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Kinga Jaskuła 1, Piotr Religa 1, Mariusz Sacharczuk 1,4,5 and Zbigniew Gaciong 5,*

����������
�������

Citation: Skiba, D.S.; Szczepaniak, P.;
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Abstract: The opioid system is well-known for its role in modulating nociception and addiction
development. However, there are premises that the endogenous opioid system may also affect blood
pressure. The main goal of the present study was to determine the impact of different endogenous
opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined
the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological
modification. In our study, we used two mouse lines which are divergently bred for high (HA)
and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with
low endogenous opioid system activity have higher basal blood pressure compared to those with
a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation
of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to
impaired vascular relaxation independent of endothelium, which corresponded with decreased
guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in
LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe
that a novel mechanism which involves endogenous opioid system activity in the regulation of blood
pressure will be a promising target for further studies in hypertension development.

Keywords: opioid system; vascular function; guanylyl cyclase; blood pressure

1. Introduction

The endogenous opioid system has long been almost exclusively concerned with its
effects on analgesic and antinociceptive phenomena [1]. However, it was found relatively
early that exogenous opioids may exert potent cardiorespiratory effects [2]. Since then,
the role of opioid peptides in the autonomic regulation of blood pressure, heart function,
and respiration became even more complex [3]. Opioids may be cardioprotective by
attenuating ischemic reperfusion injury and decreasing apoptosis in myocytes, causing
smaller infarct and ameliorating ventricular function [4]. Opioids naturally exist in opium—
a dried latex obtained from the seed capsules of the opium poppy Papaver somniferum.
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Opium may temporarily reduce blood pressure (BP), but it increases the concentration of
blood glucose and most blood lipids. Moreover, its long-term use has negative impacts
and thus it aggravates diabetes, dyslipidaemia and hypertension [5]. Human studies
showed that opium addiction may be significant risk factor for coronary artery disease
(CAD) [6]. Interestingly, in human subjects it was found that endogenous opioid activity
may contribute to generally reduced pain sensitivity, and perhaps mood reactivity, in those
with higher BP [7]. It may be an important link between the altered neuropeptide regulation
of pain and altered BP control mechanisms in the early stages of hypertension [8]. On the
other hand, studies on spontaneously hypertensive rats (SHRs) showed decreased opioid
levels of dynorphin and leu-enkephalin in the brain [9], but not in deoxycorticosterone
acetate- and salt-induced hypertension models [10]. The antihypertensive drug, clonidine,
which stimulates α2 adrenergic receptors in the brain stem, was reported to increase
β-endorphin release from the brains of SHR rats, whereas opioid antagonists blunt the
hypotensive effect of clonidine [11]. Opioid peptides and their G protein-coupled receptors
(GPCRs) are important regulators within the cardiovascular system, implicated in the
modulation of electrophysiological function, heart rate, myocardial inotropy and vascular
function. It was found that morphine caused naloxone-reversible relaxant responses
in preconstructed rat aortic rings. This effect was, however, not related to nitric oxide
release [12]. On the other hand, high doses of morphine impair vascular endothelial
function by the increased production of superoxide anions [13]. Another opioid agonist—
biphalin, a synthetic non-addictive enkephalin analogue—decreases BP in SHRs [14].
However, another study shows that opioids’ effect on BP level depends on the hypertension
model used in the study [15]. Therefore, we aimed to characterize vascular function and BP
level in a unique model of mice selected for high and low activity of the endogenous opioid
system [16,17]. Mice selected for high (HA) and low (LA) swim stress-induced analgesia
(SSIA) are characterized by unique, inherited differences in opioid system activity [18].
HA mice exhibited increased opioid system activity as compared to their LA counterparts
and showed enhanced G-protein activity in central nervous system structures involved in
pain modulation [16].

During the past four decades, persistently raised BP has been reported in central and
eastern Europe, which indicates a maintenance of unfavorable trends towards the risk of
hypertension. Among hypertensive patients, those resistant to available drugs account
for almost 20% of all cases [19], so that seeking new mechanisms and molecular targets is
still a necessary challenge to undertake. In this study, we try to face the unsolved problem
emphasizing endogenous opioid system involvement in hypertension development.

