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Abstract: Breast cancer (BC) is one of the most common cancers in women worldwide. Even though
the role of estrogen receptor alpha (ERα) is extensively documented in the development of breast
tumors, other members of the nuclear receptor family have emerged as important players. Synthetic
glucocorticoids (GCs) such as dexamethasone (dex) are commonly used in BC for their antiemetic,
anti-inflammatory, as well as energy and appetite stimulating properties, and to manage the side
effects of chemotherapy. However, dex triggers different effects depending on the BC subtype. The
glucocorticoid receptor (GR) is also an important marker in BC, as high GR expression is correlated
with a poor and good prognosis in ERα-negative and ERα-positive BCs, respectively. Indeed, though
it drives the expression of pro-tumorigenic genes in ERα-negative BCs and is involved in resistance
to chemotherapy and metastasis formation, dex inhibits estrogen-mediated cell proliferation in
ERα-positive BCs. Recently, a new natural ligand for GR called OCDO was identified. OCDO is a
cholesterol metabolite with oncogenic properties, triggering mammary cell proliferation in vitro and
in vivo. In this review, we summarize recent data on GR signaling and its involvement in tumoral
breast tissue, via its different ligands.
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1. Introduction

Breast cancer (BC) is the deadliest cancer among women worldwide, followed by
lung and colorectal cancer. The International Agency for Research on Cancer (IARC)
approximated that BC accounted for the death of over 626,679 women worldwide in 2018
and estimated the diagnosis of 2 million new cases [1]. It is predicted that one in eight
women will develop BC during their life.

BC is a complex heterogeneous disease that encompasses a variety of subtypes with
diverse clinical, morphological, and molecular features [2,3]. BC is molecularly classi-
fied based on the expression of common biomarkers: estrogen/progesterone receptors
(ERα/PR) and human epidermal growth factor receptor-2 (HER2) [4], and is further sub-
classified into: Luminal A, Luminal B, HER2-enriched, and triple-negative breast cancer
(TNBC) (including Basal-like and Claudin-low). Luminal A and B are the most predominant
ERα/PR-positive tumors, and the Luminal B subtype is distinguished by the high expres-
sion of Ki67 (proliferation marker) and occurrence of HER2-positivity. HER2-enriched
tumors are characterized by high HER2 cell surface expression. TNBCs are defined as
ERα-negative, PR-negative, and HER2-negative, among which the Basal-like subtype is
frequently associated with BRCA1-mutations [5–7]. Hence, different treatment strategies
are required. Currently, surgical resection (lumpectomy, mastectomy) is the most common
localized therapy for patients with non-metastatic BC. In parallel, systemic therapy is
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established for BC based on its subtype. ERα-positive breast tumors receive endocrine
therapy to block ERα activity, including anti-estrogens such as selective ERα modulators
(SERM) (i.e., tamoxifen), selective downregulators (SERD), such as fulvestrant, or estro-
gen synthesis inhibitors such as aromatase inhibitors. The standard endocrine treatment
for premenopausal patients is 5 years of tamoxifen, or 5 years of aromatase inhibitors
for postmenopausal patients. HER2/ERBB2-positive breast tumors receive intravenous
medicine that specifically targets the HER2 protein, such as Trastuzumab, combined with
chemotherapy. However, TNBC have no specific treatment and mainly receive cytotoxic
intravenous chemotherapy [8,9].

Synthetic glucocorticoids (GCs) such as dexamethasone (dex), derived from steroidal
endogenous glucocorticoids, are widely used as an adjuvant for chemotherapy in BC
treatment to prevent hypersensitivity reactions through binding to its glucocorticoid re-
ceptor (GR) [10]. Recent studies demonstrated that GCs decrease estrogen-induced cell
proliferation in ERα-positive BCs [11]. While other investigations stated that glucocorti-
coid treatment in TNBCs inhibits chemotherapy-induced cell apoptosis [12], and induces
metastasis [13], thus raising new concerns.

This review summarizes the various effects of glucocorticoid receptor, and its ligands
on breast tumor progression, and aims to further decipher how GR-signaling is regulated
in BC.

2. Glucocorticoid Receptor

Human GR was initially isolated in 1985 from the BC cell line MCF-7 by the group
of Pierre Chambon [14]. Human GR (h-GR) is encoded by a single gene the “nuclear
receptor subfamily 3 group c member 1” (NR3C1) localized in the chromosome 5 short
arm (5q31.3) [15]. The NR3C1 gene is composed of 9 exons, in which exons 2-9 encode
for the GR protein [16]. Exon 1 encodes for the 5′-untranslated region (5′-UTR) known
as the promoter region of GR. This region has distinct features as it lacks TATA or CAT
boxes and presents an extensively GC-rich motif. Moreover, this region possesses various
binding sites for transcription factors (TFs) [17]. Alternative splicing and translation
initiation have yielded multiple GR protein isoforms, including the classical 777 amino
acid GRα and the 742 amino acid long GRβ (Figure 1A). The latter exists at a lower level
compared to GRα. Both isoforms possess identical amino acids up to amino acid 727,
but then differ with GRα containing 50 non-homologous AA in its C-terminus, whereas
GRβ only exhibits 15 AA [18,19]. This difference at the C-terminus levels confers special
features to the GRβ isoform. GRβ is neither able to bind to endogenous GCs nor to
activate glucocorticoid-responsive reporter/endogenous genes and mainly resides in the
cell nucleus [20]. Additionally, GRβ works as an antagonist of GRα. Indeed, several studies
demonstrated its dominant-negative impact on GRα-induced transcriptional activity by
competing on GR-responsive elements (GRE) and through the binding of coregulators and
formation of functionally inactive GRα/GRβ heterodimers [21,22]. As the GRα isoform is
responsible for most GC-mediated transcriptional activities, we will focus on GRα in this
review, and will hereafter refer to it as GR.

