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Abstract: The LIM homeodomain transcription factor ISL1 is essential for the different aspects of
neuronal development and maintenance. In order to study the role of ISL1 in the auditory system,
we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously
reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial
olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated
how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC).
We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband
noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg
animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider
dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of
frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes
were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an
increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice,
compared to wild type animals. The results further characterize abnormal sound processing in the IC
of Tg mice and demonstrate that major changes occur on the side of inhibition.

Keywords: transcription factor ISL1; auditory system; sound processing; inferior colliculus; inhibition

1. Introduction

The inferior colliculus (IC) plays an important role in auditory processing and integrat-
ing information about the spectral, temporal, and spatial features of sound that has been
preprocessed by multiple specialized brainstem networks [1,2]. The IC is morphologically
divided into the core (central nucleus) and shell (dorsal and external nucleus) subdivisions.
The central nucleus is tonotopically organized, receives ascending auditory inputs from the
brainstem auditory nuclei, and projects to the thalamus, from where the auditory signal
proceeds to the cortex. The IC shell plays a neuromodulatory role, not only receiving
and processing ascending auditory information, but also descending projections from the
auditory cortex (targeting mainly dorsal nucleus [3]), and inputs from the IC core and non-
auditory structures (external nucleus [4]). IC neurons are represented by two major classes,
excitatory glutamatergic neurons and inhibitory GABAergic neurons. GABAergic neurons
comprise about 20–30% of the inhibitory neurons in the IC of rodents [5–8], and 15% in the
human IC [9]. Despite the lower proportion of GABAergic cells in the IC, inhibition plays a
critical role in shaping IC neuronal responses [10].

Isl1 is a LIM-homeodomain transcription factor and is essential for normal embryonic
development, since embryos lacking the Isl1 gene die by embryonic day 10.5 (E10.5) [11].
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Loss-of-function studies in mice have revealed that ISL1 has a crucial role in neuronal,
pancreatic, cardiac, and eye development [12–16]. ISL1 acts in a context-dependent fashion,
and has the unique potential to combinatorially interact with other transcription regulators
in a homomeric or heteromeric fashion [17]. To further explore the function of ISL1,
we generated a gain-of-function model with the transgenic expression of Isl1 under Pax2
regulatory sequences. Pax2 is one of the earliest genes detectable in the prospective mid-
hindbrain region (E7.5) [18], it is indispensable for the normal development of this brain
region [19], and it is essential for inner ear development [20]. We hypothesized that by using
an overexpression model of Isl1 under the Pax2 regulatory sequence, we can further explore
the role of ISL1 in the auditory system. We previously showed that Pax2-Isl1 transgenic mice
(Tg) exhibit an altered development of the auditory system at multiple levels, affecting the
inner ear, auditory brainstem [21], and midbrain [22]. These Tg mice demonstrated an early
onset of the age-related hearing loss compared to littermate controls [21]. The accelerated
age-related hearing loss was associated with a functional inefficiency of cochlear outer
hair cells and the deterioration of the medial olivocochlear efferent system. Additionally,
our behavior analyses show that Pax2-driven ISL1 overexpression alters GABA signaling,
as indicated by the systemic responsiveness to picrotoxin, a non-competitive channel
blocker for the γ-aminobutyric acid (GABA) receptor chloride channels [22].

In this study, we further explore the gain-of-function role of Isl1 on acoustic signal
processing and the functional and molecular properties of neurons in the IC of Tg mice.
Altered development of the IC was manifested in its decreased size and in the reduced
amplitude of late ABR waves. The decreased size of the IC in Tg mice did not affect the
range of frequency representation. However, Pax2-driven ISL1 overexpression resulted in
various deficits in sound processing in the IC, affecting the function of both low and high
frequency neurons. Our results suggest that the defects of auditory processing in the IC of
the Tg mice were primarily caused by impaired inhibitory signaling.

2. Results
2.1. Young Tg Animals Exhibit Slightly Impaired High Frequency Hearing

Prior to the recording of neuronal activity in the IC, we performed a basic evaluation
of hearing function via recording and analysis of DPOAEs and ABRs. DPOAEs reflect the
motile function of the outer hair cells responsible for sound amplification in the inner ear,
while ABRs represent summed neuronal activity in distinct nuclei along the ascending
auditory pathway. The ABR in mice consists of five positive waves [23–25], of which wave
IV represents activity of the lateral lemniscus and partially reflects the activity in the IC [26]
and wave V originates mainly in the IC [25]. In mice, early waves I to III have usually
the highest amplitude, while wave V is often unstable and tends to blend into the noise
level [24]. Therefore, to evaluate the sound evoked response at the level of upper brainstem
and midbrain in relation to the action potential in the auditory nerve, we analyzed the ratio
of the ABR wave I to wave IV amplitude.