2. Results
2.1. HA and LA Mice Have Respectively High and Low Analgesia Measured by Tail-Flick Test and
Hot Plate Test

Hot plate (HP) and tail-flick (TF) tests were used to assess analgesia in HA and LA mice.
HA mice had significantly higher latency measured 15, 30, 45 and 60 min after swimming
measured by the TF test (Figure 1a). The latency of HA mice measured by the HP test
after swimming was elevated, reaching the maximum value after 5 min in comparison to
LA mice. LA mice were characterized with a constant latency time throughout the whole
period (Figure 1b).
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Figure 1. (a) Tail-flick latency in HA and LA mice (n = 5) in time after swimming, average of three repetitions; (b) hot plate 
test in HA and LA mice, in time after swimming (n = 5). 

2.2. Low Activity of Opioid System Manifests Elevated Blood Pressure, without Effect on 
Endothelium Dependent Vascular Relaxation and Constraction in Aorta 

LA mice with decreased activity of the opioid system had significantly higher systolic 
BPs compared to HA mice with high activity of the opioid system (LA 138.23 ± 3.05 mmHg 
vs. HA 128.77 ± 2.06 mmHg) (Figure 2a). However, vascular relaxation of the aorta meas-
ured by the response to rising concentrations of acetylcholine showed no differences in 
HA mice compared to LA (Figure 2b). Despite this, statistical analysis of individual con-
centrations showed differences between groups at logarithmic concentrations of −8 M and 
−7.5 M. At those concentrations of acetylcholine, the aorta of HA mice relaxed better. An-
other factor which usually is affected in arteries from hypertensive subjects is vascular 
constriction. We have not observed differences in constriction force in response to phe-
nylephrine between the LA and HA group (Emax LA: 3.35 ± 0.28 mN, Emax HA: 3.60 ± 0.26 
mN) (Figure 2c). The data were presented as a force of constriction. 

 
Figure 2. (a) Systolic blood pressure in HA and LA mice in basal conditions HA and LA (n = 25–
27); (b) vascular relaxation of aortas from HA and LA mice in response to acetylcholine (n = 9–10); 
(c) Phenylephrine-induced vascular constriction in aortas from HA and LA mice (n = 9–10). ** p < 
0.01. 

Figure 1. (a) Tail-flick latency in HA and LA mice (n = 5) in time after swimming, average of three repetitions; (b) hot plate
test in HA and LA mice, in time after swimming (n = 5).

2.2. Low Activity of Opioid System Manifests Elevated Blood Pressure, without Effect on
Endothelium Dependent Vascular Relaxation and Constraction in Aorta

LA mice with decreased activity of the opioid system had significantly higher systolic
BPs compared to HA mice with high activity of the opioid system (LA 138.23 ± 3.05 mmHg
vs. HA 128.77 ± 2.06 mmHg) (Figure 2a). However, vascular relaxation of the aorta
measured by the response to rising concentrations of acetylcholine showed no differences
in HA mice compared to LA (Figure 2b). Despite this, statistical analysis of individual
concentrations showed differences between groups at logarithmic concentrations of −8 M
and −7.5 M. At those concentrations of acetylcholine, the aorta of HA mice relaxed better.
Another factor which usually is affected in arteries from hypertensive subjects is vascular
constriction. We have not observed differences in constriction force in response to phenyle-
phrine between the LA and HA group (Emax LA: 3.35 ± 0.28 mN, Emax HA: 3.60 ± 0.26 mN)
(Figure 2c). The data were presented as a force of constriction.
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Figure 2. (a) Systolic blood pressure in HA and LA mice in basal conditions HA and LA (n = 25–27);
(b) vascular relaxation of aortas from HA and LA mice in response to acetylcholine (n = 9–10); (c)
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2.3. Low Activity of Opioid System Causes Worse Endothelium-Independent Relaxation
Which Correspond with Decreased Level of Guanylyl Cyclase (Gucy1A3) Despite of Elevated
eNOS Expression

