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Abstract: About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic
or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of
patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these
patients are frequently unknown and a genetic contribution might be underestimated. Here, we used
a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism
(SNP) arrays for the genetic analysis of two independent index patients without familial medical
history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2-¢.378+1G>T)
in the first patient and a nonsense mutation (DSG2-p.L772X) in combination with a large deletion
in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases,
which might contribute to the hidden medical history in both families. This is the first report about
these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore,
we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for
ACM index patients without obvious familial medical history. In the future, this finding might has
relevance for the genetic counseling of similar cases.
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1. Introduction

Desmosomes are multiple protein complexes mediating the cell-cell adhesion of
cardiomyocytes and epithelial cells [1]. They consist of proteins from three different pro-
tein families. The cadherins desmoglein-2 and desmocollin-2 (encoded by DSG2 and
DSC2) are type I transmembrane glycoproteins [2—4] and mediate the calcium-dependent
cell-cell adhesion between cardiomyocytes. Both proteins have extracellular domains
consisting of four cadherin domains (EC1-4) and an anchor domain (EA) [5]. Heterophilic
protein—protein interactions between the desmosomal cadherins are mediated in trans by a
strand-swap mechanism of their first EC domains [2]. Two proteins from the Armadillo
family, which are called plakophilin-2 (PKP2) and plakoglobin (JUP), bind to the cytoplas-
mic domains of the desmosomal cadherins [6]. The Armadillo domain formed by varying
numbers of Armadillo repeats is characteristic for these proteins [7,8]. Plakophilin-2 and
plakoglobin bind to desmoplakin (DSP), which is a member of the plakin family connecting
the desmosomes to the cardiac intermediate filaments, which are mainly built by desmin
(DES) [9,10]. Of note, mutations in the cardiac desmosomal genes and in addition in DES
cause arrhythmogenic cardiomyopathy (ACM, MIM, #609040) [11-17]. However, DES mu-
tations beside ACM also cause other cardiomyopathies like dilated (DCM) [18], restrictive
(RCM) [19,20], or left ventricular non-compaction cardiomyopathy (LVNC) [21,22]. In rare
cases, mutations in non-desmosomal genes have also been described for ACM [23-25].
ACM is clinically characterized by ventricular arrhythmia in combination with right or
biventricular dilation [26]. Originally, the term arrhythmogenic right ventricular cardiomy-
opathy (ARVC) was used and clinical task force guidelines have been developed and
modified for the specific clinical diagnosis of ARVC [27]. However, in the end-stage phase
of ARVC the left ventricle is also frequently affected [28]. Even dominant left ventricular
forms have been described [29], indicating an overlap between arrhythmogenic DCM
and ARVC. Despite precise clinical definitions of ACM, this term is therefore more fre-
quently used in the newer literature [30]. Progressive replacement of the myocardium
against fibrotic and fatty tissue at the cellular and histological level is characteristic for
ACM [31,32]. It is estimated that 5-10% of cases with ACM carry a pathogenic DSG2
mutation [33]. However, the majority of DSG2 variants are rare missense variants with
unknown significance [3,34] (http://www.hgmd.cf.ac.uk/ac/index.php, accessed on 20
January 2021). For some of the known DSG2 missense mutations, cleavage defects of the
pro-domain have been described [35]. In addition, a considerable number of heterozygous
pathogenic loss-of-function mutations (LoF) like nonsense, insertions, deletions, or splice
site mutations leading to frameshifts and premature termination codons (PTCs) were found
in ACM patients [36-38].

Here, we describe two unrelated index patients (Figure 1) where we identified homo-
or hemizygous DSG2 LoF mutations by next-generation sequencing (NGS) leading to ACM.
Single nucleotide polymorphism (SNP) arrays revealed consanguinity in the first family
and a large additional DSG2 deletion, spanning the region from intron 1 to 14 in the second
index patient (DSG2-Ex2_Ex14del). Because no further family members were clinically
affected, we suggest a recessive inheritance in both cases.
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Figure 1. Pedigrees of the described families. (A) Family A has a South Asian origin. The male index patient (II-1) received

his diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC) at the age of 12. (B) Family B has a Russian

origin. Circles represent females, squares males. Black-filled symbols indicate a cardiac phenotype and white symbols

indicate healthy family members. +/— indicates heterozygous, +/+ homozygous, and +/0 hemizygous status. Index

patients are marked with an arrow. Obligate carriers are shown with a black dot in the pedigree symbol.