WT animals (n = 8) showed a normal amplitude and profile of DPOAEs, with a
40dB SPL peak at 18–20 kHz. The DPOAE amplitude in Tg animals (n = 9) was slightly
but significantly decreased in the high frequency region (Figure 1A, interaction between
Frequency and Genotype p = 0.02; repeated measures two-way ANOVA, Uncorrected
Fisher’s LSD post-hoc test), confirming an impaired function of outer hair cells in the basal
part of the cochlea, as previously reported [21]. The outer hair cell functional deficit was,
however, not strong enough to significantly affect the hearing thresholds assessed using
ABR recording, and no difference was shown between the Tg and WT animals (Figure 1B,
repeated measures two-way ANOVA). The ABR wave analysis performed using click-
evoked ABR response curves showed a significant increase of ABR wave I to wave IV
amplitude ratio (Figure 1C, p = 0.047; unpaired t-test), due to the decreased amplitude of
wave IV in the mutant mice compared to WT (Figure 1D), suggesting a sound processing
deficiency in the auditory brainstem and midbrain and confirming our previous report [22].
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Figure 1. Hearing function of wild type and Tg animals. (A) Distortion product otoacoustic emissions
are significantly impaired in high frequencies of Tg mice. Mean ± SD, repeated measures two-way
ANOVA, Uncorrected Fisher’s LSD post-hoc test, * p < 0.05, ** p < 0.01. (B) ABR thresholds are
not different between the groups. Mean ± SD, repeated measures two-way ANOVA. (C) Ratio of
wave I amplitude to wave IV amplitude is increased in transgenic animals compared to wild type.
Unpaired t-test, * p < 0.05. (D) Example of ABR curve showing impaired wave IV in transgenic
animal compared to wild type. (E) Comparison of IC area in WT and Tg brains.

2.2. The Inferior Colliculus Is Smaller in Tg Mice

The IC of Tg mice was significantly smaller than in WT animals (Figure 1E, WT:
2.29 ± 0.1 mm2, Tg: 1.55 ± 0.5 mm2), and this difference is often easily detectable by a
simple visual inspection of the dorsal brain surface (Figure 2A,B), as well as in brain
sections (Figure 2C,D). To characterize the response properties of the IC neurons of Tg
and WT animals, we performed multiunit extracellular recordings of neuronal activity.
Two animals with the most pronounced reduction of IC size were excluded from our study
due to the inability to insert an electrode for neuronal response recording.
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Figure 2. Size and position of the inferior colliculus in WT and Tg brain (animals with highly
expressed phenotype). (A,B) Simple inspection of the brain surface from the dorsal view reveals
smaller size of inferior colliculus in Tg brain (delineated in B) compared to WT brain (delineated in
A). (C,D) Same finding confirmed using stained coronal brain sections. Scale bar 1 mm.

2.3. The Properties of IC Neuronal Responses Are Abnormal in Tg Mice

We subsequently investigated the tuning properties of IC neurons at various frequen-
cies. In both the WT and Tg mice, we recorded and analyzed responses from neurons with
characteristic frequencies from 4 to 35 kHz (Figure 3). Since the processing of sounds of
high frequency could be affected, as suggested by impaired DPOAEs, the analyzed IC
neurons were divided into two groups based on their neuronal characteristic frequency:
low frequency neurons (LFN, 4–14 kHz, WT n= 284, Tg n = 414) and high frequency neurons
(HFN, 15–35 kHz, WT n = 315, Tg n = 266). Neuronal thresholds corresponding to the lowest
sound intensity detectable by neurons were determined using both tone- and BBN-evoked
neuronal responses. Surprisingly, despite the deficit of DPOAEs in the high frequency
region of the Tg cochlea, elevated sound thresholds in responses to both pure tones and
BBN were only found in the LFN in the IC of the transgenic mice (tone-evoked responses:
Figure 3A,B, WT: Mdn = 20.29 dB SPL, Tg: Mdn = 24.62 dB SPL, p < 0.0001, Mann-Whitney
test; BBN-evoked responses: Figure 4A, WT Mdn = 21.27 dB SPL, Tg Mdn = 22.28 dB SPL,
p < 0.0001, Mann-Whitney test), and not in the HFN (Figure 3A,C and Figure 4D, Mann-
Whitney test). To assess the frequency selectivity, quality factor Q10 was compared in the
IC neurons of the WT and Tg mice. We found no difference between the animal groups in
the LFN frequency selectivity; in both groups the Q10 Mdn was 1.8 (Figure 3E). In contrast,
the HFN of the Tg mice exhibited significantly impaired frequency selectivity, manifested
in a decreased quality factor (Figure 3D,F, WT Mdn = 2.1, Tg Mdn = 1.9 dB SPL, p = 0.009,
Mann-Whitney test).
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Figure 3. Characteristics of IC neuronal responses to pure tones. (A) Scatter plot showing thresholds
of all measured neurons as a function of characteristic frequency in both groups of animals. (B,C) Box
and whiskers plots showing distribution of neuronal thresholds separately in LFN and HFN in the
WT and Tg IC. Median with interquartile range and extremes, Mann-Whitney test, **** p < 0.0001.
(D) Scatter plot showing the quality factor of all measured IC neurons as a function of characteristic
frequency in both groups of animals. (E,F) Box and whiskers plots showing distribution of neuronal
quality factors separately in LFN and HFN. Median with interquartile range and extremes, Mann-
Whitney test, ** p < 0.01.