Vascular response to nitric oxide (NO)-donor after NOS (nitric oxide synthase) in-
hibition by (ω)-nitro-L-arginine methyl ester (L-NAME) was evaluated. Analysis of
endothelium-independent relaxation showed differences between groups. The aorta from
HA mice had significantly better relaxation in response to sodium nitroprusside (SNP)
when compared to LA (Figure 3a). One of the key components involved in endothelium-
independent vascular relaxation is guanylyl cyclase. The reduced expression of guanylate
cyclase leads to the reduced production of cGMP, and thus impairs endothelial-independent
diastolic capacity in the arteries. In our study, the expression of mRNA for Gucy1a3 in
aortas was higher in HA mice (HA: 6.86 ± 0.37 vs. LA: 4.67 ± 0.25) (Figure 3b) and
corresponded with the lower systolic BP of HA mice when compared to LA. Guanylyl
cyclase expression on the protein level was also elevated in HA mice when compared to
LA (1.70 ± 0.23 vs. 1.00 ± 0.04) (Figure 3c). Main source of NO for vascular smooth muscle
cells is endothelial synthase. Interestingly, endothelium NOS expression on the protein
level was decreased in aortas from HA mice in comparison to LA mice (0.41 ± 0.06 vs.
1.00 ± 0.22) (Figure 3d).
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2.4. Naloxone Treatment Elevates Blood Pressure in Mice with High Activity of Opioid System and
Decreases Guanylyl Cyclase mRNA Expression in Aorta

To testify the hypothesis that an observed effect on BP is related to opioid receptors,
we performed an experiment where HA and LA mice were treated with non-specific opioid
receptor antagonist—naloxone (NLX). The pharmacological blockade of opioid receptors
led to the increase in systolic BP in HA mice (HA 128.77 ± 2.06 mmHg vs. HA NLX
149.26 ± 12.62 mmHg) (Figure 4a). Interestingly, we did not observed differences in BP level
in naloxone-treated LA mice (LA 138.23 ± 3.05 mmHg vs. LA NLX 128.81 ± 2.88 mmHg)
(Figure 4a). Hence, we performed an analysis of guanylyl cyclase of mRNA in those
mice, being aware that the expression of that gene was decreased in LA mice. Naloxone
treatment in HA mice significantly decreased guanylyl cyclase expression in the aorta (HA:
6.86 ± 0.37 vs. HA NLX: 4.67 ± 1.10) (Figure 4b). Interestingly, NLX treatment had no
effect on guanylyl cyclase expression in LA mice (LA: 4.67 ± 0.25 vs. LA NLX: 5.35 ± 0.16)
(Figure 4b).
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Figure 4. (a) Systolic blood pressure in HA and LA mice in basal conditions (n = 25–27) and after
naloxone treatment (n = 4); (b) expression of guanylyl cyclase mRNA in aortas of HA and LA mice
(n = 8) and HA and LA mice treated with naloxone (n = 4); * p < 0.05, ** p < 0.01.

2.5. Aortic Segments Treated In Vitro with Naloxone Exert No Changes in Both Endothelium
Dependent and Independent Vascular Function in LA and HA Models of Opioid System Activity

To investigate role of opioid receptors located in vasculature on the function of the aorta,
we performed an in vitro treatment of aortic segments with NLX. Naloxone treatment in both
lines did not modify the vascular relaxation induced by acetylcholine (Figure 5a). Neither
vascular constriction dependent on phenylephrine was affected (Figure 5b). Additionally,
the response to SNP was not statistically different after NLX pre-treatment in both lines
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(Figure 5c). Therefore, we performed an analysis of opioid receptors in the aorta of those
mice. The expression of kappa, delta and mu opioid receptors mRNA was undetectable by
RT-qPCR in the aorta from both HA and LA mice (data not shown).
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3. Discussion

Despite extensive studies in the field of cardiovascular effects related to opioid intake
and exogenous opioids [20–22], little is known about role of endogenous opioids on
vasculature function and BP level. In the study presented herein, we take advantage of
a unique model of mice with high and low activity of the endogenous opioid system to
present the role of endogenous opioids on the cardiovascular system. Mice selected for high



Int. J. Mol. Sci. 2021, 22, 4179 7 of 12

(HA) and low (LA) swim stress-induced analgesia (SSIA) show substantial differences in
the magnitude of the antinociceptive response to stress and when treated with exogenous
opioids. HA mice express higher peripheral β– endorphin levels, whereas LA mice have
low sensitivity to morphine. However, no striking differences in opioid receptor expression
or binding were noted between HA or LA mice [16,23].

