Supplementary Materials

Design and synthesis of a novel PLK1 inhibitor scaffold via hybridized 3D-QSAR model

Youri Oht, Hoyong Jungt, Hyejin Kim, Jihyun Baek, Joonhong Jun, Hyunwook Cho, Daseul Im and Jung-Mi Hah*
Department of Pharmacy, College of Pharmacy, Hanyang University 55 Hanyangdaehak-ro, Sangnok-gu, Ansan Kyeonggi-do, 426-791, Republic of Korea
S1. The structures of the chemically named compounds in QSAR studies

1) Thiophene-2-carboxamide derivatives

33

38

43

48

53

58

63

34

39

44

49

54

59

64

35

40

45

50

55

60

65

36

41

46

51

56

61

66

37

42

47

52

57

62

Alignments for CoMFA and CoMSIA

We obtained 36 thiophene-2-carboxamide derivatives and 44 8-amino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide derivatives from the literature, and two representative compounds 18 and 49 were selected for standard compounds in each series. We excluded 12 compounds due to low activity ($\mathrm{IC}_{50}>3 \mu \mathrm{M}$) and 5 that were racemates and outliers of the QSAR model. Finally, we sorted 66 compounds for the QSAR model. We used pIC 50 values as the dependent variable in the QSAR model. The 66 compounds were split into a training set of 54 compounds to create a QSAR model and a test set of 12 compounds to validate the model. We used 1:6 ratio to divide the dataset compounds and also mention number of compounds selected in the test set based on the structure and activity (pIC50). This is also supported by saying that the test set compounds are selected in a way that they comprise compound having high, moderate and low activity values. We used one of the algorithms given in the article to divide the dataset compounds into training and test sets, using Algorithm 4 (activity ranking).(Journal of Computer-Aided Molecular Design, 16: 357-369, 2002)

Table S1. The structures of thiophene-2-carboxamide derivatives and their activities on Plk1.

No.	Substiteuents		Activity (nM)	
	R^{1}	R^{2}	IC50	pIC 50
1	pyrazolo[1,5-a]pyridin-3-yl	(2-(trifluoromethyl)benzyl)oxy	130	6.8861
2	imidazo[1,2-a]pyridin-3-yl	(2-(trifluoromethyl)benzyl)oxy	22	7.6576
3	1-methyl-1H-imidazol-5-yl	(2-(trifluoromethyl)benzyl)oxy	430	6.3665
4	2-benzamidothiazol-5-yl	(2-(trifluoromethyl)benzyl)oxy	2100	5.6778
5	imidazo[1,2-a]pyridin-3-yl	2-chlorobenzyl	35	7.4559
6	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chlorophenyl)ethoxy	7	8.1549
7	imidazo[1,2-a]pyridin-3-yl	(S)-1-(2-chlorophenyl)ethoxy	300	6.5229
8	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-(hydroxymethyl)phenyl)ethoxy	88	7.0555
9	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-5(hydroxymethyl)phenyl)ethoxy	39	7.4089
10	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4- (hydroxymethyl)phenyl)ethoxy	4.9	8.3098
11	(hydroxymethyl)imidazo[1,2- a]pyridin-3-yl	(R)-1-(2-chlorophenyl)ethoxy	7.3	8.1367
12	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4((methylamino)methyl)phenyl)ethoxy	16	7.7959
13	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4- ((dimethylamino)methyl)phenyl)ethoxy	22	7.6576
14	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4((ethylamino)methyl)phenyl)ethoxy	21	7.6778
15	imidazo[1,2-a]pyridin-3-yl	(R)-2-chloro-4- ((isopropylamino)methyl)phenyl)ethoxy	28	7.5528
16	imidazo[1,2-a]pyridin-3-yl	(R)-2-chloro-4((cyclopropylamino)methyl)phenyl)ethoxy	12	7.9208
17	imidazo[1,2-a]pyridin-3-yl	(R)-2-chloro-4((cyclopentylamino)methyl)phenyl)ethoxy	25	7.6021
18	imidazo[1,2-a]pyridin-3-yl	(R)-1-(4-((tert-butylamino)methyl)-2chloropheny)ethoxy (R)-1-(2-chloro-4-(((2-	21	7.6778
19	imidazo[1,2-a]pyridin-3-yl	hydroxyethyl)amino)methyl)phenyl)ethox	21	7.6778
20	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-(((3- hydroxypropyl)amino)methyl)phenyl)etho	19	7.7212
		xy		
21	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-(((1-hydroxy-2-methylpropan-2- yl)amino)methyl)phenyl)ethoxy	23	7.6383
22	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-((4-fluoropiperidin-1yl)methyl)phenyl)ethoxy	13	7.8861
23	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-((4-methylpiperazin-1yl)methyl)phenyl)ethoxy	17	7.7696
24	imidazo[1,2-ă]pyridin-3-yl	(R)-(1-(2-chloro-4-((4-hydroxypiperidin-1yl)methyl)phenyl)ethoxy)	27	7.5686
25	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-((3-hydroxypyrrolidin-1yl)methyl)phenyl)ethoxy	20	7.6990
26	imidazo[1,2-a]pyridin-3-yl	(R)- 1-(2-chloro-4-((3-oxopiperazin-1yl)methyl)phenyl)ethoxy	12	7.9208
27	imidazo[1,2-a]pyridin-3-yl	(R)-1-(2-chloro-4-((1,1- dioxidothiomorpholino)methyl)phenyl)eth oxy	16	7.7959