Rate-intensity functions were analyzed using IC neuronal responses to the BBN
stimulation of different intensity. In addition to the above-mentioned increased neuronal
thresholds, the neurons in the Tg IC exhibited a wider dynamic range compared to the WT,
and this difference was more pronounced for the LFN than for HFN (Figure 4B,E, LFN WT:
Mdn = 30.91 dB, Tg: Mdn = 39.49, p < 0.0001, HFN: WT: Mdn = 32.41 dB, Tg: Mdn = 38.48,
p = 0.002). No difference between the groups in maximum response was found in the LFN,
while HFN showed a smaller maximum response in the Tg mice compared to the WT IC
(Figure 4C,F, WT: Mdn = 13.11 spike/s, Tg: Mdn = 11.65, p = 0.032).
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Figure 4. Characteristics of the rate-intensity functions measured using broad-band noise. (A–F) Box
and whiskers plots depicting distribution of neuronal threshold (A,D), dynamic range (B,E) and
maximum response (C,F) values in LFN (A–C) and HFN (D–F) of WT and Tg mice. Median with
interquartile range and extremes, Mann–Whitney test, * p < 0.05, ** p < 0.01, **** p < 0.0001.

The FSL was extracted from the post-stimulus time histograms of responses to BBN
stimuli. Being a precise and stable function of a stimulus amplitude [27], the FSL increased
with a decrease of stimulus intensity in both LFN and HFN, in the IC of both groups of
animals (Figure 5A,D). Tg animals, however, already exhibited prolonged FSL in response
to the highest recorded sound intensities, and this deficit increased gradually with decreas-
ing sound level (repeated measures two-way ANOVA, main effect of genotype p < 0.0001,
interaction between genotype and sound intensity p < 0.0001), reaching an approximate
2 ms delay compared to WT in response to the lowest analyzed intensity of 30 dB SPL
(Figure 5A, LFN: Mean = 12.5 ms for WT and 14.56 for Tg, p < 0.0001; Figure 5D, HFN:
Mean = 12.05 for WT and 14.34 for Tg p < 0.0001, repeated measures two-way ANOVA,
Uncorrected Fisher’s LSD post-hoc test).

The spontaneous firing rate was extracted from the last 100 ms of the recorded activity
to stimulation using low-level BBN stimuli. In both groups of animals, it ranged from
0 to approximately 200 spikes/s for the LFN and HFN. The median spontaneous activ-
ity, however, was lower in the LFN (Figure 5B, WT Mdn = 17.5 spike/s, Tg Mdn = 5 spike/s,
p < 0.0001, Mann-Whitney test) and the HFN (Figure 5E, WT Mdn = 7.5 spike/s,
Tg Mdn = 0 spike/s, p < 0.0001, Mann-Whitney test) in the IC of Tg mice compared to
the WT, due to the higher number of neurons with zero spontaneous activity in both
groups of transgenic IC neurons (Figure 5C,F).
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Figure 5. First spike latency and spontaneous activity. (A,D) FSL as a function of sound intensity for
LFN (A) and HFN (D) in WT and Tg IC. Repeated measures two-way ANOVA, Uncorrected Fisher’s
LSD post-hoc test, ** p < 0.01, *** < 0.001, **** p < 0.0001. (B,E) Box and whiskers plots showing
distribution of spontaneous activity values in LFN (B) and HFN (E). Median with interquartile range
and extremes, Mann-Whitney test, *** <0.001, **** p < 0.0001. (C,F) Histogram showing distribution
of spontaneous activity values in LFN (C) and HFN (F).

We then tested the ability of neurons to follow and respond precisely to a train of
click stimulations with an inter-click interval ranging from 2 to 100 ms. Both groups of
IC neurons from the Tg and WT animals were able to follow click trains with inter-click
intervals from 100 to 30 ms with a comparable fidelity (Figure 6A,B). However, the HFN
in the transgenic IC exhibited a significant drop in synchronization ability in responses to
click trains, with shorter inter-click intervals (from 20 to 5 ms) (Figure 6B). On the other
hand, the LFN showed slightly higher vector strength values at 5 ms and 2 ms inter-click
intervals (Figure 6A).

Figure 6. Precision of temporal coding. (A,B) Ability of LFN (A) and HFN (B) to synchronize
with click trains with different inter-click intervals expressed using vector strength (VS) values.
Mean ± SD, one-way ANOVA, Fisher’s LSD post-hoc test, * p < 0.05, *** <0.001, **** p < 0.0001.

