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Abstract: Cancer cachexia is a common condition in many cancer patients, particularly those with
advanced disease. Cancer cachexia patients are generally less tolerant to chemotherapies and
radiotherapies, largely limiting their treatment options. While the search for treatments of this
condition are ongoing, standards for the efficacy of treatments have yet to be developed. Current
diagnostic criteria for cancer cachexia are primarily based on loss of body mass and muscle function.
However, these criteria are rather limiting, and in time, when weight loss is noticeable, it may be
too late for treatment. Consequently, biomarkers for cancer cachexia would be valuable adjuncts to
current diagnostic criteria, and for assessing potential treatments. Using high throughput methods
such as “omics approaches”, a plethora of potential biomarkers have been identified. This article
reviews and summarizes current studies of biomarkers for cancer cachexia.

Keywords: cancer cachexia; biomarkers; cachexia-inducing factors

1. Introduction

Cancer cachexia is a wasting condition, mainly characterized by loss of muscle and
adipose tissue. This condition severely limits the quality of life and use of cancer therapies.
Cancer cachexia is mainly associated with cancers caused by solid tumors and may affect up
to 80% of patients with late-stage cancer, and be responsible for more than 20% of cancer-
related deaths [1]. Despite extensive association with cancer morbidity and mortality,
no effective interventions for cancer cachexia have been developed. To understand this
condition, several cachexia-inducing factors have been identified in animal models over
the last decade. However, few of these targets have been evaluated in clinical settings.
Unlike anti-cancer treatments, studies for treating clinical cancer cachexia are limited due
to the lack of explicit criteria to assess both the effects of treatment and endpoints of
clinical trials [2]. Another limitation is that cancer cachexia produced by different types
of cancers may have different causes. Furthermore, the symptoms of cachexia such as
loss of muscle mass may result from other causes such as lack of muscle use or deficient
nutrition. Most clinical studies have recruited patients with a single type of cancer, which
lowers the applicability of these biomarkers for cachexia induced by other cancers. A
standardized evaluation is not only necessary to analyze the clinical trial itself, but also
beneficial for comparing treatments in different trials. A discrepancy in assessing cancer
cachexia has been seen within the same study performed in different countries. For instance,
the U.S. Food and Drug Administration and the European Medicines Agency used different
assessment endpoints for the same POWER 1 and 2 trial that investigated the function of a
selective androgen receptor modulator in non-small cell lung cancer patients with muscle
loss [3,4].
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Current meaningful endpoints for cancer cachexia studies are divided into gravimetric
and functional endpoints. A gravimetric endpoint is simply based on the change of muscle
mass or lean body mass (LBM), while a functional endpoint is evaluated by a change in
physical function such as improved stair climbing power and hand grip strength [5]. In
the POWER (enobosarm) and ROMANA (anamorelin) clinical trials, increased lean body
mass was achieved with these treatments, whilst improvement in muscle function was
not significant [3,4,6]. Therefore, it is difficult to conclude whether these treatments were
effective. On the other hand, a positive correlation between muscle mass and strength was
shown in the general population, but not in the elderly [7,8]. Taking this into consideration,
the age of the recruited patients could be a significant factor affecting the results of these
clinical trials.

A biomarker-based evaluation system for cancer cachexia could solve these issues as
biomarkers are a more objective and reliable diagnostic tool than functional assessment.
Several potential biomarkers have so far been identified including some cachexia-inducing
factors [9,10], pro-inflammatory cytokines [11,12], lipids [13], protein and fat degradation
products [14], and microRNAs [15]. Nevertheless, none of these candidates have been
widely validated and accepted as clinical diagnostic standards for cancer cachexia. We
hereby summarize the potential biomarkers for cancer cachexia that have been evaluated in
clinical studies to gain a better understanding of these potential biomarkers and directing
future studies in the field. Some biomarkers of cancer cachexia were reviewed by Loumaye
et al. [16], mainly focusing on the findings of these biomarkers. This review, in contrast,
not only includes more recent discoveries of biomarkers for cancer cachexia, but also
summarizes important details such as circulating levels of these biomarkers in certain
cancer types, giving reference for future clinical studies of cancer cachexia.

