Supplementary Materials

Photo-responsive Artificial Viral Capsid self-assembled from Azobenzene-containing β -Annulus Peptide

Kazunori Matsuura 1,2*, Seiya Fujita 1

- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
- ² Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan.

Figure S1. TEM images for aqueous solutions of β-annulus-azo peptide (100 μM) after UV and visible light irradiation for 15 min at 25°C. The samples were stained with 2% phosphotungstic acid aq.

Figure S2. Effect of concentration of the *β*-annulus-azo peptide on scattering intensity determined by DLS at 25°C in water.

Figure S3. CD spectra of the aqueous solutions of the *β*-annulus-azo peptide before (red) and after (black) UV irradiation for 15 min at 25°C in water.

Figure S4. Measured (solid) and fitted (dot) autocorrelation curves for the 70-kDa FITC-labeled dextran (0.1 μ M) mixed with an aqueous solution of the β -annulus-azo peptide (50 μ M) at 25°C.

Figure S5. TEM images for aqueous solutions (100 μM) of β-annulus peptide in which Pro is replaced with Ala (INHVGGTGGAIMA $\underline{\mathbf{A}}$ VAVTRQLVGS) at 25°C. The samples were stained with 2% phosphotungstic acid aq.