2.4. Inhibition Is Increased in the Inferior Colliculus of Mutant Mice

Two-tone stimulation was employed to assess the high- and low-frequency inhibition
in the LFN and HFN of the WT and Tg mice. The strength of inhibition was expressed as
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a percent of the suppression of the firing rate in the low- and high-frequency sidebands
enframing the tuning curve [28]. The LFN in the Tg IC showed an increased inhibitory
strength on both, low (Figure 7A, WT Mdn = 45.19%, Tg Mdn = 56.52%, p < 0.01) and high
(Figure 7B, WT Mdn = 58.93%, Tg Mdn = 71.81%, p < 0.001) frequency sides, while the
inhibitory strength of the HFN was similar between the WT and Tg animals (Figure 7D,E).

Figure 7. Two-tone inhibition and FM direction selectivity. (A,B,D,E) Comparison of low- (A,D) and
high-frequency (B,E) sideband inhibition strength in LFN (A,B) and HFN (D,E) in WT and Tg IC.
Median with interquartile range and extremes, Mann-Whitney test, ** p < 0.01, *** <0.001. (C,F) Fre-
quency modulated stimulus direction selectivity of LFN (C) and HFN (F). Median with interquartile
range and extremes, Mann-Whitney test **** p < 0.0001. HFN: high frequency neurons, LFN: low
frequency neurons.

Another indirect measure of inhibition in the auditory system is the DSI, which is
calculated as the difference of spiking activity in response to the up- and downward FM
stimulus [29,30]. The right shift of DSI suggests prevalence of high frequency inhibition
over low frequency inhibition. In both groups of experimental animals, the DSI was shifted
to the right, reflecting prevalence of high frequency inhibition. However, in both types of
neurons, this shift was significantly more pronounced in the Tg animals (Figure 7C, LFN:
Mdn = 0.08 for WT and 0.17 for Tg, p < 0.0001; Figure 7F, HFN: Mdn = 0.05 for WT and
0.16 for Tg p < 0.0001, Mann-Whitney test) suggesting even higher dominance of the high
frequency inhibition in the Tg IC.

2.5. The Molecular Profile and Distribution of Neurons Are Altered in the Inferior Colliculus of
Mutant Mice

Having recognized the major effects of the transgenic expression of Isl1 on the fre-
quency tuning, intensity, and temporal coding properties of IC neurons, we next wanted
to establish the cellular and molecular differences between the Tg and WT IC. Calcium
binding proteins, calbindin, calretinin, and parvalbumin, are abundantly expressed in
the IC and their expression patterns define specific IC subdivisions: calbindin is mainly
expressed in neurons in the dorsal nucleus particularly in the proximity to the commissure
of the IC, calretinin in the dorsal nucleus, and parvalbumin throughout the IC [8,31]. In our
study, we focused on two types of IC neurons, parvalbumin and calretinin immunola-
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beled neurons (Figure 8A,B). Calretinin+ neurons dominate in the dorsal half of the IC
(Figure 8A), which contains low frequency neurons and is the most affected part of the IC
in the Tg mouse. We found a reduced number of calretinin+ cells in both, the dorsal (DIC)
and central (CIC) IC nuclei in the Tg brain compared to the WT (Figure 8C, p < 0.001, t-test).

Figure 8. Calcium binding proteins in the IC. (A,B) Illustration of immunofluorescent staining of
the coronal brain section with anti-calretinin (green) and anti-parvalbumin (red) staining in WT
(A) and Tg (B) mice. Delineations show central (CIC), dorsal (DIC), and external (EIC) nuclei of the
IC. (C) Number of calretinin and parvalbumin positive cells in the IC nuclei. Mean ± SD, unpaired
t-test, ** p < 0.01.

Parvalbumin immunolabeled cells have been shown to colocalize with GABA, and,
thus, inhibitory cells in the IC [32]. The number of parvalbumin+ neurons was decreased
in the CIC of the Tg compared to the WT animals (Figure 8C, p < 0.01, t-test). We also
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quantified the expression of mRNA of Slc32a1 (encodes a transporter involved in GABA
and glycine uptake into synaptic vesicles), and genes encoding calcium binding proteins
(calbindin (Calb1), calretinin (Calb2), and parvalbumin (Pvalb)). The relative quantification of
mRNA expression was performed in the whole IC using RT-qPCR. The expression of Calb1
and Slc32a1 was significantly increased, indicating changes in the molecular expression
profile of IC neurons in the Tg mice, while we found no difference between the groups in
the levels of mRNA encoding calretinin and parvalbumin (Figure 9, p < 0.01, t-test).

Figure 9. Calcium binding protein and inhibitory gene expression in the IC. Expression of mRNA of
GABA and glycine transporter (Slc32a1) and calcium binding proteins calbindin (Calb1), calretinin
(Calb2), parvalbumin (Pvalb) in the WT and Tg IC. Mean ± SD, unpaired t-test, ** p < 0.01.

3. Discussion

In this study, we investigated how the overexpression of Isl1 under Pax2 regulatory
sequences, associated with abnormalities in the development of the mid-hindbrain region,
affects sound processing by IC neurons. We performed extracellular recording of neuronal
activity in the IC of Tg and WT mice. Animals six to eight weeks old were used in the study
to minimize the effects of premature loss of high frequency hearing, previously reported for
these mutants [21]. Compared to WT littermates, Tg mice at this age already had decreased
DPOAE amplitudes in the high frequency part of the cochlea, but without any significant
shift of the hearing thresholds.