2. Results
2.1. Clinical Description of the Patients
2.1.1. Family A

The index patient (II-1, Figure 1A) belongs to a South Asian family without obvious
familiar history of cardiomyopathies.

At the age of 12, he survived a syncope and received afterwards his clinical diagnosis
of ARVC according to the revised task force criteria [27]. In detail, echocardiography
and magnetic resonance imaging (MRI) revealed normal left ventricular structure (left
ventricular end-diastolic diameter, LVEDD = 43 mm) and function (fractional shortening,
FS = 33%, end-diastolic volume 78 mL/m?, left ventricular ejection fraction LVEF = 69%) at
this time. However, the right ventricle was dilated (parasternal long axis right ventricular
outflow view, PLAX RVOT = 33 mm in the long axis view, FAC 31%, end-diastolic volume
138 mL/m?, EF 29% with additional segmental bulging, Figure 2A,B). Analysis of a right
ventricular biopsy revealed slight endo-fibrotic elastosis with proliferating myofibroblasts
(Figure 2C,D). In addition, a right axis deviation, primarily incomplete, later complete right
bundle branch block, non-sustained ventricular tachycardia and ventricular extra beats
were present (Figure 2E,F) in the ECG. Speckle tracking echocardiography (STE) revealed
dyssynchrony of the septum and right ventricular wall (Figure 3 and Video S1). Therefore,
the patient was supplied with an implantable cardioverter-defibrillator (ICD). Clinical
follow-up using echocardiography resulted in an increasing dilatation of the right ventricle
(RVEDD = 69 mm, 17 years) and decreasing right ventricular function (TAPSE = 14 mm)
in combination with paradoxical septal motions and a dilated right atrium. Because
of ventricular tachycardia, the patient received several ICD shocks. At the age of 22,
an additional left ventricular systolic dysfunction (LVEF = 38%) without significant left
ventricular dilation (LVEDD = 51 mm) was detected. Concentration of n-terminal pro-brain
natriuretic peptide (NT-proBNP) was slightly increased (952 pg/mL) at this time. No
further family members developed any significant cardiac phenotype.
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Figure 2. Clinical data of II-I, Family A. (A,B) Cardiac magnetic resonance imaging (MRI) revealed a dilated right ventricle
with reduced global function and segmental bulging. Hematoxylin and eosin (C) and trichrome staining (D) of a right-
ventricular biopsy revealed subendocardial fibrosis and degeneration of cardiomyocytes. Scale bars represent 50 um.
(E,F) Right axis deviation, at the age of 12 years still incomplete, later complete right bundle branch block, inverted T-waves
in the right precordial leads and non-sustained ventricular tachycardia were present in the 12-lead electrocardiogram (ECG).
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Figure 3. Speckle tracking echocardiography (STE) demonstrated dyssynchrony of the septal and
right ventricular free-wall segments (see also Video S1, Supplementary Data).

2.1.2. Family B

The index patient (II-2, Family B, Figure 1B) belongs to a Caucasian family without
obvious familiar history of cardiomyopathies. At the age of 22, he was hospitalized with se-
vere pain in his left thigh and acute arterial thrombosis was diagnosed. Afterwards, cardiac
MRI and echocardiography were used to identify the possible cardiac reasons for acute
thrombosis. These investigations revealed biventricular enlargement (LVEDD = 64 mm)
and reduced systolic LV and RV function (LVEF = 37%, right ventricular ejection fraction
RVEF = 23%, Figure 4A-F) and signs of the left-ventricular non-compaction morphology
using criteria defined by Petersen and Grothoff et al. [39,40]. LVNC is mainly character-
ized by increased endomyocardial trabeculations. Diagnosis of ACM was based on the
Padua criteria [41]. The patient fulfilled all major and minor criteria, excluding a family
history. Holter monitoring ECG showed a sinus rhythm with frequent premature ventricu-
lar beats and non-sustained ventricular tachycardia (Figure 4J,K). Therefore, an ICD was
implanted. Several follow-ups were held afterwards and revealed a progressive decrease
of the left ventricular systolic function (LVEF = 21%) and enlarged end-diastole LV size
(LVEDD = 65 mm). Due to progressive ARVC, he was consulted for heart transplantation.
Cardiologists clinically examined all other family members (Figure 1B). Cardiac MRI re-
vealed normal heart structure and function. Symptoms of ARVC were absent in I-1, I-2, II-1,
and II-3 (Figure 1B). However, cardiac MRI of the proband’s mother (I-2, Family B) revealed
left-ventricular non-compaction morphology according to criteria of Petersen et al. [39]
(Figure 5B).

