2A,B; Table S1). 
Fourteen copies of the refined model of the α7 subunit were individually fitted to the 
densities in each 3D cryo-EM structure of the symmetric, dislocated, and open types of 
the α7 tetradecamer double ring (Figure 2C–E). Although the resolutions of the dislocated 
and open cryo-EM maps were limited compared to that of the symmetric cryo-EM map, 
the α-helix densities were easily identified, showing the following cross-correlation values 
with the fitted models; 0.86 for the symmetric type, 0.81 for the dislocated type, and 0.73 
for the open type. 

Figure 1. Single particle cryo-EM analysis of the α7 homo-tetradecamer. (A) Representative 2D class average images of the
three types of the α7 homo-tetradecamer: (a) symmetric, (b) dislocated, and (c) open. Scale bar, 100 Å. (B) Ratio of each type
of the α7 homo-tetradecamer classified by 2D classification (a–c). Others (d) include intermediate particles between each
type, broken particles, or unknown particles. (C) 3D reconstructions of the three types of the α7 homo-tetradecamer. Scale
bar, 50 Å.

2.2. The α7 Subunit Models Were Fitted to the Densities in Each Cryo-EM Map

The crystal structure of the α7 tetradecamer shows a D7-symmetric double ring, and
each subunit is composed of six α-helices and two β-sheets, where a pair of three α-helices
sandwiches two β-sheets [22]. The density of the single α7 subunit was segmented from
the cryo-EM map, and the crystallographic model (PDB ID: 5DSV) of the α7 subunit was
fitted to the map (Figure 2A). All α-helices and β-sheets of the crystallographic model
showed close agreement with the map with a few exceptions (Figure 2A,B; Table S1).
Fourteen copies of the refined model of the α7 subunit were individually fitted to the
densities in each 3D cryo-EM structure of the symmetric, dislocated, and open types of
the α7 tetradecamer double ring (Figure 2C–E). Although the resolutions of the dislocated
and open cryo-EM maps were limited compared to that of the symmetric cryo-EM map,
the α-helix densities were easily identified, showing the following cross-correlation values
with the fitted models; 0.86 for the symmetric type, 0.81 for the dislocated type, and 0.73
for the open type.
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structure (PDB ID: 5DSV). (B) Comparison of the α7 subunit models by cryo-EM and X-ray crystallography. Ribbon dia-
grams of the subunits by cryo-EM and X-ray crystallography are colored by blue and yellow, respectively. (C–E) Assem-
bled subunit conformations of each type of the α7 homo-tetradecamer: symmetric (blue in (C)), dislocated (red in (D)), 
and open (green in (E)). Scale bar, 50 Å. The double ring opens with a small twist (green asterisks). 

2.3. Cryo-EM Structures of the α7 Double Ring in Solution 
Interestingly, the cryo-EM map of the symmetric type double ring was approxi-

mately similar to the crystallographic model, but the interaction points between the two 
rings exhibited a large difference between the two structures (Figure 3). Compared to the 
crystal structure, the symmetric type double ring of the cryo-EM map was stacked with a 
twist of approximately 15° and a separation of approximately 3 Å between the two rings 
(Figure 3A,B). In addition to this deformation, the fitted model of the dislocated type 
showed that the two rings were offset by approximately 11 Å (Figure 3C,D). Regarding 
the open type, the two rings of the dislocated type were further opened by approximately 
40° via the interaction of the two α7 subunits at one end of each ring (Figure 2E). The 

Figure 2. Assembled subunit conformation of each type of the α7 homo-tetradecamer. (A) The α7 homo-tetradecamer single
subunit segmented from the symmetric-type cryo-EM map and the fitted model (blue) built from the X-ray crystal structure
(PDB ID: 5DSV). (B) Comparison of the α7 subunit models by cryo-EM and X-ray crystallography. Ribbon diagrams of the
subunits by cryo-EM and X-ray crystallography are colored by blue and yellow, respectively. (C–E) Assembled subunit
conformations of each type of the α7 homo-tetradecamer: symmetric (blue in (C)), dislocated (red in (D)), and open (green
in (E)). Scale bar, 50 Å. The double ring opens with a small twist (green asterisks).