2. Cachexia-Inducing Factors

Many cachexia-inducing factors such as activin A (ActA) [17], myostatin (Mstn) [18],
and growth/differentiation factor 15 (GDF15) [19] are members of the transforming growth
factor (TGF)-β family, capable of inducing muscle wasting and fat loss in preclinical cancer
cachexia models. The mechanism by which ActA and Mstn induce muscle wasting in cancer
cachexia are well understood. ActA and Mstn bind to the type IIB activin receptor (ActRIIB)
on the muscle cell membrane, leading to the activation of multiple signaling pathways
and subsequently increasing expression of two E3 ubiquitin ligases, Muscle RING-finger
protein-1 (MuRF1) and Muscle Atrophy F-box gene (Atrogin-1) [20]. MuRF1 and Atrogin-1
accelerate protein degradation in muscle cells through the proteasome to cause muscle
wasting [20]. High circulating levels of ActA were found in cancer cachexia animal mod-
els [21] and patients [22] in whom this was associated with poor survival of patients with
various types of cancer [23–25]. A positive correlation of ActA and cachexia has been
shown in patients with non–small-cell lung cancer (NSCLC), malignant pleural mesothe-
lioma (MPM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer [22,26,27].
Mstn, in contrast, is not elevated in the C-26 murine cancer cachexia model [28], though
it functions through the same receptor as ActA. Interestingly, some studies have found
that cancer patients with weight loss had lower levels of circulating Mstn [22,29], despite it
being a cachexia-inducing factor. GDF15, a recently identified cachexia-inducing factor,
was shown to be a promising target for treating cancer cachexia [30]. GDF15 induces
cancer cachexia via its action on the hypothalamus to decrease appetite [31] and elicits a
lipolytic response in adipose tissue [30]. High circulating levels of GDF15 are associated
with weight loss and shorter survival in cancer patients [32–34]. However, association
between GDF15 level and weight loss was only confirmed in patients with lung but not
pancreatic cancer [33]. Additionally, another study found no difference in GDF15 levels
between cancer patients with weight loss and those without weight change [35]. This study
demonstrated an association between GDF15 levels and anorexia, suggesting that it could
be an biomarker for anorexia rather than cachexia [35].



Int. J. Mol. Sci. 2021, 22, 4501 3 of 15

Zinc-α2-glycoprotein (ZAG) is a lipid mobilizing factor that can be secreted by both
tumors and host tissues. Enhanced ZAG production was observed in adipose tissue
from cachectic mice and patients [36,37]. A further study found that ZAG promotes
white adipose tissue (WAT) browning and energy wasting through the expression of
peroxisome proliferator–activated receptor γ (PPARγ), PPARγ coactivator 1α, and early
B cell factor 2 [38]. Elevation of circulating ZAG levels was shown to correlate with
cachexia in pancreatic cancer patients [39]. However, other studies have suggested no
significant differences in circulating ZAG levels between cachectic and weight stable cancer
patients [37,40].

Fibroblast growth factor 21 (FGF21), a hormone regulating several metabolic pathways,
is associated with brown adipose tissue (BAT) activity in humans [41,42], although the
detailed mechanism is unknown. Mice with muscle-specific FGF21 deletion were resistant
to muscle atrophy and overexpression of FGF21 in muscle was sufficient to induce muscle
loss by 15% [43]. Autophagy was shown to be induced by FGF21 in muscle, which could
be responsible for muscle atrophy [43]. Although the involvement of FGF21 in cancer
cachexia needs to be further investigated, a clinical study has confirmed a correlation of
FGF21 with cachexia in elderly patients [44]. Association of serum FGF21 in sarcopenia, a
condition associated with loss of muscle activity in older adults, was also confirmed [45].
Correlation of serum FGF21 in cancer-induced cachexia requires further investigation.