GR is a protein ubiquitously expressed in the body [18,23–25]. GR belongs to the
nuclear hormone receptor (NHR) superfamily and displays the common three functional
domains, namely a highly conserved DNA-binding domain (DBD), the ligand-binding
domain (LBD), and other regulatory N- and C-terminal domains (Figure 1A). Most of the
post-translational modifications of GR occur in its N-terminal domain (Figure 1B).
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Figure 1. Structure of human glucocorticoid receptor (GR). (A) Alternative splicing of exon 9 results in two isoforms of 
GR; GRα and GRβ. GR contains different domains: the N-terminal domain (NTD), DNA binding domain (DBD), the flex-
ible Hinge region and the ligand binding domain (LBD). GR encompasses two activation functions (AF-1 and AF-2) al-
lowing the recruitment of coregulators and the transcriptional machinery. (B) GRα undergoes numerous post-translational 
modifications including phosphorylation of various residues (mainly serine residues) (P), sumoylation (S), acetylation (A) 
and ubiquitinylation (Ub). 

3. GR Ligands 
3.1. Glucocorticoids (GCs) 

The natural GC cortisol is a cholesterol-derived hormone, named based on its role in 
maintaining glucose homeostasis. GCs are primarily synthesized and secreted by the ad-
renal gland cortex upon cytokine stimulation of the hypothalamic-pituitary-adrenal 
(HPA) axis, where the corticotropin-releasing hormone (CRH) secreted by the hypothala-
mus acts on the anterior-pituitary to produce adrenocorticotropic hormone (ACTH). This 
latter in turn triggers GC secretion by the adrenal gland. During basal and unstressed 
conditions, GCs are secreted in a circadian manner, however, their release is further in-
creased due to physiological (i.e., increased immune response) and emotional stress 
[26,27]. Once released into the circulation, plasma proteins bind and transport inactive 
GCs into tissues. Most of the secreted GCs (around 90%) bind to corticosteroid-binding 
globulin (CBG) [28]. Their lipophilic nature allows them to diffuse passively through the 
plasma membrane into the cytosol. However, a balance between active and inactive forms 
of GCs controls the amount of GC available. Two enzymes regulate GC availability in the 
cytoplasm, namely the 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) that converts 
cortisone (inactive) to cortisol (active), and the 11β-hydroxysteroid dehydrogenase-2 (11β-
HSD2) which drives the opposite reaction [29,30] (Figure 2).  

Biologically active GCs bind to GR to exert their broad physiological roles on many 
different cells, tissues, and organs. GCs regulate many different physiological pathways 
including glucose metabolism, immune response, central nervous system (cognition, 
mood, sleep), reproduction, cardiovascular function, development, cell death, and 
maintenance of vascular tone [31] (Figure 3). 

Figure 1. Structure of human glucocorticoid receptor (GR). (A) Alternative splicing of exon 9 results in two isoforms of
GR; GRα and GRβ. GR contains different domains: the N-terminal domain (NTD), DNA binding domain (DBD), the
flexible Hinge region and the ligand binding domain (LBD). GR encompasses two activation functions (AF-1 and AF-2)
allowing the recruitment of coregulators and the transcriptional machinery. (B) GRα undergoes numerous post-translational
modifications including phosphorylation of various residues (mainly serine residues) (P), sumoylation (S), acetylation (A)
and ubiquitinylation (Ub).

3. GR Ligands
3.1. Glucocorticoids (GCs)

The natural GC cortisol is a cholesterol-derived hormone, named based on its role
in maintaining glucose homeostasis. GCs are primarily synthesized and secreted by the
adrenal gland cortex upon cytokine stimulation of the hypothalamic-pituitary-adrenal
(HPA) axis, where the corticotropin-releasing hormone (CRH) secreted by the hypothala-
mus acts on the anterior-pituitary to produce adrenocorticotropic hormone (ACTH). This
latter in turn triggers GC secretion by the adrenal gland. During basal and unstressed con-
ditions, GCs are secreted in a circadian manner, however, their release is further increased
due to physiological (i.e., increased immune response) and emotional stress [26,27]. Once
released into the circulation, plasma proteins bind and transport inactive GCs into tissues.
Most of the secreted GCs (around 90%) bind to corticosteroid-binding globulin (CBG) [28].
Their lipophilic nature allows them to diffuse passively through the plasma membrane
into the cytosol. However, a balance between active and inactive forms of GCs controls the
amount of GC available. Two enzymes regulate GC availability in the cytoplasm, namely
the 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) that converts cortisone (inactive) to
cortisol (active), and the 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) which drives
the opposite reaction [29,30] (Figure 2).
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cortisone by the 11β-HSD2 enzyme. The same enzyme metabolizes cholestane-3β,5α,6β-triol (CT) into 6-oxo-cholestan-
3β,5α-diol (OCDO). 

 
Figure 3. GR involvement in human health and disease. The schematic diagram represents the 
roles of GR in major systems (blue label) with beneficial roles of synthetic GCs used in clinics 
(green label) and adverse effects of GCs (red label).  