2.3. Cryo-EM Structures of the α7 Double Ring in Solution

Interestingly, the cryo-EM map of the symmetric type double ring was approximately
similar to the crystallographic model, but the interaction points between the two rings
exhibited a large difference between the two structures (Figure 3). Compared to the
crystal structure, the symmetric type double ring of the cryo-EM map was stacked with a
twist of approximately 15◦ and a separation of approximately 3 Å between the two rings
(Figure 3A,B). In addition to this deformation, the fitted model of the dislocated type
showed that the two rings were offset by approximately 11 Å (Figure 3C,D). Regarding the
open type, the two rings of the dislocated type were further opened by approximately 40◦
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via the interaction of the two α7 subunits at one end of each ring (Figure 2E). The results
suggest that the twisting and separation of the α7 double ring in solution cause further
dislocated and open structures. In the crystallographic model, the two rings interacted
strongly via a single α-helix located at the inner surface of each ring (Figure 3E). However,
in the symmetric type, the interaction occurred in a smaller area of the two α-helices
(Figure 3F). Furthermore, in the dislocated and open types, the two rings interacted at the
tips of the α-helices (Figure 3G,H). Interactions between two α rings also occurred in a
smaller area compared to the interaction of the α- and β- rings (Supplementary Figure S2).

1 
 

 

Figure 3. Structural comparison of the α7 homo-tetradecamer between the cryo-EM models and the X-ray crystallographic
model. (A) Cryo-EM map of the symmetric-type α7 homo-tetradecamer (blue) was superimposed with the X-ray crystal-
lographic model (PDB ID: 5DSV; yellow). When the upper ring of the double ring was overlapped at the same position,
the dislocation of the lower ring was evaluated. (B) Ribbon diagrams of the α7 subunits in each lower ring are colored by
blue (cryo-EM) and yellow (X-ray). The cryo-EM model shows a clockwise twist of approximately 15◦ and a separation
of approximately 3 Å compared to the X-ray crystallographic model. (C) Cryo-EM map of the dislocated type of the α7
homo-tetradecamer (red) overlapped with that of the symmetric type (blue). When the upper ring of the double ring was
overlapped at the same position, the dislocation of the lower ring was evaluated. (D) Ribbon diagrams of the α7 subunits
in each lower ring are colored by blue (symmetric) and red (dislocated). The lower ring was offset by approximately
11 Å in the dislocated type. (E–H) Helix–helix interactions between the two rings of the α7 homo-tetradecamer: X-ray
crystallographic model (E) and cryo-EM symmetric (F), dislocated (G), and open (H) types. The magenta line represents a
possible interaction area. The length of the helix–helix interaction was measured as 13 Å in (E), 8 Å in (F), 9 Å in (G), and
6 Å in (H).
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3. Discussion

In this study, we investigated the double-ring structure of the α7 homo-tetradecamer
in solution using cryo-EM. The results showed that the structures were different from the
previously reported X-ray crystallographic model [22]. Compared to the crystal structure,
the symmetric-type cryo-EM map showed that the double ring twisted 15◦ and there
was a separation of 3 Å between the two rings (Figure 3A,B). It was shown that a new
molecular interaction was created between the α7 homo-heptameric rings, where the two
rings interacted in a smaller area of the α-helices (two turns of the helices), compared to
what was seen in the crystallographic model (three turns of the helices) (magenta lines in
Figure 3E,F). The interaction areas were further shifted to the tips of the α-helices (one turn
in the helices) in the dislocated and open types (Figure 3G,H). From these observations, we
propose a structural fluctuation model of the α7 homo-tetradecamer in solution (Figure 4;
Video S1), where sequential conformational changes possibly occur via helix–helix inter-
actions. Compared to the crystallographic model, the α7 homo-tetradecamer dominantly
exhibits a twist of 15◦ and a separation of 3 Å between the two rings in solution, in which
the helix–helix interactions between the two rings occurred within two helical turns. Re-
garding the dislocated type, one ring slid by reducing the helix–helix interaction area from
two turns to one, resulting in an offset of 11 Å between the two rings. Regarding the open
type, the two rings further opened while retaining the helix–helix interaction on one side
of the ring, thereby exhibiting a cooked clam-like structure. In this structural change in the
same solution, it is assumed that there is no change in the composition of the α-ring itself,
only the positional relationship of the two rings changes. Like the crystal structure [22],
the cryo-EM data revealed that α7 homo-tetradecamer has a central pore in the α7-ring
(Figures 1 and 2) as observed in the gate-open structures of 20S core particle complexed
with proteasome activators [7,9–11]. The relative positions between the two α-rings could
be altered regardless of the potential dynamics of the gate opening in the α-ring, which
is caused by the conformational changes of the N-terminal tails. In the crystallographic
model, the double-ring structure may artificially create the strong helix–helix interactions
in the crystal packing. In the future, higher resolution of the α7 homo-tetradecamer in
solution is necessary to clarify the exact molecular interactions between the two rings.
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Figure 4. Structural fluctuation model of the α7 homo-tetradecamer in solution. The symmetric-type cryo-EM model (a)
shows a twist of 15◦ Å and a separation of 3 Å between the two rings, compared to the crystallographic model (left panel).
In the dislocated-type cryo-EM model (b), one ring further rotates and slides while retaining the interaction area on one
side of the ring, resulting in an offset of 11 Å between the two rings. In the open-type cryo-EM model (c), the two rings
open while retaining the interaction area on one side of the ring, resulting in a twisted, cooked clam-like structure. The
helix–helix interaction areas are labeled by asterisks.