Parathyroid Hormone release Peptide (PTHrP) was shown to promote browning
of fat in a cancer cachexia mouse model [46]. In mice, association of circulating PTHrP
with cancer cachexia is controversial even for cachexia induced by the same cancer cell
line [46,47]. Conditioned medium from Lewis Lung Carcinoma (LLC) was shown to
stimulate expression of thermogenic genes in fat cells and increased plasma PTHrP levels
were observed in mice bearing LLC tumors [46]. However, another study found no
abnormal secretion of PTHrP from LLC cells compared with non-tumorigenic cell lines
and a tumor cell line that does induce cachexia [47]. There was no significant difference in
circulating PTHrP levels in mice bearing LLC tumors and control mice [31]. High levels
of circulating PTHrP was shown to be associated with lower lean body mass and higher
resting energy expenditure in patients with lung and colorectal cancer [46,48].

To identify blood-based biomarkers for cancer cachexia induced by all types of cancer,
a study was performed to profile plasma cytokines and mRNA in blood, which included
patients with breast, upper gastrointestinal, lung, hepatobiliary, pancreatic, prostate, col-
orectal, head and neck cancers [49]. Elevated circulating angiotensin II (Ang II) and
increased mRNA expression of neutrophil-derived proteases (NDPs) were observed in pre-
cachectic (no cachexia but high C-reactive protein level) and cachectic patients [49]. Ang II
was shown to promote proteolysis and apoptosis by downregulating phosphor-Akt and
activating caspase-3 in skeletal muscle [50]. Additionally, Ang II can increase expression of
cytokines such as IL-6, TNF-α, and glucocorticoids and acts on hypothalamic neurons to
reduce appetite [51]. NDP such as cathepsin B and G was shown to release Ang I and Ang
II from angiotensinogen [52,53]. Therefore, both Ang II and NDP are not only promising
biomarkers, but also therapeutic targets for cancer cachexia.

Overall, despite extensive studies on the mechanisms of cachexia-inducing factors,
more studies are required to investigate their utility as biomarkers for cancer cachexia
(Table 1). Additionally, identification of other cachexia-inducing factors will provide more
candidates for biomarkers of cancer cachexia. A recent study established two reporter cell
lines to detect potential factors inducing muscle wasting [54], which could be advantageous
to rapidly identify other cachexia-inducing factors that directly induce muscle wasting.
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Table 1. Summary of cachexia-inducing factors as potential biomarkers of cancer cachexia.

Biomarker Potential
Source

Detection
Method

Sample
Format Cancer Type

Median
Level in
Cachexia

Median Level in
Non-Cachexia Ref.

ActA Tumor, host ELISA
Serum NSCLC, MPM 1.179 ng/mL 0.634 ng/mL [26]

Plasma
PDAC 1.997 ng/mL 1.027 ng/mL [27]

CRC, lung 0.558 ng/mL 0.397 ng/mL [22]
Mstn Tumor, host ELISA Plasma CRC, lung 1.371 ng/mL 2.109 ng/mL [22]

GDF15 Tumor ELISA Plasma
Lung 2 ng/mL 1 ng/mL [33]

Lung, GI 2.3 ng/mL 1.8 ng/mL [32]

PTHrP Tumor
IRMA

Serum
Lung, liver, PaCa, GI 5.7 pmol/L Undetectable [48]

ELISA NSCLC, CRC 205 pg/mL Undetectable [46]
ZAG Tumor, host ELISA Serum PaCa 40.3 µg/mL 28.9 µg/mL [39]

Ang II Host ELISA Plasma PaCa, lung, breast 17 pg/mL 7.5 pg/mL [49]

ELISA, enzyme-linked immunosorbent assay; IRMA, immunoradiometric assay; NSCLC, non-small-cell lung cancer; MPM, malignant
pleural mesothelioma; CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma; PaCa, pancreatic cancer; GI, gastrointestinal cancer.

3. Inflammatory Factors

Many inflammatory cytokines are important players in cancer cachexia and can be
released by both host tissues and tumors. Upregulation of these cytokines have been
observed in several preclinical cancer cachexia models [17,21,55]. Correlation between
these cytokines and cancer cachexia is controversial in humans. An early study found a
negative correlation between serum TNF-α levels and body weight and body mass index
in pancreatic cancer patients [56]. Another study showed that circulating levels of TNF-α
were not associated with increased survival of patients with advanced cancer [57]. It should
be noticed that TNF-α has a short half-life (18.2 min) and low bioavailability [58], marking
it difficult to measure.