2.2. Genetic Analyses

Index patient II-1 of Family A (Figure 1A) developed a progressive ACM. Although
no further family members were clinically affected, we performed a genetic analysis of
the affected index patient using a broad NGS panel, covering 174 genes associated with
cardiomyopathies or syndromes with cardiac involvement. Filtering using a MAF < 0.001
revealed six heterozygous missense variants and one homozygous mutation in the donor
splice site of DSG2 exon 4 (DSG2—c.378+1G>T, Table 1, Figure 6A). Sanger sequencing was
used for verification of DSG2-¢.378+1G>T (Figure 6B). DSG2 is localized on chromosome 18
and encodes desmoglein-2. In theory, three different reasons might explain homozygosity
of DSG2—¢.378+1G>T.
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1.  Consanguinity of the parents
2. Anadditional large deletion in DSG2 localized on the second chromosome mimicking

homozygosity DSG2-c.378+1G>T or

3. Uniparental isodisomy (UPD)

Figure 4. Clinical data of Family B. (A-I) Cardiac magnetic resonance imaging (MRI) of index patient
(II-2, Family B). Asterisk indicates thinning and aneurysmal protrusion of right ventricular wall
(A—C). Arrows indicate ischemic changes in left ventricle (D,F). Dotted arrows indicate thrombosis
in the right ventricle (B,E). Ellipse shows fibrosis of the right ventricle (F). Triangle demonstrates LV
non-compaction (G-I). Rhombus demonstrates RV non-compaction (G,I). (J) Epsilon waves were
present in the 12-lead ECG. (K) Tachycardia was present in the Holter monitoring-ECG.
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Figure 5. Cardiac magnetic resonance imaging (MRI) of the I-1 (A), I-2 (B,D-F), and II -1 (C) of Family B. Asterisk indicates
non-compaction layer.

Table 1. List of rare variants (MAF < 0.001) identified in the index patient II-1 (Family A).

Genomic . Kind of Protein ACMG
Gene Coordinates Transeript Mutation Change MAF ! Classification
DSG?2 18:29100928 NM_001943.3 Splice Site Unknown novel Likely
Mutation pathogenic
TBX3 12:115120963 NM_016569.3 Missense p-M15V novel vus
TRIM63 1:26380423 NM_032588.3 Missense p-D338Y 0.0002671 VUs
PKP2 12:32949101 NM_004572.3 Missense p-R811S 0.00002828 VvUS
SDHA 5:236628 NM_004168.2 Missense p-A449V 0.000003543 VUS
TTN 2:179650454 NM_001267550.1 Missense p-D796N 0.00007782 VUSs
LTBP2 14:74975348 NM_000428.2 Missense p-A1204V 0.0008008 VvUS

I According to the Genome Aggregation Database (gnomAD), https://gnomad.broadinstitute.org/, 20 January 2021; ACMG = American
College of Medical Genetics and Genomics, MAF = minor allele frequency, VUS = variant of unknown significance.