28	imidazo[1,2-a]pyridin-3-yl	$(R)-1-(4-(($ tert-butylamino)methyl)-2- fluorophenyl)ethoxy)	46	7.3372
29	imidazo[1,2-a]pyridin-3-yl	$(R)-1-(4-(($ tert-butylamino)methyl)-2- methylphenyl)ethoxy	150	6.8239
30	imidazo[1,2-a]pyridin-3-yl	$(R)-1-(4-(($ tert-butylamino)methyl)-2- cyclopropylphenyl)ethoxy	210	6.6778
31	imidazo[1,2-a]pyridin-3-yl	(R)-1-(4-((tert-butylamino)methyl)-2- (difluoromethyl)phenyl)ethoxy	20	7.6990
32	imidazo[1,2-a]pyridin-3-yl	$(R)-1-(4-(($ tert-butylamino)methyl)-2- ((difluoromethoxy)methyl)phenyl)ethoxy	9.8	8.0088

Table S2. The structures of 8-amino-4, 5-dihydro-1 H-pyrazolo[4,3-h]quinazoline-3-carbaldehyde derivatives and their activities in Plk1

No.	Substiteuents			Activity (nM)	
	R^{1}	R^{2}	R^{3}	IC50	pIC50
33	Me	H	phenyl	68	7.1675
34	H	H	phenyl	248	6.6055
35	cyclohexyl	H	phenyl	143	6.8447
36	i Pro	H	phenyl	430	6.3665
37	Me	OH	Phenyl	110	6.9586
38	Me	NHMe	Phenyl	4215	5.3752
39	Me	NH_{2}	2-trifluoromethylphenyl	432	6.3645
40	Me	NH_{2}	3-trifluoromethylphenyl	51	7.2924
41	Me	NH_{2}	4-trifluoromethylphenyl	872	6.0695
42	Me	NH_{2}	2-acetylphenyl	346	6.4609
43	Me	NH_{2}	3-acetylphenyl	100	7.0000
44	Me	NH_{2}	4-acetylphenyl	197	6.7055
45	Me	NH_{2}	2-methyloxyphenyl	42	7.3768
46	Me	NH_{2}	3-methyloxyphenyl	135	6.8697
47	Me	NH_{2}	4-methyloxyphenyl	256	6.5918
48	Me	NH_{2}	2-methylthiophenyl	97	6.3116
49	Me	NH_{2}	2-(methylamino)phenyl	110	6.9586
50	Me	NH_{2}	2-fluorophenyl	125	6.9031
51	Me	NH_{2}	2-isopropylphenyl	365	6.4377
52	Me	NH_{2}	2-(methylcarboxy)phenyl	1117	5.9519
53	Me	NH_{2}	2-carbamoylphenyl	2076	5.6828
54	Me	NH_{2}	2-sulfamoylphenyl	3733	5.4279
55	Me	NH_{2}	[1,1'-biphenyl]-2-yl	1565	5.8055
56	Me	NH_{2}	2-phenoxyphenyl	278	6.5560
57	Me	NH_{2}	2-benzylphenyl	943	6.0255
58	Me	NH2	2-(phenylamino)phenyl	949	6.0227
59	Me	NH_{2}	2-benzoylphenyl	1969	5.7058
60	Me	NH_{2}	2-(phenylthio)phenyl	2033	5.6919
61	Me	NH_{2}	2-aminophenyl	150	6.8239
62	Me	NH_{2}	2-acetamidophenyl	2523	5.5981
63	Me	NH_{2}	2-acetyl-3-(4-methylpiperazin-1-yl)phenyl	2051	5.6880
64	Me	NH_{2}	2-acetyl-4-(4-methylpiperazin-1-yl)phenyl	464	6.3335
65	Me	NH_{2}	2-acetyl-5-(4-methylpiperazin-1-yl)phenyl	109	6.9626
66	Me	NH_{2}	2-methoxy-4-(4-methylpiperazin-1-yl)phenyl	40	7.3979