The decreased size of the IC in Tg mice did not affect the range of frequency repre-
sentation. However, the mutant mice demonstrated various deficits in sound processing
in the IC, affecting the function of both low and high frequency neurons, often the LFN
to a higher extent. Our results suggest that the defects of auditory processing in the IC
of the Tg mice were primarily caused by impaired inhibitory signaling. This agrees with
our previous report of increased inhibition in the brain of the Tg mice resulting in hy-
peractivity, which was successfully reduced by the administration of a non-competitive
channel blocker for the GABA receptor chloride channels [22]. Inhibition is an important
phenomenon, shaping and limiting responses throughout the auditory pathway. In the IC,
inhibition is of particular importance, as it plays a determinative role in neuronal selectivity
to social vocalization [33], and binaural sound processing [34]. Using two-tone stimulation
to uncover inhibitory areas in the IC neuronal receptive fields, we found a higher strength
of low- and high-frequency sideband inhibition in the LFN in the Tg IC. Neuronal receptive
fields in the IC are a result of the input from the lower auditory nuclei, and interplay of
the intracollicular excitation and inhibition. Thus, the origin of sideband inhibition in the
IC remains disputable. The two-tone stimulation paradigm [35], which we used to detect
inhibitory sidebands and calculate inhibitory strength, involves the simultaneous presenta-
tion of two tones to the animal: one tone of variable frequency and intensity, together with
another tone fixed at CF 10 dB above the threshold. This stimulation allows the discovery of
inhibitory areas around the excitatory tuning curve, represented by a suppressed response
to the “fixed tone” [28]. A similar setting, however, evokes two-tone suppression at the
level of cochlear basilar membrane, which could potentially, together with inhibition in
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the lower auditory nuclei, contribute to the two-tone response areas in the IC neuronal
response receptive fields. Multiple studies, however, argue with the extra-collicular origin
of two-tone inhibition recorded in the IC. Thus, the presence of similar inhibitory patterns
in response areas of neurons with spontaneous activity, in response to a single tone stim-
ulation [36,37] and studies using GABA or glycine antagonists in the IC, [38–40] suggest
prevalence of the intra-collicular inhibition in the IC tuning curves recorded in response
to the two-tone stimulation. Interestingly, the increased sideband inhibition in the low
frequency region of the IC could lead to increased hearing thresholds of the LFN responses
to both pure tone and BBN stimulation, despite the DPOAE deficit in the high frequency
part of the Tg cochlea. A similar effect of inhibition has been shown in the studies using
GABA and glycine antagonists. For example, a bicuculline blocking side band inhibition
caused 5–15 dB threshold reduction in 20% of IC neurons in guinea pigs [39], similar to the
effect of the combination of bicuculline and strychnine in the Mexican-free tailed bat [33].

In contrast to the results of two-tone stimulation, the analyses of other indirect mea-
sures of inhibition, such as neuronal selectivity for FM sweep direction, FSL and sponta-
neous firing rate, showed similar effects in the LFN and HFN. Thus, the index of direction
sensitivity to FM sweeps showed higher prevalence of the high frequency inhibition in
both the LFN and HFN in the Tg IC, compared to those of the WT mice. FM sweeps
are a universal component of animal vocalizations and the IC has been shown to be the
first nucleus in the auditory pathway, in which neurons exhibit direction selectivity to
FM sweeps as a result of interplay between excitatory and inhibitory synaptic inputs [29].
The direction selectivity to FM sweeps was shown to originate in the IC as an effect of
the sideband inhibition [41]. Similarly, we found longer first spike latency in the Tg IC,
compared to WT neuronal responses to sounds in all the tested sound pressure levels.
This could be an effect of the increased inhibition, since a blockage of GABAA receptor
with bicuculline led to the shortening of the response latencies [42]. The decreased sound
evoked firing rate and spontaneous activity rate in the IC of Tg mice compared to WT IC
neurons could also be an effect of increased inhibition, as GABAA receptor blockage leads
to an increased discharge rate in the IC of the chinchilla [43]. Changes in the rate-intensity
functions manifested in the increased dynamic range of Tg IC neurons and an increased
response threshold in the LFN, also indicate an altered inhibition in the Tg IC. Therefore,
intensity coding in the IC is dependent on the combination of the external sources and local
colliculi circuits in which the inhibition plays a prominent role [44].