Figure 2. Structure of natural GR ligands. The natural form of glucocorticoid is cortisol that can be converted into inactive
cortisone by the 11β-HSD2 enzyme. The same enzyme metabolizes cholestane-3β,5α,6β-triol (CT) into 6-oxo-cholestan-
3β,5α-diol (OCDO).

Biologically active GCs bind to GR to exert their broad physiological roles on many
different cells, tissues, and organs. GCs regulate many different physiological pathways
including glucose metabolism, immune response, central nervous system (cognition, mood,
sleep), reproduction, cardiovascular function, development, cell death, and maintenance of
vascular tone [31] (Figure 3).
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3.2. Synthetic GCs

GCs were used for the first time in the late 1940s by Dr. Philip Hench to treat rheuma-
toid arthritis. Dr. Hench received the Nobel Prize in Medicine for this discovery [32].
Pharmaceutical industries have since developed various synthetic GCs, including Pred-
nisolone, Methylprednisolone, Fluticasone, Budesonide, and Dexamethasone, used as
treatments for several diseases. All of these synthetic GCs share a similar structure to that
of endogenous GCs, albeit with optimized features. Indeed, they are more (i) potency;
synthetic variants activate GR better than cortisol, (ii) specific; synthetic GCs such as dex-
amethasone (dex) exclusively bind to GR, whereas endogenous GCs can activate both GR
and Mineralocorticoid Receptor, and (iii) controllable; synthetic GCs can be processed by
11β-HSD1/2 (like dex) or not (like prednisolone), thus controlling their availability [33,34].

GCs are mainly known as anti-inflammatory and immunosuppressive therapeutics,
used to treat asthma, allergies, rheumatoid arthritis, multiple sclerosis, and systemic lupus
erythematous. Moreover, they are used to prevent transplant rejection. Nevertheless, their
success is hindered by two major drawbacks: the long-term high dose treatment induces (i)
adverse side effects such as hypertension, skin atrophy, hyperglycemia, growth retardation,
osteoporosis, cardiovascular diseases, and (ii) tissue-specific glucocorticoid resistance due
to chronic GC treatment [34–36].

Besides, they have been used in clinical oncology for nearly 70 years [37]. They are
routinely administered to treat hematological malignancies to foster cell apoptosis by
inducing pro-apoptotic genes and inhibiting survival genes [38,39]. In non-hematological
cancers, such as breast and prostate cancers, GCs are used as chemotherapy or radiotherapy
adjuvants to alleviate side effects. For instance, GC treatment increases appetite, reduces
fatigue, and prevents vomiting and allergic reactions [40].

3.3. OCDO

Recently, a cholesterol-derived oncometabolite, the 6-oxo-cholestan-3β,5α-diol (OCDO),
also called cholestane-6-oxo-3,5-diol or yakkasterone (CAS N◦ 13027-33-3), was identified
as a GR-ligand [41,42]. OCDO is the oxidative product of the carcinogenic cholestane
3β,5α,6β-triol (CT) catalyzed by 11β-hydroxysteroid-dehydrogenase-type-2 (11βHSD2),
the enzyme inactivating cortisol into cortisone [42] (Figure 2). CT is generated from
cholesterol-5,6-epoxides (5,6-ECs) through cholesterol-5,6-epoxide hydrolase (ChEH) [43].
OCDO was shown to promote BC cell proliferation in vitro and in vivo independently of
ERα by activating the nuclear localization of GR, regulating its transcriptional activity, and
consequently inducing cell cycle progression [42]. Moreover, higher levels of OCDO and its
synthesizing enzymes ChEH and 11βHSD2 were detected in BC patient samples compared
to normal tissues, and further mRNA database analyses indicated that the overexpression
of these enzymes was correlated with a higher risk of patient death [42]. In normal breast,
the concentration of OCDO was measured at 25 nM, whereas a concentration of 1 µM
was reported in breast tumors [42]. The effects of OCDO can be inhibited by impairing its
synthesis with ChEH inhibitors (e.g., Dendrogenin A, DDA) and 11βHSD2 silencing or by
antagonizing GR with mifepristone [42,44].

4. GR Signaling

GR mediates its functions in cells through the binding of its ligands. Without ligand
binding, the GR monomer resides predominantly in the cell cytoplasm in a resting state as a
part of a multiprotein complex with chaperons and FK506 immunophilins proteins in a high
ligand binding affinity conformation. This complex is also implicated in GR maturation,
activation, and nuclear transport. Hormone binding triggers GR conformational change
and activation, thus liberating GR from the chaperone-associated proteins and exposing
its two NLS [45,46]. GR then translocates into the nucleus via its pores and binds to DNA
either directly at high-affinity chromosomal sites known as GREs or indirectly through
other TFs via protein-protein interactions (Figure 4). Direct GR-DNA interactions occur in
multiple ways. (i) GR binds as a homodimer to glucocorticoid-binding sites (GBS) on DNA,
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(ii) GR binds as a monomer to inverted-repeat GBS on DNA, also known as negative GRE
sites mainly accompanied with transcriptional repression, (iii) GR binds directly to GREs
and physically interacts with other non-GR TFs on a neighbor DNA site in a composite
manner, or (iv) GR activates transcription after physical interaction with other TFs, such as
the proinflammatory TF AP-1 (Activator protein-1) and NF-κB [47–50]. Through all these
mechanisms, GR was shown to regulate up to 10–20% of the human genome in different
cell types [51].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 4. Genomic GR signaling. Upon ligand binding, GR undergoes a conformational change, dissociates from chaper-
one proteins (HSP90), and translocates into the nucleus, where it can bind directly to DNA as a dimer on a specific GR 
response element (GRE) (A), as a monomer through a simple GRE (B), through other transcription factors (TFs) by tether-
ing itself to the TF (C), or in a composite manner by directly binding to GRE (D). Unliganded GR modulates cell signaling 
in the absence of GCs (E). In addition to the genomic action of GR in the nucleus (A–E), when GR dissociates from its 
cytoplasmic complex upon GCs treatment, it can also regulate non-genomic effects (F). Specific sets of coregulators are 
recruited, resulting in the activation or repression of target genes, regulating specific biological functions. 