Among all the inflammatory cytokines related to cancer, IL-6 is one of the more
promising biomarkers for cachexia. Circulating IL-6 levels showed positive correlation to
both survival and lean body mass in patients with advanced lung cancer [57,59]. IL-6 levels
were also positively correlated with both tumor stage and weight loss in gastrointestinal
cancer patients [60]. Nevertheless, another clinical study for non-small lung cancer patients
suggested no significant difference in circulating levels of TNF-α and IL-6 between cachectic
and non-cachectic patients [61]. Compared with IL-6, IL-1β is considered a promising
biomarker that associates with clinical features of cachectic conditions in patients with
gastrointestinal and lung cancer [62]. Serum IL-8 level was also elevated in cachectic
patients with pancreatic cancer compared with weight stable cancer patients [63].

Monocyte chemoattractant protein-1 (MCP-1) is a factor that recruits inflammatory
cells during infection [64]. Mice with MCP-1 deletion showed attenuated bone loss in
the LLC cancer cachexia model [65]. Circulating level of MCP-1 was increased in the C26
model [66], suggesting that it could be a biomarker for cancer cachexia. In a comprehensive
study that tested levels of 25 circulating factors such as TNF-α, IFN-γ, IL-1β, and IL-6 in
cachectic and weight stable patients, monocyte chemoattractant protein-1 (MCP-1) was
the only biomarker significantly increased in cachectic patients with pancreatic cancer [11].
Circulating levels of MCP-1 in cachexia induced by other cancers does not appear to have
been evaluated.

C-reactive protein (CRP) is a plasma protein that serves as an indicator for inflamma-
tion [67]. Increased circulating levels of CRP have been found in cancer cachexia patients
compared with weight stable cancer patients and non-cancer patients [60,68–70]. Although
circulating CRP has been widely assessed in many studies, these are difficult to compare as
there are differences in the CRP cut-off value among these studies [71]. Decreased albumin
level was reported in patients with cancer cachexia compared with weight stable cancer
patients or non-cancer controls [70], and in another study, it was shown to negatively
correlate with CRP levels [72].
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Collectively, evidence shows the potential of inflammatory cytokines as biomarkers for
cancer cachexia, however, none of these are elevated in cachectic patients across multiple
types of cancer (Table 2). Further studies are required to assess the levels of these cytokines
in a large cohort of cachectic patients encompassing different cancers. It should also
be noted that these inflammatory factors could be elevated in other conditions such as
infection. An additional differentiation of cancer cachexia from other inflammatory diseases
may be required if using these factors in diagnosing cancer cachexia.

Table 2. Summary of inflammatory factors as potential biomarkers of cancer cachexia.

Biomarker Potential
Source Detection Method Sample

Format Cancer Type
Median
Level in
Cachexia

Median Level in
Non-Cachexia Ref.

TNF-α Tumor, host ELISA Serum
PaCa 5.6 pg/mL Undetectable [56]

GE, PaCa, CRC 15.9 pg/mL 12 pg/mL [68]
Plasma GI 72.5 pg/mL 13.8 pg/mL [60]

IL-6 Tumor, host

ELISA Plasma GI 160 pg/mL 30.3 pg/mL [60]
TIA Serum NSCLC 18 U/mL 2 U/mL [59]

ELISA Plasma Stomach, CRC 8.16 pg/mL 4.88 pg/mL [73]
ELISA Serum PaCa 207.8 pg/mL 162.3 pg/mL [63]

IL-1β Tumor, host BioPlex cytokine assay Plasma GI, NSCLC 90.58 pg/mL 57.45 pg/mL [62]
IL-8 Tumor, host ELISA Serum PaCa 460.9 pg/mL 326.5 pg/mL [63]

MCP-1 Host ELISA Plasma PaCa 700 pg/mL 400 pg/mL [11]

CRP Host
ELISA Serum GI, PaCa, CRC 83 mg/L 4 mg/L [68]
ELISA Plasma GI 24.9 mg/L 14.9 mg/L [60]

Turbidimetric method Plasma GI, Lung 35 mg/L 17.6 mg/mL [70]
Albumin Host NM Plasma GI, Lung 3.4 g/dL 3.8 g/dL [70]

GE, gastroesophageal cancer; TIA, thymidine incorporation assay; NM, not mentioned.