Electrophysiological evidence of increased inhibition was supported by the significant
increase of expression of mRNA for vesicular GABA/glycine transporter Slc32a1 and
calcium binding protein, calbindin, in the IC. At the same time, similarly to the findings in
the cerebellum [22], we found a significantly decreased number of calretinin expressing
neurons in the CIC and DIC and parvalbumin+ neurons in the CIC of the Tg animals.
Calcium binding proteins are expressed throughout the central nervous system and are
essential for calcium homeostasis during cellular signaling, synaptic function, and neuronal
plasticity. They frequently colocalize with GABA positive inhibitory interneurons. In the
central nucleus of the IC, parvalbumin has been shown to label all GABA immune-positive
cells, while solitary calretinin and calbindin positive cells did not colocalize with GABA or
glutamate [32]. To our knowledge, no such information is available for the IC shell neurons.
The role of these proteins in the auditory midbrain is not fully understood. The specificity
of calcium binding proteins, as markers of particular anatomical and functional subsets of
neurons, has been discussed [45,46]. Thus, the pattern of distribution of calretinin+ neurons
throughout the auditory pathway nuclei, suggest their relation to the subset of neurons
responsible for binaural hearing [47]. Whether binaural sound processing is affected in the
Tg animals remains to be established.

In this study, we established multiple auditory processing deficits in the IC of Tg mice
mainly conditioned by increased inhibition. Further studies employing these Tg mice may
support deciphering the role of inhibition in sound processing, and the molecular changes
associated with the overexpression of Isl1 in neurons of the IC.
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4. Materials and Methods
4.1. Animals

Heterozygous Pax2-Isl1 transgenic mice (Tg) [21,22] and their wild type (WT) litter-
mates of both sexes were used in the study. The experimental protocol was approved by the
Animal Care and Use Committee of the Institute of Molecular Genetics, Czech Academy of
Sciences. Animals were housed in a controlled environment (23 ◦C; 12-h light/dark cycle)
with free access to water and standard chow diet.

All hearing tests were carried out on mice anesthetized via an intraperitoneal injection
of a mixture of 35 mg/kg ketamine (Calypsol 50 mg/mL; Gedeon Richter, Budapest,
Hungary), and 6 mg/kg of xylazine (Xylapan 20 mg/mL; Vetoquinol SA, Lure Cedex,
France). The body temperature was maintained with a DC-powered electric temperature
regulated pad. The recordings were carried out in a soundproof anechoic room.

4.2. Distortion Product Otoacoustic Emissions

Cubic (2 F1–F2) distortion product otoacoustic emissions (DPOAEs) over an F2 fre-
quency range from 4 to 38 kHz, were recorded with a low-noise microphone system
(Etymotic probe ER-10B+, Etymotic Research, Elk Grove Village, IL, USA). Acoustic stimuli
(ratio F2/F1 = 1.21, F1 and F2 primary tone levels of L1/L2 = 70/60 dB) were presented
to the ear canal with two custom-made piezoelectric stimulators connected to the probe
with 10-cm-long silastic tubes. The signal from the microphone was analyzed by the TDT
System III (RP2 processor, sampling rate 100 kHz) (Tucker Davis Technologies, Alachua, FL,
USA) using custom-made Matlab software. DPOAEs were successively recorded in both
ears of the animals at individual frequencies over the frequency range 4–38 kHz, with a
resolution of four points per octave. The average values per group were calculated (mean
± SD) and presented as DP-grams.

4.3. Auditory Brainstem Responses

Auditory brainstem responses (ABRs) were measured using three needle electrodes
placed subcutaneously on the mouse vertex (recording electrode), and on two sides of
the animal’s neck (ground and reference electrodes). To evoke ABRs, the animals were
exposed to click (angular pulse with alternating polarity, duration 0.1 ms, repetition rate
of 11 Hz) or pure tone stimuli (3 ms duration, 1 ms rise/fall times, frequencies 2–40 kHz),
of gradually decreasing sound pressure with 5 dB step. Acoustic stimuli were conveyed
to the animal in free-field conditions via a two-way loudspeaker system (Jamo® woofer
(Glyngøre, Denmark), and a SEAS® T25CF 002 tweeter (Oslo, Norway)), which was placed
70 cm in front of the animal’s head. The signal from an electrode was amplified and band-
pass filtered over a range of 300 Hz to 3 kHz, processed with a TDT System III Pentusa
Base Station (Tucker Davis Technologies, Alachua, FL, USA) and analyzed using BioSig
software (Tucker Davis Technologies, Alachua, FL, USA).

The response threshold was determined at each frequency as the minimal sound pres-
sure evoking a noticeable potential peak in the expected time window of the recorded signal.
The average values per group were calculated (mean ± SD) and plotted in audiograms.

ABR wave amplitudes were analyzed using ABR response curves, obtained in response
to a click stimulation of 90 dB SPL. ABR wave amplitudes were determined as the distance
between the starting negative peak and the following positive peak for wave I and wave IV,
ratios of wave I to wave IV amplitude were calculated and compared between the groups.

4.4. Recording of the Neuronal Activity in the IC

Mouse IC was accessed through small holes drilled into the skull and neuronal
activity was recorded using a 16-channel, single shank probe (NeuroNexus Technologies,
Ann Arbor, MI, USA), with 100 m between the electrode spots. Acoustic stimuli were
generated with a TDT System III using the RP 2.1 Enhanced Real-Time Processor (Tucker
Davis Technologies, Alachua, FL, USA), and delivered in free-field conditions via a two-
way loudspeaker system (Jamo woofer and SEAS T25CF 002 tweeter), which was placed
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70 cm in front of the animal’s head. On average, five electrode penetrations per animal
were made. The first penetration was made in the middle of the IC.