Of note, GCs were described to foster non-genomic activities of GR mainly through 
the mitogen-activated protein kinase (MAPK) pathway in cardiovascular, immune, and 
neuroendocrine systems [69]. In addition, in BC, GCs increase the levels of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS), inducing DNA damage and reducing 
DNA repair by dissociating GR from Src [70]. 

5. Post-Translational Modifications of GR 
It is well known that the activity of proteins is tightly regulated by post-translational 

modifications (PTMs), which can be controlled by specific signaling pathways. To date, 
the function of GR is known to be affected by numerous phosphorylation events, but also 
by other modifications such as acetylation, ubiquitination, sumoylation, and methylation 
(Figure 1B). Here, we chose to focus on specific PTMs that could be relevant in BC. 

5.1. Phosphorylation 
In most cases, GR is phosphorylated at a basal level and becomes hyperphosphory-

lated upon ligand binding [71,72]. MAPKs, cyclin-dependent kinases, and Glycogen syn-
thase kinase-3β (GSK-3β) are the main kinases involved in GR phosphorylation and 
widely implicated in BC. The specific site of GR phosphorylation determines the subse-
quent effect on its function. For instance, GR phosphorylated on S211 is a transcriptionally 
active form of the receptor [73]. Conversely, phosphorylation on S226 by c-Jun N-terminal 
kinase (JNK), a member of the MAPK family, was shown to abrogate GC-dependent tran-

Cytoplasm

GCs

GR

↑↓ mRNA

GR

GR GR

GRE RE

TF

GR
GRHS

P9
0

GR GR

GR

GRE

TF

RE

GR GR

A

Nucleus

B

C
D

TF TF

CoRegs
CoRegs

CoRegs

CoRegs

GRE

E

CoRegs

GR
GR

Non-genomic 
effects

SrcSrc

GR

HS
P9

0

F

GRE

Genomic effects

Figure 4. Genomic GR signaling. Upon ligand binding, GR undergoes a conformational change, dissociates from chaperone
proteins (HSP90), and translocates into the nucleus, where it can bind directly to DNA as a dimer on a specific GR response
element (GRE) (A), as a monomer through a simple GRE (B), through other transcription factors (TFs) by tethering itself to
the TF (C), or in a composite manner by directly binding to GRE (D). Unliganded GR modulates cell signaling in the absence
of GCs (E). In addition to the genomic action of GR in the nucleus (A–E), when GR dissociates from its cytoplasmic complex
upon GCs treatment, it can also regulate non-genomic effects (F). Specific sets of coregulators are recruited, resulting in the
activation or repression of target genes, regulating specific biological functions.

In addition to the classical genomic ligand-dependent GR pathway, several studies
have reported that unliganded GR also modulates cell signaling (Figure 4). Interestingly
unliganded GR was described to display a protective role in BC, as it was shown to bind to
the promoter region of a tumor suppressor gene, BRCA1, upregulating its expression in non-
malignant mammary cells. Conversely, exposure to GCs induces a loss of GR recruitment
to the BRCA1 promoter concomitant to a decrease in BRCA1 expression, highlighting the
role of GCs in inducing BC [52]. Moreover, gene expression microarray analysis identified
343 target genes upregulated and 260 downregulated by unliganded GR in mammary
epithelial cells. Some of the positively regulated genes were involved in pro-apoptotic
signals. Moreover, unliganded GR regulated the cholesterol 25-hydroxylase (Ch25h) gene
in a similar manner to BRCA1, as the association of unliganded GR to the promoter of
Ch25h gene was disrupted by GCs [53]. Liganded and unliganded GR could work as
a balance for controlling differentiation and apoptosis, where unliganded GR may be a
mechanism for reducing BC risk by eliminating abnormal cells.
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DNA-bound GR recruits coregulator complexes forming transcription regulatory
complexes. These coregulators can function as corepressors or coactivators, resulting
in local chromatin compaction (gene transcription repression) or local chromatin relax-
ation (gene transcription activation), respectively [54,55]. However, many coregulators
function in both activation and repression of transcription, depending on the specific
gene and cellular environment [56]. Coregulators are classified into different functional
groups. The first group includes the ATP-dependent SWI-SNF chromatin-remodeling
complex that catalyzes the repositioning of nucleosomes on DNA and thereby increases
TF accessibility [57] where GR interacts specifically with the core subunits Brahma and
BRG1 (also known as SMARCA4) of the SWI-SNF complex through its DBD, LBD and AF1
domains [58–61]. The second group consists of the histone-modifying enzymes that are
responsible for adding or removing histone modifications [62,63]. These include histone
methyltransferases such as PRMT4 Arginine-methyltransferase (known as CARM1) and
G9a Lysine-methyltransferases (known as EHMT2) [64,65], histone acetyltransferases such
as P300/CBP-PCAF and SAGA complexes [66], and histone deacetylases (HDACs) such as
NCOR/SMRT-HDAC complexes [67]. However, these enzymes are able to modify other
coregulators, adding another layer of complexity. Additionally, GR recruits other groups of
coregulators that function as scaffold proteins responsible for recruiting other coregulators
through their multiple protein-interaction domains, a well-known example is the pl60 SRC
family (SRC-1, SRC-2, and SRC3), which preferentially interacts with SRC-2 (also called
NCoA-2, TIF2 or GRIP1) [68].