4. Muscle and Fat Wasting Products

Mechanisms of muscle wasting in cancer cachexia have been widely studied over the
past decade. Increased protein degradation and decreased protein synthesis are considered
as the main causes of muscle loss during cancer cachexia. Molecular mechanisms of muscle
atrophy in cancer cachexia have been reviewed by Wei et al. [74]. From a metabolic view,
several dysfunctional states are developed during cancer cachexia, out of which insulin
resistance is commonly observed in patients. The mechanism of how insulin resistance
contributes to cachectic symptoms is reviewed by Porporato [75]. Insulin resistance induces
muscle wasting by increasing protein breakdown and decreasing protein synthesis. After
protein degradation, some products are released into circulation, making them potential
biomarkers for monitoring muscle wasting in cancer cachexia (Table 3).

Table 3. Summary of muscle and fat wasting products as potential biomarkers of cancer cachexia.

Biomarker Potential
Source Detection Method Sample

Format
Cancer
Type

Median Level in
Cachexia

Median Level in
Non-Cachexia Ref.

β-dystroglycan Host WB Muscle GI NA NA [69]

Glycerol Host NM Plasma GI
6.9 µmol·L−1·kg−1 fat 3.9 µmol·L−1·kg−1 fat [76]
6.2 µmol·L−1·kg−1 fat 3.1 µmol·L−1·kg−1 fat [77]
7.0 µmol·L−1·kg−1 fat 3.4 µmol·L−1·kg−1 fat [78]

Free Glycerol Reagent kit Plasma GI 4 µg/mL 3 µg/mL [79]

FFA Host NM Plasma GI
53.8 µmol·L−1·kg−1 fat 32.5 µmol·L−1·kg−1 fat [76]
62 µmol·L−1·kg−1 fat 27 µmol·L−1·kg−1 fat [77]
80 µmol·L−1·kg−1 fat 40 µmol·L−1·kg−1 fat [78]

HCERs Host MS Plasma GI 4 nmol/mL 3 nmol/mL [13]
LCERs Host MS Plasma GI 4 nmol/mL 3.2 nmol/mL [13]

NM, not mentioned; NA, not applicable; WB, western blot.

Collagen is one of the main components of the extracellular matrix of skeletal muscle
and is degraded during muscle atrophy [80,81]. As collagen is the target of different
proteases, a variety of fragments of collagen are generated by proteases. In a human study
that evaluated the feasibility of using collagen fragments as serological biomarkers of lean
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body mass, increased levels of collagen VI fragment-C6M was found in patients with head
and neck squamous cell carcinoma compared with healthy controls [14]. However, C6M
levels only correlated with LBM in healthy controls but not in recovered cancer patients [14].
Further investigation is required to find if the level of circulating collagen specifically
correlates to muscle wasting in cancer cachexia. Using mass spectrometry, muscle wasting
products including myosin species, α-spectrin, nischarin, microtubule-actin crosslinking
factor, microtubule-associate protein-1B, and bullous pemphigoid antigen 1 were found
in urine samples from cachectic patients [82]. However, this finding is based on a small
cohort of patients and requires analysis in a larger sample size prior to clinical application.

Some biomarkers may remain in the muscle itself and are not released into circulation.
For example, β-dystroglycan was shown to be increased in skeletal muscle of cachectic pa-
tients with upper gastrointestinal cancer [69]. Muscle Ca2+/calmodulin (CaM)-dependent
protein kinase II (CaMKII) β and tyrosine kinase with immunoglobulin-like and EGF-like
domains 1 (TIE1) were also positively associated with weight loss in upper gastrointestinal
cancer patients [83]. However, these results were only supported by western blot and
RNA analysis of muscle samples. The drawback of an intramuscular biomarker is the
requirement for an invasive muscle biopsy in cachectic patients.