Since no genomic DNA of the parents or siblings was available, we used a SNP
microarray for chromosomal analysis of II-1 (Family A, Figure 6C). A large putative deletion
on chromosome 18 was excluded by this analysis (Figure 6D). However, we identified a
loss of heterozygosity (LOH) on chromosome 18 (15,605 kbp, Figure 6D). In addition, we
found seven further regions with LOHs localized on autosomes (LOH > 5000 kb, Figure 6C).
The total size of the autosomal LOH regions is 4.39% (total autosome LOH = 121,988 kbp;
covered autosome length 2,781,797 kbp), supporting consanguinity of the parents. This fits
to a parental fourth-degree relationship like, e.g., first cousins once removed (theoretical
Froh = 3.125%, [42]). Because of these findings it can be suggested that both parents are
obligate carriers for DSG2—¢.378+1G>T leading to homozygosity of this mutation in II-1
(Figure 1A).
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Figure 6. Genetic analysis of II-1 (Family A). (A) Integrated genome view of exon 4 in DSG2 of
patient II-1. (B) Electropherogram of exon 4 in DSG2 (II-1). The mutation DSG2-c.378+1G>T is
affecting the donor splice site and is found in a homozygous status. (C) Karyoview of II-1. LOH =
loss of heterozygosity. (D) Detailed ideogram of human chromosome 18 revealing a 15.6 Mb loss of
heterozygosity (LOH).

In family B with Russian origin, only the index patient (II-2, Figure 1B) received an
ACM diagnosis. Comparable to family A, we started the genetic analysis with an NGS
approach for the index patient II-2, revealing eight rare variants with a MAF < 0.001
(Table 2). Interestingly, comparable to family A we found exclusively reads for a nonsense
mutation DSG2-p.L772X, indicating homo- or hemizygosity (Figure 7A). This finding
was verified by Sanger sequencing. In addition, we genotyped the unaffected parents
(I-1 and I-2) and the two siblings (II-1 and II-3). Of note, beside the heterozygous DSG2-
p-L772X mutation, the father carried a further heterozygous SNP (DSG2-p.R773K, MAF =
0.2604, https:/ /gnomad.broadinstitute.org/variant/18-29122799-G- A?dataset=gnomad_
r2_1 (accessed on 20 January 2021), Figure 7B). Surprisingly, the mother (I-2) was wild type
for both variants excluding parental consanguinity (Figure 7C). The older brother II-1 of
the index patient did not carry the nonsense variant, but carried the SNP DSG2-p.R773K
in a heterozygous status (Figure 7D). The dizygotic twin sister II-3 presented the same
SNP in a homozygous status (Figure 7F). Since all children carried either DSG2-p.L772X
or -p.R773K, it can be concluded that the father (I-1) carried both DSG2 variants in a
compound heterozygous status. To investigate the genetic reason for homozygosity of
DSG2-p.L772X in 1I-2 and of DSG2-p.R773K in II-3, we performed a SNP microarray for
the index patient II-2 and his parents (Supplementary Figure S1). These analyses revealed
a large additional deletion mutation affecting nearly the complete DSG2 gene (Figure 7G-I)
for the index patient (II-2) and his mother (I-2). In summary, we identified a hemizygous
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nonsense variant (DSG2-p.L772X) for the index patient and suggest therefore a recessive
inheritance in Family B (Figure 1B) caused by paternal inheritance of DSG2-p.L772X and
maternal inheritance of DSG2_Ex2-14del.

Table 2. List of rare variants (MAF < 0.001) identified in the index patient II-2 (Family B).

Gene Genomic Transcript Kind of Protein or MAF ! ACMG
Coordinates Mutation cDNA Change Classification
DSG2 1829122796 NM_001943.5 Likely
: u . nonsense p.L772X Novel .
pathogenic
TTN 2:179497960 NM_001256850.1 missense p-V12706A 0.000008059 Vvus
PRDM16 1:3331216 NM_022114.3 unknown ¢.2691+5G>A 0.0002009 Likely benign
VCL 10:75849080 NM_014000.3 missense p-S383R Novel VUsS
SYNE2 14:64545208 NM_182914.2 missense p-S3683T 0.0002230 Vus
BAG3 10:121431767 NM_004281.4 missense p-R170W 0.000004054 vus
PRDM16 1:3328948 NM_022114.4 missense p-F729L 0.0003899 Likely benign
RYR1 19:39014565 NM_000540.3 missense p.13484T 0.00005576 Vus