In our study, mice with low activity of the endogenous opioid system had signifi-
cantly increased systolic BP in comparison to mice with high activity of the opioid system;
however, comparing those data to human guidelines, those mice would be considered
as prehypertensive [24]. Both endogenous and exogenous opioids can regulate vascular
functions. The agonism of opioid receptors by biphalin decreased BP levels in SHRs [14].
In another study, loperamide, a peripheral opioid receptor agonist, lowered the mean
arterial pressure in the same model via the µ(2)-opioid receptor-dependent cAMP-PKA
pathway. Moreover, loperamide treatment induced vascular relaxation by opening K(ATP)
channels [25]. Interestingly, the hypotensive effect of endogenous opioids which we have
observed was strictly related to opioid receptors. The infusion of NLX to HA mice led to
hypertension development. Interestingly, in LA mice, NLX treatment did not induce signifi-
cant changes in BP levels. These data are in line with observations made on human subjects,
where NLX increased BP responses during psychological stress in young adults with a low
causal BP, but had no pressor effect in subjects with a high casual BP [26]. These results
suggest that the opioidergic inhibition of sympathetic nervous system responses may be
deficient in patients at risk for essential hypertension. Additionally, the model-dependent
effect of NLX was described in three different rat hypertension models. The stimulation of
opioid receptors by biphalin decreased the BP level in SHR rats but not in the two other rat
hypertension models (uninephrectomized rats on a high-salt diet or angiotensin II-induced
hypertension). Biphalin also did not change the BP level in normotensive controls, WKY
and Sprague Dawley rats [15]. Considering this, the mouse model we have used in our
study has some advantages compared to the models described above. Firstly, in the HA
and LA model there is no induction of hypertension by pharmacological or surgical modi-
fications. Moreover, mice selected for high activity of the opioid endogenous system exert
some neurological symptoms which are also present in hypertensive patients and which
are absent in other models. For example, NLX selectively induces high levels of anxiety-
and depressive-like behaviors in HA mice [16]. It is known that patients with depression
and/or anxiety represent a particularly vulnerable population as they are at higher risk
for developing hypertension [27]. Moreover, hypertension increases memory impairment
risk [28], which was also observed in HA mice treated with NLX [29]. Additionally, clinical
trials with NLX describe that the antagonism of opioid receptors leads to an increase in BP
level, which can be used for shock treatment [30]. These data indicate that NLX’s effect
on BP level we have observed in HA mice is consistent with mentioned data from human
studies [26,30,31]. However, mechanisms which regulate BP level by NLX are not fully
understood yet.

Interestingly, despite the elevated BP level in LA mice, we have not observed vascular
dysfunction measured as a response to acetylcholine at the prehypertensive state. However,
the observed shift of curve to the right in LA mice may suggest vascular dysfunction initia-
tion. It is known that both small and large artery disease might precede the development
of hypertension [32].

To identify the role of opioid receptors located in vasculature on vascular function,
we performed an analysis of aortic segments’ function, treated in vitro with NLX. We did
not observe changes in vascular contraction in response to phenylephrine and vascular
relaxation in response to acetylcholine, even though SNP treatment did not exert any
changes in vascular response after the NLX treatment of aortic segments from LA and
HA mice. Therefore, we performed an analysis of opioid receptors in the aorta of those
mice. The expression of kappa, delta and mu opioid receptors mRNA was undetectable
by RT-qPCR in aortas from both HA and LA mice (data not shown). In contrast, some
studies describe the expression of opioid receptors on endothelium in the vasculature of
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rats and humans [33,34]. This finding may explain that the observed effect of BP increase
in HA mice after NLX treatment is mediated by an opioid receptor blockade not related to
vasculature. It may suggest that NLX’s effect on BP level can be explained only by binding
to opioid receptors in the central nervous system, which needs to be confirmed in further
studies using naloxone methiodide, which does not cross the blood–brain barrier.

NO plays a fundamental role in the regulation of vascular relaxation. NO is a potent
vasodilator produced by the endothelium under basal conditions and in response to a
variety of agonists. It diffuses from the endothelium to the underlying vascular smooth
muscle, where it causes relaxation through the activation of soluble guanylyl cyclase,
causing an increase in 3,5-cyclic guanosine monophosphate (cGMP) [12]. In the aorta,
NO is produced mainly by endothelial nitric oxide synthase (eNOS) from L-arginine.
Interestingly, LA mice express more eNOS in the aorta than HA mice. However, a limiting
factor in NO-dependent relaxation is guanylyl cyclase. In our study, we observed a
decreased level of Gucy1A3 in LA mice in comparison to HA mice. Therefore, in spite of a
higher expression of eNOS, LA mice have elevated BP. However, studies on endothelial
cells and animal models of hypertension have found that eNOS expression elevates in
vasculature in response to mechanical forces such as shear stress or BP [35–37]. It might be
a compensatory mechanism leading to the elevation of NO and relaxation.