Loss of adipose tissue is another common symptom observed in cancer cachexia. The
adipose tissue plays a vital role even in cancer with a relatively low cachexia rate [84].
Browning and atrophy of mammary fat were found in patients with breast cancer [85].
Crosstalk between muscle and adipose tissue has been shown in cancer cachexia [86,87].
Brown adipose tissue was shown to induce muscle atrophy via secretion of myostatin [87],
while muscle-derived IL-15 was able to modulate adipose tissue deposition [88]. During
fat loss, lipids are degraded into glycerol and fatty acids by the action of lipolytic enzymes
such as hormone-sensitive lipase and adipose triglyceride lipase [89]. Elevated circulating
levels of both glycerol and fatty acids have been observed in cachectic patients with
gastrointestinal cancer compared with weight stable cancer patients [76–78,90]. Further
studies are required to test whether these can serve as biomarkers for cachexia induced by
other cancers.

In a study investigating lipid profiles of cancer cachexia, increased circulating levels
of sphingolipids were found in different preclinical models and cachectic patients with
gastrointestinal cancers [13]. Specifically, circulating levels of hexosyl-ceramides (HCERs)
and lactosyl-ceramides (LCERs) were significantly higher in cachectic patients compared
with weight stable patients [13]. Although this study was limited by the small cohort of
patients (20 cachectic and 19 weight stable cancer patients), the finding was promising, as
it shows a consistency between preclinical models and clinical patients.

5. MicroRNAs

MicroRNAs are a class of small non-coding RNA of about 17–22 nucleotides in length,
which have been found in a wide range of biological processes. The main role of microRNAs
is to regulate gene expression. There is a growing body of evidence detailing the emerging
role of microRNAs and other non-coding RNAs in cancer cachexia, which is reviewed by
Santo et al. [91]. Many of these RNAs function in target organs such as skeletal muscle and
adipose tissue. Hereby, we summarized several microRNAs that were detected in serum
or plasma and are related to cancer cachexia (Table 4).

Table 4. Summary of microRNAs as potential biomarkers of cancer cachexia.

Biomarker Potential
Source

Detection
Method

Sample
Format

Cancer
Type

Median Level in
Cachexia

Median Level in
Non-Cachexia Ref.

MicroRNA-21 Tumor qRT-PCR Serum CRC NA NA [92]
MicroRNA-203 Unknown qRT-PCR Serum CRC NA NA [93]

MicroRNA-130a Unknown qRT-PCR Plasma HNC NA NA [94]

HMC, head and neck cancer.
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MicroRNA-21 is one of the well-studied oncogenic microRNAs that targets several
tumor suppressor genes [95]. Expression of microRNA-21 is upregulated in many hema-
tological and non-hematological malignancies [95]. Microvesicles containing increased
levels of microRNA-21 were secreted by lung and pancreatic tumors, and shown to induce
apoptosis of skeletal muscle cells [96]. Expression of serum microRNA-21 was significantly
elevated in colorectal cancer patients with a low muscle mass index [92]. These findings
support the feasibility of microRNA-21 as a biomarker for cancer cachexia.

Another similar study demonstrated that circulating microRNA-203 levels were up-
regulated in cachectic patients with colorectal cancer [93]. Elevated serum microRNA-203
was deemed an independent risk factor for myopenia in these patients [93]. Moreover,
Baculoviral IAP Repeat Containing 5, a member of the apoptosis inhibitor family, was
identified as the target of microRNA-203 in skeletal muscle [93], suggesting that circulating
microRNA-203 could lead to muscle wasting by inducing apoptosis of muscle cells. Circu-
lating levels microRNA-203 were also shown as a predictive biomarker for prognosis and
metastasis in colorectal cancer patients [97].

A study measuring circulating microRNA-130a levels in head and neck cancer patients
found that low microRNA-130a was associated with high circulating TNF-α levels, and
patients with low circulating microRNA-130a expression had a higher risk of weight
loss [94]. Nutritional assessment using subjective global assessment was also significantly
improved by combining analysis of circulating microRNA-130a levels, particularly in
cancer patients with more than 5% weight loss [94].