The signal obtained from the electrode was amplified 10,000 times, band-pass filtered
over the range of 300 Hz to 10 kHz, and processed by a TDT System III (Tucker Davis
Technologies, Alachua, FL, USA), using an RX5-2 Pentusa Base Station. Using BrainWare
software (v. 8.12, Jan Schnupp, Oxford University, UK), individual spikes from the recorded
signal were isolated on-line on the basis of amplitude discrimination; the threshold was
set adaptively according to the level of noise in the individual channels. Subsequent dis-
crimination of spikes from the recorded data and their sorting according to the amplitudes
of the first positive and negative peaks were performed off-line. The recorded data was
processed and analyzed using custom made software based on MATLAB.

The rate-intensity functions (RIF) were constructed based on neuronal responses to
broadband noise (BBN) bursts of variable intensity (from 0 to 90 dB SPL, 10 dB steps,
50 repetitions), and were then used to determine the response threshold, maximal response
magnitude and dynamic range of the RIFs as previously described [48]). Post-stimulus
time histograms to BBN stimuli at 80 dB SPL were used to obtain minimum first-spike
latency (FSL), as the amount of time between the onset of sound presentation and the
appearance of first spikes of neuronal responses. The spontaneous firing rate of each
neuron was determined from the post-stimulus time histogram, as the number of spikes
in the time interval between 200 and 300 ms after the presentation of BBN stimulus 10 dB
above the threshold.

The tuning properties of individual IC neurons were evaluated using frequency-
intensity mapping as described [49]. Briefly, the excitatory response areas were obtained
via recording responses to pure tone bursts (100 ms in duration, 5 ms rise/fall times) with
variable frequency (1/8 octave step) and intensity (5 dB step), presented in a random order.
A two-dimensional matrix with elements corresponding to the response magnitudes in the
respective frequency-intensity points was created, and then converted to a smooth function
of two variables, frequency and intensity, via cubic smoothing spline interpolation. The fol-
lowing parameters of interest were then extracted from the resulting smooth function:
(i) the excitatory response threshold, the lowest stimulus intensity that excited the neuron,
measured in dB SPL; (ii) the characteristic frequency (CF), the frequency with the minimal
response threshold, measured in kHz; and (iii) the bandwidth of the excitatory area 10 dB
above the excitatory threshold, measured by quality factor Q10. Quality factor Q10 is a
common measure of frequency selectivity that is reciprocally related to the excitatory area
bandwidth (the higher the Q10, the sharper the response), defined as Q10 = CF/bandwidth.

To detect the inhibitory areas, a two-tone stimulation was employed [49]. A simul-
taneous presentation of the pure tone at the neuron’s CF fixed 10 dB above the threshold
and pure tone bursts of variable frequency and intensity, analogous to those used for the
excitatory area mapping, allowed us to create a two-dimensional matrix with distinguish-
able excitatory, inhibited and non-inhibited areas. Spike rates of responses in non-inhibited
and inhibited areas were determined. Inhibitory strength was calculated as the ratio of
spike numbers per stimulus in inhibited areas to those in non-inhibitory areas. Low- and
high-frequency inhibition bands were analyzed separately.

To test the temporal processing ability of individual IC neurons, the animals were
stimulated with click trains (positive rectangular pulses with duration of 100 ms) at an
intensity of 70 dB SPL with different inter-click intervals (ICI), ranging from 2 to 100 ms.
Each stimulus consisted of five clicks with a given ICI. The click trains with different ICIs
were presented randomly, each stimulus occurring 30 times. The ability of neurons to
synchronize with the click trains was evaluated using vector strength (VS); an example
is described in [50]. The VS value is a number between 0 and 1, expressing the degree of
synchronization of neuronal spike trains with a periodic stimulus. A higher VS indicates
better synchronization ability.

To assess neuronal sensitivity to upward and downward frequency modulation,
frequency modulated sweeps (FM) were used (1 sec duration, linear sweep from 2 kHz
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to 40 kHz and back, 60 dB SPL). Subsequently, the direction selectivity index (DSI) was
calculated using the formula:

DSI =
(Ru − Rd)

(Ru + Rd)
, (1)

where Ru is the number of spikes recorded from the IC neuron in response to an upward
FM sweep, and Rd is the number of spikes recorded from the same neuron in response to a
downward sweep [51].