Previous biochemical and biophysical analysis results have demonstrated that the α7
homo-tetradecamer exclusively formed the double-ring structure and is disassembled into
homo-heptameric single rings through associations with α4 or α6 subunits, giving rise
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to 1:7 hetero-octameric complexes of α4-α7 or α6-α7, respectively [22,25]. In addition, a
previous high-speed atomic force microscopy study revealed that the disassembly consists
of a two-step process [26]. Monomeric α6 initially cracks at the interface between the
two stacked α7 single rings and is subsequently accommodated in the central pore of
the α7 single ring. These findings demonstrate the versatile nature of the proteasomal α
subunits with structural homology, giving deeper insights into the mechanisms behind
assembly and disassembly of oligomeric proteins. The results of the present cryo-EM
analysis together with the previous high-speed atomic force microscopy observations shed
light on the conformational plasticity of the α7 homo-tetradecamer in solution. The intrinsic
fluctuations of the α7 double-ring structure may facilitate its initial complex formation
with α4 or α6, thereby contributing to its disassembly mechanism.

4. Materials and Methods
4.1. Sample Preparation for Cryo-EM

The human proteasome α7 subunit (PSMA3 [P25788]; residues 1–255) was expressed
and purified as described previously [23,24]. The sample was dissolved in a buffer contain-
ing 20 mM Tris-HCl (pH 8.0) and 150 mM NaCl. An aliquot (2.5 µL) of sample solution was
applied onto R1.2/1.3 MO 200 mesh holey grids (Quantifoil Micro Tools, Jena, Germany)
coated with thin carbon membranes and pre-treated with glow discharge using a plasma
ion bombarder (PIB-10, Vacuum Device, Mito, Japan) for 30 s. The grid was blotted for
4 s with a force level of 7 at 4 ◦C and 95% humidity, and then it was flash frozen in liquid
ethane using a Vitrobot Mark IV system (Thermo Fischer Scientific, Hillsboro, OR, USA).
The vitreous ice sample grid was maintained at liquid-nitrogen temperature within a
JEM2200FS electron microscope (JEOL Ltd., Tokyo, Japan) using a side-entry Gatan 626
cryo-transfer holder (Gatan Inc., Pleasanton, CA, USA), and it was imaged using a field-
emission gun operated at 200 kV and an in-column (Omega-type) energy filter operating
in zero-energy-loss mode with a slit width of 20 eV. A total of 100 images were collected
on a direct-detector CMOS camera (DE20, Direct Electron, LP, San Diego, CA, USA) at a
nominal magnification of 40,000×, corresponding to 1.42 Å per pixel on the specimen.

4.2. Image Processing for Cryo-EM

The images were corrected for beam-induced motion with dose-weighting using the
RELION 3.1 software [27], and their contrast transfer functions were estimated with the
CTFFIND4 software [28]. From all of the images, 80,048 particles were collected using
RELION 3.1 software. After 2D classification, the 2D averaged images were divided into
the symmetric type (18,388), dislocated type (49,691), and open type (3842). The particles of
the symmetric type were used to generate initial 3D models by imposing D7 symmetry. The
best model was used as a reference for the following 3D refinement. The final 3D cryo-EM
map of the symmetric type was reconstructed using the 18,388 particles for a resolution
of 5.9 Å (gold standard Fourier shell correlation (GS-FSC)). For the dislocated type, the
2D classes of the dislocated type were subjected to 2D classification again, and the good
classes, containing 23,703 particles, were used for 3D reconstruction and classification. Two
good 3D classes, which included 16,558 particles, were ultimately selected. 3D refinement
was carried out with these selected particles without imposing symmetry. For the open
type, the 2D classes containing the open type images were used for 3D reconstruction and
classification. A good class was selected, and the 3D map was refined using the particles
from this class. The resolutions of the dislocated and open types were calculated to be
8.1 Å and 12.1 Å (GS-FSC), respectively. Volume renderings of the maps were created in
UCSF Chimera [29]. For atomic model building, the map containing a subunit of the α7
homo-tetradecamer was extracted by using UCSF Chimera. The atomic structures of the
individual α7 subunits in the double ring were manually re-built for each cryo-EM map
based on the crystal structure using COOT [30], and the resultant models were refined by
using PHENIX [31]. Data collection, image processing, and model statistics are summarized
in Table S1.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22094519/s1, Figure S1: Single particle cryo-EM data processing of the α7 homo-
tetradecamer, Figure S2: Comparison of molecular interactions between the α-α ring of the symmetric-
type α7 homo-tetradecamer and the α-β ring in the 20S core particle, Table S1: Statistics for Cryo-EM
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