More comprehensive studies may identify other potential non-coding RNAs that may
be used as a diagnostic tool for cancer cachexia. One of the most attractive characteristics of
these non-coding RNAs is that they are generally secreted into circulation via microvesicles
such as exosomes, ensuring stability during the processing of blood samples.

6. Other Potential Biomarkers

There are several other factors that are also differentially expressed in cachectic patients
compared to weight stable controls (Table 5). A study involving gastrointestinal cancer
patients with and without cachexia showed that the plasma level of carnosine dipeptidase
1 (CNDP1) is significantly lower in cachexia patients [98]. Apoliprotein A4 and Dachshund
Family Transcription Factor 1 were also reduced in cachectic patients compared with
weight stable cancer patients [98]. Additionally, this study found that circulating levels of
Asparaginyl-tRNA Synthetase 2, ATPase type 13A4, and B-cell CLL/Lymphoma 3 were
upregulated and may be used as biomarkers for cancer cachexia [98]. The functions of
these factors in cancer cachexia have not been investigated.

Table 5. Summary of other factors as potential biomarkers of cancer cachexia.

Biomarker Potential
Source

Detection
Method

Sample
Format Cancer Type Median Level in

Cachexia
Median Level in

Non-Cachexia Ref.

CNDP1 Host SBA, SIA Plasma GI 1500 MIF 2000 MIF [98]
TIMP-1 Tumor ELISA Plasma PDAC 860 ng/mL 550 ng/mL [99]

SBA, sandwich bead arrays (SBA); SIA, sandwich immunoassays; MIF, mean intensity fluorescence.

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is involved in tumorigenesis [100],
cancer progression [101], tumor growth [102], and apoptosis [103]. Circulating levels
of TIMP-1 are upregulated in different cancer types such as gastric [104], lung [105],
breast [106], colorectal [107], and pancreatic cancer [108]. In a study investigating the
association of plasma TIMP-1 level with cachexia in pancreatic cancer patients, elevated
TIMP-1 levels were found in patients with weight loss and without jaundice [99]. However,
in another study using an aptamer-based discovery platform to identify serum protein
biomarkers for pancreatic cancer cachexia, TIMP-1 was only associated with stages of
cancer but not weight loss [109]. Previously identified biomarkers such as GDF15 did
not show significant correlation with weight loss in pancreatic cancer patients in this
study [109].
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7. Conclusions

Although many promising biomarkers for cancer cachexia have been identified, none
are yet approved for clinical use. Some potential biomarkers were shown to be adequate
indicators of cachexia induced by some cancers, but not consistent across a range of
cancer types. Consequently, multiple biomarkers may be required to predict and monitor
progression of this condition in the general cancer population. A recent study found
expression profiles of 12 cachexia-inducing factors correlate with the prevalence of cachexia
and weight loss in different cancer types [110]. Cancers with higher cachexia incidence were
shown to have elevated serum levels of these factors [110]. This suggests that establishing
an assessment standard involving several potential biomarkers may be more suitable
for predicting and monitoring cancer cachexia than using a single biomarker. However,
whether the levels of these factors correlate with the severity of weight loss has not yet
been investigated. Not only is predicting cachexia important, being able to monitor the
progression of the condition is also essential. Microbial dysbiosis has been observed
in preclinical cancer cachexia models [111,112], which could be a potential diagnostic
reference for cancer cachexia. Enterobacteriaceae levels were increased, while a reduction
of lachnospiraceae and ruminococcaceae were found in C26 cancer cachexia model [111,112].
Such alteration has not been confirmed in human cancer cachexia.