4.5. Immunohistochemistry and Morphological Analysis

The animals were given an overdose of thiopental (100 mg/kg) and perfused intracar-
dially with 4% paraformaldehyde (Sigma-Aldrich Corp., St. Louis, MO, USA). The brain
was removed, postfixed in the same solution for 48 h, sectioned into 80 µm coronal vi-
bratome sections or cryoprotected overnight in 30% sucrose, and sectioned into 40 µm
thick coronal sections on a freezing microtome (Leica Biosystems, Buffalo Grove, IL, USA).
Three brains per group were analyzed. The brain regions were identified using a mouse
brain atlas of Paxinos and Franklin [52], and brain slices between bregma −4.96 and
−5.2 mm were chosen for further processing. Free-floating sections were blocked in 10%
goat serum for 1 h, and then incubated for 48 h in anti-calretinin (rabbit, Millipore Sigma-
Aldrich Corp., St. Louis, MO, USA, 1:1000), anti-calbindin (mouse, Merck Sigma-Aldrich
Corp., St. Louis, MO, USA, 1:250), anti-NeuN (rabbit, Abcam, Cambridge, UK, 1:500),
and anti-parvalbumin (rabbit, Sigma-Aldrich Corp., St. Louis, MO, USA, 1:1000) antibodies
diluted in 0.3% triton with 2% goat serum. Further, sections were treated with a mixture of
secondary antibodies: anti-mouse Alexa 594 and anti-rabbit Alexa 488 for 2 h. After wash-
ing, the sections were mounted onto slides, counterstained with DAPI, and cover-slipped.
The preparations were examined, and images were captured using Zeiss 510 DUO laser
confocal microscope (Oberkochen, Germany) with ×40 Plan-Apochromat oil immersion
objectives (numerical aperture 1.4).

The area of the IC was established in 80 µm thick coronal brain sections from vibratome
(Leica Biosystems, Buffalo Grove, IL, USA). Five adjacent sections containing the largest
area of the IC per animal were measured. The areas of the left and right IC were determined
in each section using ImageJ software. For the cell quantification, two 40 µm thick coronal
brain sections per animal were used. Tiled images of the area of the whole colliculus
were obtained at different levels through thickness of the section with a 7 µm step and
processed as z-stacks using ImageJ software. Image processing and quantification analysis
were performed blindly by the investigator. The cells were counted separately in central
(CIC), dorsal (DIC), and external (EIC) nuclei of the IC identified according to a mouse
brain atlas of Paxinos and Franklin [52]. ImageJ plug-in “Grid” was used to overlay the
area of the IC with a grid of 200 µm × 200 µm squares. Using the “Cell counter” plugin,
cells were counted in every second square of the grid. In this way, the cells were counted
in approximately 50% of the area of the colliculus on each brain section. The cell density
was calculated using the following formula:

D =
Ncells

Nsq · Asq · Tsl
(2)

where D is cell density, Ncells is number of cells obtained during counting, Nsq is the number
of grid squares in which the cells were counted, Asq is grid square area, and Tsl is the brain
slice thickness.

4.6. Gene Expression Analysis

Total RNA was isolated from both left and right ICs of 1-month old mice, using TRI
Reagent (Sigma-Aldrich Corp., St. Louis, MO, USA, T9424). We used eight IC samples
for both Tg and WT. RNA samples (1 µg) were subjected to reverse transcription (RT),
as described [22]. Following RT, quantitative qPCR was performed with initial activation
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at 95 ◦C for 120 s, followed by 40 cycles at 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s,
using the CFX384™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA,
USA). The primer sequences obtained from (pga.mgh.harvard.edu/primerbank/, accessed
on 17 March 2021) are listed in Table 1. The relative mRNA expression was calculated
using the –∆∆Cq method, with Hprt1 as a reference gene [53].

Table 1. List of primers for qPCR.

Hprt1 F GCTTGCTGGTGAAAAGGACCTCTCGAAG
Hprt1 R CCCTGAAGTACTCATTATAGTCAAGGGCAT
Calb1 F GATTGGAGCTATCACCGGAA
Calb1 R TTCCTCGCAGGACTTCAGTT
Calb2 F TGATGCTGACGGAAATGGGT
Calb2 R CCCTTCCTTGCCTTCTCCAG
Pvalb F ATCAAGAAGGCGATAGGAGCC
Pvalb R GGCCAGAAGCGTCTTTGTT
Slc32a1 F ACCTCCGTGTCCAACAAGTC
Slc32a1 R CAAAGTCGAGATCGTCGCAGT

Hprt1, hypoxanthine guanine phosphoribosyl transferase 1; Calb1, calbindin1; Calb2, calbindin2 (synonyms:
calretinin); Pvalb, parvalbumin; Slc32a1, solute carrier family 32 (GABA vesicular transporter).

4.7. Statistical Analysis

Data are presented as the mean ± standard deviation (SD) for values with normal
distributions or the median (Mdn) with interquartile ranges and extremes for values with
non-normal distributions. For statistical analysis, GraphPad Prism software (version 8.0.0
for Windows, GraphPad Software, San Diego, CA, USA, www.graphpad.com, accessed on
19 April 2021) was used. To assess the differences in mean or median values between the
groups, repeated two-way ANOVA with Uncorrected Fisher’s LSD post-hoc test, unpaired
t-tests, or Mann-Whitney tests were used.
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