Several hundred coregulators have been identified, indicating a high level of complex-
ity in this process. Although each coregulator functions with multiple TFs, their actions are
gene-specific, i.e., each coregulator is required only for a subset of the genes regulated by a
specific TF (such as GR). These coregulator-specific gene subsets often represent selected
physiological responses among multiple pathways targeted by a given transcription fac-
tor. Modulating the activity of one (or a subset of) coregulator(s) would therefore affect
GC regulation of only the subset of GR target genes that requires this coregulator, thus
modulating the hormone response to selectively promote or inhibit specific GC-regulated
pathways [56].

Of note, GCs were described to foster non-genomic activities of GR mainly through
the mitogen-activated protein kinase (MAPK) pathway in cardiovascular, immune, and
neuroendocrine systems [69]. In addition, in BC, GCs increase the levels of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), inducing DNA damage and reducing
DNA repair by dissociating GR from Src [70].

5. Post-Translational Modifications of GR

It is well known that the activity of proteins is tightly regulated by post-translational
modifications (PTMs), which can be controlled by specific signaling pathways. To date,
the function of GR is known to be affected by numerous phosphorylation events, but also
by other modifications such as acetylation, ubiquitination, sumoylation, and methylation
(Figure 1B). Here, we chose to focus on specific PTMs that could be relevant in BC.

5.1. Phosphorylation

In most cases, GR is phosphorylated at a basal level and becomes hyperphospho-
rylated upon ligand binding [71,72]. MAPKs, cyclin-dependent kinases, and Glycogen
synthase kinase-3β (GSK-3β) are the main kinases involved in GR phosphorylation and
widely implicated in BC. The specific site of GR phosphorylation determines the subsequent
effect on its function. For instance, GR phosphorylated on S211 is a transcriptionally active
form of the receptor [73]. Conversely, phosphorylation on S226 by c-Jun N-terminal kinase
(JNK), a member of the MAPK family, was shown to abrogate GC-dependent transcrip-
tional activity [71,74–76]. S404 phosphorylation by glycogen synthase kinase 3β impairs
GR signaling [77]. In most cases, these phosphorylation sites alter the recruitment of major
coregulators impairing GR transcriptional activity. For example, S211 phosphorylation
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catalyzed by p38 MAPK induces a conformational change, which facilitates coactivator re-
cruitment (i.e., MED14) resulting in an increase in the transcriptional activity of GR [73,74].
Inversely, phosphorylation of S404 impedes GR coregulator recruitment of p300/CBP and
the p65 subunit of NF-κB [77].

GR phosphorylation also modifies its localization. For example, S203 is phospho-
rylated by MAPK ERK1/2 in order to maintain GR in the cytoplasm and prevent its
binding to the promoters of its target genes [71,76]. Furthermore, phosphorylation of GR
at S134 and S226 prevents its translocation to the nucleus, impairing GC-induced gene
expression [75,78].

5.2. Other Modifications

After ligand binding, GR is acetylated by the acetyltransferase Clock (circadian loco-
motor output cycles kaput) on K480, K492, K494, and K495, reducing its binding of GR to
the GRE of specific target genes, impairing its transcriptional activity (Figure 1B) [79,80].

The stability of the receptor is also regulated by ubiquitinylation and sumoylation.
GR is ubiquitinated at K419, targeting GR for degradation by the proteasome [81,82].
The E3 ligase CHIP (carboxy terminus of heat shock protein 70-interacting protein) was
reported to be involved in this process where it modulates expression levels and activity of
GR [83]. Additionally, sumoylation of GR at K277, K293, and K703, catalyzed by SUMO-1-
conjugating E2 enzyme Ubc9, can regulate GR transcriptional activity on specific subsets
of GR target genes [84,85]. GR sumoylation is not dependent on the ligand-binding but is
rather influenced by environmental changes, potentially deregulated in BC [86].

Finally, we reported that GR is methylated by the arginine methyltransferase PRMT5
in the ERα-positive breast cancer cell line MCF-7 [87], although the targeted arginine
remains to be identified.

6. The Role of GR in Breast Tissue

In normal breast tissue, GR is present in the nuclei and in the cytoplasm of luminal
epithelial cells [88,89]. GR was also detected in the nuclei of adipocytes and of myoepithelial
cells surrounding lobular and duct units. Additionally, GR is slightly expressed in the
nuclei of stromal and endothelial cells. GCs were shown to be involved in the development
of the mammary gland at puberty and during pregnancy [90,91]. Mechanistically, GCs
stimulate the expression of β4-integrin, an extracellular protein essential for the spatial
organization of the mammary epithelial acini [91].

Because GR knockout mice are not viable, authors used different approaches in
order to study the role of GR in mammary gland function and development in adult
mice [90,92,93]. Studies demonstrated that GR is strongly implicated in the mammary
gland, though it has no effect on milk production and secretion. Cre-LoxP models in which
the GR gene was specifically deleted in epithelial cells, revealed that GR is essential for cell
proliferation during lobuloalveolar development [93]. Furthermore, mice lacking the DNA
binding function of GR show an impairment in the ductal development of the mammary
gland in virgin females, but no problem in the milk protein production. Authors suggest
that DNA binding-defective GR is still able to interact with phosphorylated Stat5 proteins,
involved in milk protein synthesis [92].