S2. Syntheses of 4-bromomethyl-3-chlorobenzyloxy (t-butyl)dimethylsilane

Scheme S1. Synthesis of 4-bromomethyl-3-chlorobenzyloxy (t-butyl)dimethylsilane.

4-(Bromomethyl)-3-chlorobenzoate (s2)
Methyl 4-(bromomethyl)-3-chlorobenzoate ($\mathrm{s} 1,0.542 \mathrm{mmol}$) was dissolved in 2.71 ml of CHCl_{3}, AIBN (0.0542 mmol) and NBS (0.813 mmol) were sequentially added, followed by stirring at $80^{\circ} \mathrm{C}$ for 20 hours. The reaction mixture was cooled to room temperature and concentrated in vacuo, followed by column chromatography and purification under EA : Hex (1:100) conditions to obtain methyl 4-(bromomethyl)-3-chlorobenzoate (s2; 70\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
(4-(Bromomethyl)-3-chlorophenyl)methanol (s3)
Compound s2 (0.372 mmol) was dissolved in 3.72 ml of THF, and Lithium aluminum hydride (0.223 mmol) was dropwise at $-78{ }^{\circ} \mathrm{C}$, followed by stirring for 1 hour. After completion of the reaction, work up was performed with ethyl acetate and 1 N HCl solution. The organic layer was dried with anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated, followed by column chromatography and purification under EA:Hex (1:5) conditions to obtain compound s3 (31\%) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.35$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$.
((4-(bromomethyl)-3-chlorobenzyl)oxy)(tert-butyl)dimethylsilane (s4)
Compound s3 (0.317 mmol) was dissolved in 1.59 ml of MC , $\mathrm{TBSCl}(0.476 \mathrm{mmol})$ and imidazole (0.634 mmol) were added, followed by stirring for 1 hour. After completion of the reaction, work up was performed with MC and H2O. The organic layer was dried with anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO} 4\right)$ and the solvent was evaporated to give compound s4 (99\%).; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.58(\mathrm{dd}, J=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

S3. Dose-response curve for IC_{50} evaluation of compound 15 (Reaction Biology Corp. Kinase Hot Spot ${ }^{S M}$ service)

S4. Representative ${ }^{1} \mathbf{H}$ NMR spectrum

13a

14a

16

18

S5. Representative ${ }^{13} \mathrm{C}$ NMR spectrum

8a

13a

15