1 According to the Genome Aggregation Database (gnomAD), https://gnomad.broadinstitute.org/, 20 January 2021; ACMG = American
College of Medical Genetics and Genomics, MAF = minor allele frequency, NA = not applicable, VUS = variant of unknown significance.
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Figure 7. (A-I) Genetic analysis of Family B. (A) Integrated genome view of exon 14 in DSG2
of patient II-2 (Family B). (B—F) Partial electropherograms of DSG2 exon 14 revealed for I-1 two
heterozygous variants p.L772X and p.R773K (B), for I-2 a wild-type sequence (C), for II-1 the het-
erozygous variant p.R773K (D), for II-2 hemizygous p.L772X (E), and for II-3 hemizygous p.R773K
(F). (G) Karyoview of II-2 (Family B). LOH = loss of heterozygosity. (H,I) Detailed ideogram of
human chromosome 18 revealing an additional deletion on the second chromosome affecting nearly
the complete DSG2 gene.
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3. Discussion

In 2002, Eshkind et al. demonstrated that the global homozygous knock-out of Dsg2
in mice is embryonic lethal [43]. Therefore, different conditional knock-out, knock-in, and
transgenic mouse models for Dsg2 leading to murine arrhythmogenic cardiomyopathies
have been developed [44—49]. In spite of this, the first pathogenic DSG2 mutations associ-
ated with ACM in humans were found in 2006 [37,50]. Currently, more than 200 different
DSG2 variants associated with ACM or DCM are listed in the Human Gene Mutation
Database (HGMD, http://www.hgmd.cf.ac.uk/ (accessed on 20 January 2021), Qiagen,
Hilden, Germany). The majority of them are rare missense variants with unknown sig-
nificance and /or with unknown pathomechanism. However, small insertions, deletions,
indels, and splicing mutations in DSG2 have been also described. Presumably, these LoF
mutations in DSG2 might induce nonsense-mediated mRNA decay and in consequence
lead to loss of the adhesive function of the desmosomes as suggested by Kant et al. using
heart-specific Dsg2-deficient mice [46]. Interestingly, recessive homozygous or compound
heterozygous DSG2 mutations are rare, indicating a dominant inheritance in most cases [51].
In this report, we describe two independent index patients with ACM carrying either a
homozygous splice site mutation in DSG2 or a hemizygous nonsense mutation. Although
we cannot completely exclude modifying effects of rare variants of unknown significance
(VUS,) like, e.g., PKP2-p.R811S in II-1, Family A (Table 1), it is unlikely that these VUS
are primary causative based on their MAF. Mutations in PKP2 are common in ARVC [11].
However, most of them are truncating mutations leading to haploinsufficiency.

Homozygosity is caused in Family A by consanguinity and hemizygosity is caused
in Family B by a large deletion on the second chromosome. In Family B the index patient
received the nonsense mutation from the father and the large deletion from the mother. In-
terestingly, no further family members developed clinical symptoms of ACM. Therefore, for
both presented cases it can be suggested that the ACM phenotype is caused by a recessive
inheritance of DSG2 LoF mutations. Uniparental isodisomy, as we have recently described
for the homozygous mutation DSC2-¢.1913_1916del AGAA leading to the truncation and
degradation of desmocollin-2 [52], can be excluded by SNP microarray analyses in both
cases. Recently, some other homozygous DSC2 mutations associated with ACM were
described, indicating a recessive inheritance in specific cases for this gene [53-56].

In general, for about 50% of ACM patients a pathogenic mutation in the desmosomal
genes can be identified [33]. Rare de novo mutations in isolated index patients [57] and rare
copy number variants [58,59] might explain some cases without obvious familial/genetic
history. In addition, we show here two independent cases with recessive DSG2 mutations,
which can contribute to a hidden family anamnesis. It is worth noting that in proband (II-2,
Family B) and his mother (I-2, Family B) a left ventricular non-compaction morphology
was detected according to echocardiography and MRI analyses [39]. However, it does not
meet the modern MRI criteria for non-compacted myocardium [40]. Currently, we cannot
exclude that a mutation in DSG2 might modify this pathology. It is noteworthy that the
disease in proband debuted with the development of acute arterial thrombosis, most likely
cardio-embolic origin on the background of a non-compaction in the LV.