GCs were shown to inhibit mammary gland apoptosis during normal lactation [94]. In
addition, Bertucci et al. demonstrated that GCs modulate early involution of the mammary
gland. Stat5 and GR synergize to stimulate the expression of milk protein genes during
lactation and act as survival factors [95]. Indeed, synthetic GCs regulate Stat5 and Stat3
signaling and inhibit apoptosis induction when administered within the first 48 h upon
cessation of suckling.

7. The Role of GR in Breast Cancer Progression

Extensive studies have been carried out to understand the cellular and biological
effects of GR on BC cell survival and progression. However, the role of GR ranges from
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proliferative to anti-proliferative based on ERα expression and activity (Figure 5). Indeed,
GR expression has different prognostic values depending on the BC subtypes, with a
high expression of GR being correlated with a worse prognosis in TNBC and with a
better prognosis in early-stage ERα-positive BCs [11,96,97]. At the transcriptional level,
literature converges to establish that GC drives the expression of pro-tumorigenic genes in
ERα-negative BCs [98,99], but inhibits ERα transcriptional activity and E2-mediated cell
proliferation in ERα-positive BCs [100–102].
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Figure 5. GR involvement in physiological and pathophysiological breast functions. Mammary gland development and
lactation are regulated by GR in normal breasts. In addition, unliganded GR binds to the promoter region of some pro-
apoptotic genes, such as BRCA1, upregulating their expression in non-malignant mammary cells. GR controls the outcome
of BC depending on the ERα status of the tumor. In ERα-positive BCs, GR regulates the repression of the ERα transcriptional
program by directly binding to ERα, promoting its sumoylation (S) and recruitment of corepressors (A), or in a composite
manner by directly binding to AP-1 (B). In addition, in ERα-positive breast cancer cells, methyl-CpG islands in the GR
promoter work as a binding site for Kaiso, resulting in the repression of GR expression (C). Conversely, in ERα-negative
BCs, GR regulates pro-tumorigenic genes and is associated with a worse prognosis (D), and pS134-GR is found to be higher
in TNBC in comparison with luminal BCs and associated with a migratory phenotype (E). Kaplan–Meier curves were built
using KM plotter database [103].

7.1. ERα-Positive BCs

A high expression of GR in BCs is correlated with a better prognosis and relapse-
free survival outcome in early stages for ERα-positive BC patients [11,96,97] (Figure 5A).
In vitro experiments demonstrated the ability of GCs to inhibit the proliferation of ERα-
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positive BC MCF-7 models by altering cell cycle progression [102,104]. Mechanistically,
this should occur by a direct interaction of ERα with GR, through the GR DNA-binding
domain, regulating ERα transcriptional activity and therefore E2-stimulated prolifera-
tion [11,100,101,105]. Further assessments using Chromatin Immunoprecipitation (ChIP)
experiments in MCF-7 cells revealed that GR displaced ERα and the coactivator SRC3 at
the ERα-response elements (ERE) of specific target genes, either by direct recognition of
ERE or through indirect binding with other factors such as AP-1, thus antagonizing ERα
activity [101,106,107] (Figure 5B). Further studies reported that GR and ERα coactivation
enhanced GR binding to GR- and ERα-responsible elements (GRE and ERE), resulting in
an increase in pro-differentiating genes and negative regulators of pro-oncogenic Wnt sig-
naling, and a decrease in mesenchymal transition related genes expression, thus improving
relapse-free survival in ERα-positive BCs [11]. Moreover, a recent study demonstrated
that liganded GR, regardless of the nature of the ligand (i.e., GR agonist or GR antagonist)
decreased E2-mediated proliferation by suppressing the association between ERα and
chromatin at the enhancer region of E2-induced pro-proliferative genes, subsequently
reducing their expression [105]. GR sumoylation is also involved in this process. Indeed,
Yang et al. demonstrated that GR recruitment to the ERα enhancer requires GR sumoyla-
tion on K277, K293, and K703, and subsequent recruitment of the NCor/SMRT/HDAC3
corepressor complex, repressing the estrogen (E2) program (Figure 5A). In addition, E2
treatment promotes the expression of the PP5 phosphatase, inducing the dephosphoryla-
tion of GR on S211, decreasing the activity of GR on specific GR target genes involved in
cell growth arrest [108]. Further studies in T47D cells demonstrated that dex treatment
inhibits cell migration by disrupting their cytoskeletal dynamic organization by impairing
the AKT/mTOR/RhoA pathway [109]. However, the specific mechanisms underlying this
process were not elucidated.

It is known that GR expression is repressed predominantly in ERα-positive breast tu-
mors due to two distinct mechanisms: methylation of its promoter at CpG islands [110,111]
and proteasomal degradation [112]. Interestingly, methyl-CpG islands in the GR promoter
work as a binding site for Kaiso, a pox virus, and zinc finger (transcription factor), resulting
in the repression of GR expression in ERα-positive breast cancer cells (MCF-7 and T47D),
attenuating GR anti-apoptotic activity [113]. In addition, using an engineered MCF-7/GR
cell line, Archer’s group showed that estrogen agonists, but not ERα antagonists enhance
proteasomal degradation of GR via Mdm2, impacting its transcriptional activity [112].
However, as this cell line expresses 100,000 times more GR than MCF-7 cells, additional
experiments will be needed to confirm this result in a more physiological context.