Interestingly, recent studies have shown that body composition changes, especially
muscle alteration, differ by gender in cancer patients [113,114]. Another study found
that female and male mice had differences on body weight flux, specific force, protein
concentration, and muscle mass in a preclinical cancer cachexia model [115]. Hence,
some biomarkers could be gender specific and may not be suitable for whole cancer
cachexia population. Chemotherapy is the primary treatment for most cancers, which
could lead to development of cachexia, as it is a highly invasive and uncomfortable
treatment designed to aggressively treat the cancer, impinging on many aspects of patient
lifestyle and wellbeing [116,117]. Nonetheless, mechanisms of how chemotherapy drugs
induce cachexia remain unknown. It is expected that different chemotherapy treatments
may have distinct effects on cachexia, thus altering levels of some biomarkers. Future study
should focus on pinpointing the correlation of various chemotherapy drugs and potential
biomarkers for cancer cachexia.

Although utilization of these biomarkers provides potential diagnosis of cancer
cachexia, many of these could also be promising targets for treating this condition [10]. As
improvements in both muscle mass and function are expected to reverse cancer cachexia,
exercise training could be beneficial for cancer cachexia therapy. Correlations between
increased physical activity and improvements on muscle mass, function, and metabolism
have been shown in some preclinical cancer models [118]. Other adjuncts such as nutri-
tional support and anti-inflammatory treatments could also be included in cancer cachexia
therapy. A multimodal rehabilitation to tackle different dimensions of cancer cachexia was
proposed to manage cancer cachexia from various aspects [119].

As many of the studies referred to in this review were aimed at finding a correlation
of biomarker levels with cancer cachexia, it is not surprising that there were discrepancies
in cut-off values, even in cachexia found in the same type of cancer. Clear and reliable
cut-off values are usually required for using biomarkers as diagnostic tools in the clinic.
Hence, biomarkers with large variations between the cachectic and non-cachectic state are
preferred. Although levels of some biomarker candidates showed statistical differences in
cachectic and non-cachectic states, clear cut-off values could not be determined, as absolute
differences or fold changes in these values were not prominent enough.

Another major concern is that none of these studies investigated the feasibility of using
biomarkers to differentiate cancer cachexia from sarcopenia and anorexia, all conditions
that cause muscle wasting and weight loss that can be found in patients with late-stage
cancers. Since the treatments for these conditions are quite distinct, the biomarkers for
cachexia should differentiate between these conditions. In this respect, tumor-derived
biomarkers are preferred to biomarkers released by peripheral tissues, as their levels should
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not be affected by conditions such as sarcopenia and anorexia. Most factors investigated
so far can be secreted from both tumor and host tissues, making it difficult to ascertain
whether they are related to one cause of weight loss or another. Another approach may
be the development of positive-negative diagnostic panels that can differentiate between
cachexia, sarcopenia, and anorexia.

Detection methods for any potential biomarker should also be reliable and preferably
subject to automation. Most circulating biomarkers are measured by enzyme-linked
immunosorbent assay (ELISA). Accuracy and sensitivity of an ELISA are largely dependent
on the specificity and concentration of antibodies used for the assay. In contrast, nucleic
acid-based detection methods are more specific, sensitive, and cheaper than most protein-
based methods. Hence, nucleic acid biomarkers are promising in this regard. Currently,
most nucleic acid biomarkers are detected by qRT-PCR, which gives relative readings and
requires controls for every test. In comparison, digital PCR is able to provide an absolute
and ultrasensitive quantification of nucleic acid [120], which is the preferred method for
practical use and could set a cut-off value for nucleic acid-based biomarker due to its
absolute quantification.

In summary, there are no approved clinical biomarkers for cancer cachexia. This
is currently a major impasse in the diagnosis and treatment of this condition, as cancer
patients with increased muscle and fat loss have a definitively poor prognosis and do not
tolerate conventional chemotherapeutic intervention. The ability to screen cancer patients
with a panel of biomarkers (that cover a range of cancer types) that are upregulated in
cachexia will allow clinicians to tailor treatment for the patient (Figure 1). Although there
are currently no approved treatments for cancer cachexia itself, there are some promising
targets and therapies in pre-clinical stages [30,121–123]. These raise the possibility that in
combination with biomarker screening, traditional cancer treatment may be administered
alongside potential cachexia therapies, increasing the strength of the patient and allowing
them the time to undertake an entire course of treatment, thus enhancing survival rates.
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