Not only nitric oxide synthesis is affected in LA mice but also signaling in the down-
stream of NO. We also have observed that vascular impairment independent of the en-
dothelium appears in the aorta of LA mice. A similar effect was observed in an angiotensin
II-induced model of hypertension [38]. We believe that this effect is mostly related to
guanylyl cyclase function. The expression of Gucy1a3 mRNA in the aorta of LA mice was
lower compared to HA. We observed that the regulation of Gucy1a3 expression is possible
through opioid receptor signaling. In HA mice, NLX treatment significantly diminished
the expression of Gucy1a3 in the aorta. It is already known from the literature that soluble
guanylyl cyclase may play a role in antinociception by regulating cGMP production [39,40].
It has been described that all opioid receptor agonists (µ, δ and κ) may be involved in
NO/cGMP-dependent antinociception and the effect was reversed after guanylyl cyclase
inhibitor administration [41–43]. However, in our model, higher levels of stress induced
analgesia in HA mice were not related to NO. Additionally, sildenafil, which is inhibitor of
5-phosphodiesterase which hydrolyses active cGMP to non-active GMP, was found to play
role in antinociception. Sildenafil itself induces antinociception and in combination with
morphine enhances its antinociceptive effect [44]. Interestingly, differences in the analgesia
level in HA and LA mice are not related to NO. L-NAME treatment (in different doses) of
LA and HA mice had no effect on the pain threshold level measured by the TF test and
HP test (data not published). One group has described that guanylyl cyclase expression in
cerebral regions may be regulated by µ opioid receptor stimulation in rats physiologically
dependent on morphine [45]. However, nobody before has described effect of opioid
activity on guanylyl cyclase expression in the aorta and referred these data to BP level and
vascular function. Further studies are needed to explain the mechanism of guanylyl cyclase
expression regulation in the aorta dependent of opioid receptor stimulation.

Summarizing the endogenous opioid system may play a beneficial role in BP reg-
ulation. High activity of the endogenous opioid system may regulate guanylyl cyclase
expression, leading to the better relaxation of vessels. Guanylyl expression may be modi-
fied by opioid receptor antagonists such as NLX. Moreover, we have found that this effect
is not mediated by opioid receptors in the aorta. We believe that the observed effect is
mediated via the activation of the opioid system in the central nervous system, but it needs
further studies in this topic.

4. Materials and Methods
4.1. Selection Protocol for the HA and LA Lines

Outbred Swiss-Webster mice of either sex, 2 min after completion of 3-min swimming
in 20 ◦C water, were screened for the latency of a nociceptive reflex on a HP test at 56 ◦C.
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Those displaying the longest (50–60 s) and the shortest (<10 s) post-swim latencies of the
hind paw flick or lick response (whichever occurred first) were selected as progenitors of the
HA and the LA lines [17]. A similar procedure was repeated in each offspring generation,
but only subjects displaying the longest and the shortest post-swim hot plate latencies
were mated to maintain the lines. Experiments on live mice were conducted according to
the 2010/63/UE directive and upon ethical clearance (decision no. WAW2/180/2019 and
WAW2/058/2020) received from the II Local Ethics Committee for Animal Experimentation
in Warsaw.

4.2. Measurement of Blood Pressure

Blood pressure was measured before and during the infusion of naloxone using a
non-invasive tail cuff measurement system (BP-2000—Blood Pressure Analysis System,
Visitech Systems, Apex, NC, USA). Before minipump implantations, mice were trained
to tail cuff blood pressure measurements for one week. After minipump implantations,
BP was recorded for another 7 days. One session of BP measurement included 5 pre-
liminary measurements and 10 actual measurements which were analyzed. Preliminary
measurements were performed in order to allow the animals to warm up sufficiently to
produce a good blood flow in the tail. We have not observed specific behavior in HA mice
after naloxone treatment.

4.3. Hot-Plate Test

During the HP test, individuals were placed in a transparent plexiglass cylinder (15 cm
in diameter) situated on a metal square plate heated to 56 ◦C. Latency was assessed by a
blindfolded experimenter with use of stopwatch. Only strong reactions of paw flitching,
licking or jumping were considered as nocifensive responses. To avoid burns of mice, the
cut-off time was set to 60 s. Measurements were taken before treatment (0 min) and 5, 15,
30, 60 and 120 min after swimming trial.