Altogether, these data suggest that GR mediates the repression of the transcriptional
program of ERα in ERα-positive BCs via a crosstalk between GR and ERα.

7.2. ERα-Negative BCs

In contrast to ERα-positive breast cancer, GR expression was associated with poor
outcome, shorter BC-specific survival, and earlier relapse at early-stages of human ERα-
negative BCs [96–98]. Indeed, a retrospective meta-analysis of 1378 early stage ERα-
negative BCs and 623 TNBCs confirmed that a high tumoral GR expression was significantly
correlated with a shorter relapse-free survival in BC patients, whether undergoing treated
or not with adjuvant chemotherapy [96,114]. Furthermore, in the last few years, a growing
body of evidence clearly demonstrated the tumorigenic effects of GCs in ERα-negative
BCs, as evidenced by resistance to chemotherapy and metastasis formation [12,13,98]. A
genome-wide study identified specific dex-induced GR target genes, involved in tumor
cell survival and chemotherapy resistance, EMT, chromatin remodeling, and epithelial
cell/inflammatory cell interactions, suggesting the involvement of GR in the aggressive be-
havior of ERα-negative BCs [96]. Recently, global gene expression and GR ChIP-sequencing
analyses identified a signature of a specific subset of GR target genes involved in cell sur-
vival, cell invasion, and chemoresistance [114] (Figure 5C).
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Different mechanistic investigations are ongoing to further understand the role of GR
in driving tumor progression in ERα-negative BCs. Among them, it was demonstrated
that cellular stress, such as oxidative stress or hypoxia, in primary TNBCs or ERα-negative
BC cell lines, increases the phosphorylation of GR on S134, thus potentiating stress signal-
ing mediated by GR activation leading to an increase in the expression of breast tumor
kinase BRK, known as protein tyrosine kinase 6 (PTK6), essential for aggressive BC phe-
notypes [115]. In addition, TNBCs express high levels of functionally active pS134-GR in
comparison to luminal BCs, which could explain why GR expression is correlated with a
better prognosis in luminal BCs than in TNBCs [116]. Recently, research on patients and
TNBC cell line-derived xenograft models, revealed that GR activation at distant metastatic
sites, due to an increase in GC levels, promotes BC colonization and reduces the overall
survival by upregulating the expression of ROR-1 kinase, a receptor tyrosine kinase-like
orphan receptor-1, previously shown to be implicated in BC [13,117,118]. Indeed, downreg-
ulation of ROR-1 by shRNAs decreases metastasis and prolongs survival in mouse models.
These studies support previously published expression microarray analyses that identified
several kinases as promising targets for in ERα-negative BC treatment [119,120].

Additional investigations linked BC progression and chemoresistance to the dis-
ruption of the oncosuppressor Hippo pathway, which is mainly composed of kinase
complexes, transcriptional cofactor Yes associated-protein (YAP) and its paralog WW
domain-containing transcription regulator 1 (TAZ), and TEA domain transcription factors
(TEAD1-4). The high expression and activity of YAP/TEAD-4 was reported to contribute
to BC cell survival and progression [121]. Recent studies demonstrated that GR activation
by dex dysregulated the Hippo pathway by inducing the transcriptional activity, nuclear
accumulation, and protein/RNA levels of YAP and TEAD-4. Functionally, this activa-
tion of YAP and TEAD-4 led to cell survival, metastasis, chemo-resistance, and cancer
stem cell self-renewal in vitro and in vivo [99,122]. TEAD-4 along with its coactivator,
the Krüppel-like factor 5 (KLF5), a pro-survival TF, were among the nine genes reported
to be overexpressed in high-grade ERα-negative tumors [123] and their high expression
level was associated with poor prognosis and shorter survival in BC patients [122,124].
Moreover, it was shown that TEAD-4 forms a complex with KLF5 and promotes TNBC
cell proliferation by inhibiting p27 gene transcription [125]. Interestingly, GR activation
by dex upregulates KLF5 expression in TNBCs, and high KLF5, in turn, induces cisplatin
resistance in vitro and in vivo [126].

Global gene expression analyses in MDA-MB-231 cells revealed that several pro-
survival genes were induced by dex treatment (i.e., SGK1 (Serum and glucocorticoid-
regulated kinase-1), MKP-1 (MAPK phosphatase-1)) [127–129]. Additionally, ChIP-seq anal-
yses on the same cell line revealed that dex-liganded GR binds to GREs of pro-tumorigenic
genes driving drug resistance and TNBC progression [99]. The transcriptional activation of
these pro-survival genes by GR upon dex treatment contributes to inhibiting paclitaxel or
doxorubicin-induced apoptosis in MDA-MB-231 cells [98,128]. Conversely, the degradation
of GR and disruption of its anti-apoptotic signaling using the Hsp90 inhibitor was shown
to enhance TNBC sensitivity to paclitaxel in vitro and in vivo [130].

Furthermore, in vivo studies were carried out to investigate the potential inhibitory
effect of GCs on anti-tumoral paclitaxel activity. Accordingly, the pre-treatment with dex
significantly attenuated the therapeutic efficacy of paclitaxel on human tumor xenografts
established from transplanting human ERα-negative BCs into nude mice [126,130–132].
However, the pre-treatment of TNBCs with the GR antagonist Mifepristone in parallel
to dex and Paclitaxel potentiated the cytotoxic efficacy of the chemotherapy, by induc-
ing caspase-3/PARP cleavage-mediated cell death and blocking GR-mediated survival
signaling by antagonizing GR-induced SGK1 and MKP1 gene expression. In addition, it
was reported that mifepristone pre-treatment decreased MDA-MB-231 xenograft tumor
growth [12]. Consistent with these observations, a randomized Phase I clinical trial showed
that GR is a promising target in TNBCs, as patients with GR-positive and triple-negative
tumors responded to the combination of GR antagonism (mifepristone) and paclitaxel [133].
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Lately, investigators reported that GR is essential for EMT and metastasis induc-
tion in BCs. They found that high GR expression levels suppress the transcription of
insulin receptor substrate 1 (IRS-1), which is a cytoplasmic adaptor protein that transmits
insulin/insulin-like growth factor signals. IRS-1 suppression by GR activates extracellular
regulated protein kinase 2 (ERK2) and induces EMT [134]. Moreover, they showed that in
the absence of GR ligands, GR is transcriptionally activated in TNBCs through its phospho-
rylation on S134 by p38, following the homeostatic sensing of intrinsic stress or extrinsic
factors (like TGFβ1). Phospho-S134-GR activates the p38 MAPK stress-signaling pathway,
leading to TNBC cell anchorage-independent growth and migration [116].

8. Concluding Remarks

This review underlines the implication of GR and its ligands in BC biology and
physiology. The fact that GR expression has different prognostic values depending on
the BC subtypes, highlights an unanticipated level of complexity. The repression of the
ERα transcriptional program in ERα-positive BCs is known to be linked to a crosstalk
between GR and ERα. However, a growing body of evidence clearly demonstrates the
tumorigenic effects of GR in ERα-negative BCs, as evidenced by resistance to chemotherapy
and metastasis formation. In addition, proliferative effects of OCDO are GR-dependent
regardless of the hormonal status of the BC. However, the transcriptional program of
OCDO in the different subtypes of BCs has so far not yet been identified and could provide
clues to its oncogenic properties. In addition, because OCDO is a cholesterol-derived
oncometabolite, a more global analysis of the expression of enzymes producing OCDO is of
utmost importance following the status of BCs, in addition to the cholesterolemia status of
patients, to fully understand the impact of OCDO on breast tumorigenesis in ERα-positive
vs. ERα-negative BCs.

In BC treatment, synthetic GCs are commonly used for their antiemetic, anti-
inflammatory, and energy and appetite-stimulating properties, and thus help to man-
age the side effects of chemotherapy. However, in the last few years, increasing evidence
clearly shows the tumorigenic effects of GR in ERα-negative BCs, including resistance to
chemotherapy and metastasis formation. Targeting GR activity is not an option because of
its pleiotropic activity. However, GCs are often the only option for patients to counteract
the effects of chemotherapy. Because coregulator-specific gene subsets are often unique
to selected physiological responses among the multiple pathways regulated by a TFs [58],
modulating the activity of one (or a subset of) coregulator(s) could therefore affect GC
regulation of only selected GR target genes requiring this coregulator, and may enable
the modulation of the hormonal response to selectively promote or inhibit specific GC-
regulated pathways. To illustrate this concept, we demonstrated that coactivator activity of
the GR coregulator G9a is modulated by methylation/phosphorylation, which regulates
distinct physiological pathways, including migration of the lung cancer cell line A549 [135]
and GC-induced cell death in leukemia [136,137].

Of interest in this field, in a cohort of BC patients, a Danish epidemiological study
reported no impact of GC use on BC recurrence, irrespective of the route of administration
or combined chemotherapy [138]. Because GCs are prescribed to counteract the side effect
of chemotherapy depending on the level of discomfort, the doses of GCs received cannot
be fully monitored. Additional epidemiological studies will be interesting to confirm these
observations in different patient cohorts. Moreover, a growing body of evidence suggests
the impact of stressful events on BC risk. Indeed, the Women Health Initiative Study
showed that an acute stress event can be associated with increased BC risk [139]. Rats
stressed by chronic social isolation present higher levels of corticosterone, associated with a
dysregulated GR distribution. Among socially-isolated animals, GR was more often found
in the nucleus compared to the cytoplasm in tumor samples, and these rats harbored more
aggressive mammary tumors [140].

Even though this review mainly presents the effect of GCs on tumor cells, we cannot
exclude that they also affect the tumor microenvironment, particularly cancer-associated
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fibroblasts [141,142]. GCs were shown to regulate the proliferation of myofibroblasts and
have major roles in wound healing [143]. Moreover, Catteau et al. found that GR is
expressed in 73% of CAFs in BC [144], associated with tumoral grade or Ki67 expression.
Taking in account GR expression in the tumor environment following the classification of
tumor status, could be utmost importance and may serve as an interesting target in the
regulation of the tumoral breast microenvironment.

Emerging data are highlighting the importance of a second form of estrogen receptor,
ER beta (ERβ), in breast cancer biology (for review [145]). As a study performed in the
central nucleus of amygdala showed that ERβ activation prevents glucocorticoid-induced
anxiety behaviors and reduced cortisol levels in the plasma of rats compared to animals
implanted with vehicle or GR agonist [146], further studies will be needed to investigate
the potential cross-talk between ERβ and GR in BC.

Despite incredible breakthroughs in our understanding of BC, and the key role of GR
in the pathology, major challenges in this field of research still remain.
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