4.4. Tail-Flick Test

The tail-flick (7360 Tail-flick Unit (Ugo Basile, Gemonio, Italy)) test was performed
in the same timepoints as hot-plate test. Briefly, animals were restrained with a cotton
cloth. The tail was placed at 2/3 of its length over a radiant heat source. Withdrawal
reaction latency was measured by built-in timer. Each measurement was taken three times.
The cut-off time was set to 10 s to avoid severe burns. Measurements were taken before
treatment (0 min) and 5, 15, 30, 60 and 120 min after swimming trial.

4.5. Naloxone Administration

Naloxone was administered to HA and LA mice to obtain the continuous blockade
of opioid receptors. Mice were treated with naloxone hydrochloride (Sigma-Aldrich,
St. Louis, MO, USA) administrated by minipump (1 mg/kg/h) for 7 days with continuous
BP monitoring.

4.6. Determination of Vascular Function

Thoracic aortas after isolation were cut into 3 mm ring segments and mounted on
isometric wire myographs (Danish Myo Technology, Aarhus, Denmark) in physiological
saline solution and continuously gassed with a mixture of 95% O2 and 5% CO2 at 37 ◦C.
Following 60 min of equilibration, the contractility of arterial segments was assessed by
the addition of KCl solution (120 mM). The relaxation of the vessels was induced by
acetylcholine in arteries pre-contracted with phenylephrine as we described before [20,21].
For the contraction curve, phenylephrine was used in rising concentrations from 10−9 to
10−5 M. To investigate vascular relaxation independent of the endothelium, SNP was used
after NOS inhibition with L-NAME. Additional segments of aortas were incubated with
NLX (3 × 10−5 M) following each curve.
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4.7. Measurement of mRNA Expression

RNA from aortas was obtained using RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden,
Germany). Total RNA was measured by Nanodrop 2000 (Thermo Fisher Scientific, Waltham,
MA, USA). Reverse transcription of 1 µg of RNA was performed using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The expres-
sion of Gucy1a3, Oprk1, Oprm1, Oprd1 at mRNA level in the aorta was analyzed using
TaqMan® probes (Thermo Fisher Scientific) and the TaqMan® Real-Time PCR Master Mix
(Thermo Fisher Scientific). Reactions were prepared and run on 96-well plates on the
Applied Biosystems® 7500 Real-Time PCR according to standard protocol. Calculations
were made using SDS Software 2.4. Data were normalized to levels of Tbp mRNA and
relative quantification was calculated.

4.8. Western Blot

Extracts of the aortas were prepared for protein analysis. Tissues were suspended
in T-PER™ Tissue Protein Extraction Reagent buffer (Thermo Fisher Scientific, Waltham,
MA, USA) with the addition of a protease inhibitor cocktail (Sigma-Aldrich, St. Louis,
MO, USA) were homogenized with FastPrep-24 (MP Biomedicals, Irvine, CA, USA). After
centrifugation, supernatants were collected and the protein concentration was determined
by the BCA assay (Thermo Fisher Scientific, Waltham, MA, USA). Protein extracts were
subjected to SDS-PAGE electrophoresis. The transfer was performed using PVDF mem-
branes previously activated in methanol. The membranes were blocked with 5% skim
milk. After overnight incubation with the primary antibody 1:1000 (Actin Monoclonal
Antibody, Thermo Fisher Scientific, Waltham, MA, USA and GUCY1A3 Polyclonal anti-
body, Proteintech, Chicago, IL, USA) at 4 ◦C, membranes were washed and incubated with
horseradish peroxidase-conjugated secondary antibodies (goat, anti-mouse IgG and goat
anti-rabbit IgG, Sigma-Aldrich, St. Louis, MO, USA), 1:10,000, at room temperature for
1 h and then visualized using SuperSignal chemiluminescent substrate (Thermo Fisher
Scientific, Waltham, MA, USA). Western blots were acquired using the ChemiDoc XRS+
(Bio-Rad). Analyses were made using Image Lab (Bio-Rad) software. All targets were
normalized first to the loading control (β-actin).

4.9. Data and Statistical Analysis

For the comparison of three or more independent groups, one-way ANOVA was used
with a Student–Newman–Keuls post hoc test. For comparison of two groups, unpaired
two-tailed t-tests were used. For comparisons of vascular function in organ chamber
experiments, repeated measures ANOVA with post hoc Bonferroni correction was used.
p values < 0.05 were considered significant. GraphPad Prism and PowerPoint were used
for data visualization.
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