Despite the recessive type of inheritance in both families (A and B), we suggest to
continue dynamic clinical investigations of heterozygous mutation carriers in the future
as long as possible because we cannot exclude that a cardiac phenotype will occur at a
later onset.

4. Materials and Methods

An NGS panel covering 174 cardiomyopathy-associated genes (TrueSight Cardio Panel,
Illumina, San Diego, CA, USA, Appendix A) was used for sequencing of the index patient
in Family A (II-1, Family A). A minor allele frequency (MAF) < 0.001 (The Genome Ag-
gregation Database, gnomAD, 19 January 2021) was applied for filtering relevant variants.
Sanger sequencing was used for verification of DSG2—¢.378+1G>T (Macrogen, Amsterdam,
Netherlands). A SNP array, CytoScan HD (Affimetrix, Santa Clara, CA, USA), was per-
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formed using the genomic DNA from II-1 (Family A) by Atlas Biolabs (Berlin, Germany).
The overall average marker spacing of the CytoScan HD is 1148 base pairs (intragenic = 880
and intergenic = 1737). Chromosome Analysis Suite V4.2.0.80 (Thermo Fisher Scientific,
Waltham, MA, USA) was used for analysis of SNP arrays. No DNA samples of further
family members were available for genetic analyses in this family. For histology of the
right ventricular biopsy from II-1, Family A, a hematoxylin and eosin staining (HE) and a
trichrome staining (TC) was done using standard protocols [32].

An NGS exome sequencing analysis using Nextseq 550 (Illumina, San Diego, CA, USA)
was done for the index patient in Family B (II-2, Figure 2B). Libraries were prepared using
the Truseq DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and the xGen
Exome Research Panel (IDT, Integrated DNA Technologies, Coralville, IA, USA). Variants
with MAF < 0.001 in 188 cardiomyopathy-associated genes (Appendix B) were analyzed.
The verification of DSG2-p.L772X and DSG2-Ex2_Ex14del was done by Sanger sequencing
on an Applied Biosystems 3500 DNA Analyzer (Thermo Fisher Scientific, Waltham, MA,
USA). All stages of sequencing were carried out according to the manufacturers’ protocols.
CytoScan HD arrays (Affimetrix, Santa Clara, CA, USA) were used for I-1, I-2, and 1I-1
(Family B) and were performed by Atlas Biolabs (Berlin, Germany). Analysis of SNP arrays
was done using Chromosome Analysis Suite V4.2.0.80 (Thermo Fisher Scientific, Waltham,
MA, USA).

5. Conclusions

Our genetic analyses of two independent ACM index patients without obvious familial
anamnesis revealed homo- or hemizygous LoF mutations in DSG2. Therefore, we suggest
also for ACM patients without further affected family members a genetic counseling and
analysis, because putative pathogenic mutations might be hidden by a recessive inheritance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/1jms22073786/s1.
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Appendix A

ABCCY9, ABCG5, ABCGS, ACTA1, ACTA2, ACTC1, ACTN2, AKAP9, ALMS1, ANK2,
ANKRD1, APOA4, APOA5, APOB, APOC2, APOE, BAG3, BRAF, CACNAI1C, CACNA2D1,
CACNB2, CALM1, CALR3, CASQ2, CAV3, CBL, CBS, CETP, COL3A1, COL5A1, COL5A2,
COX15, CREB3L3, CRELD1, CRYAB, CSRP3, CTF1, DES, DMD, DNAJC19, DOLK, DPP6,
DSC2, DSG2, DSP, DTNA, EFEMP2, ELN, EMD, EYA4, FBN1, FBN2, FHL1, FHL2, FKRP,
FKTN, FXN, GAA, GATAD1, GCKR, GJA5, GLA, GPD1L, GPIHBP1, HADHA, HCN4, HFE,
HRAS, HSPBS, ILK, JAG1, JPH2, JUP, KCNA5, KCND3, KCNE1, KCNE2, KCNE3, KCNH?2,
KCNJ2, KCNJ5, KCNJ§8, KCNQ1, KLF10, KRAS, LAMA2, LAMA4, LAMP2, LDB3, LDLR,
LDLRAPI1, LMF1, LMNA, LPL, LTBP2, MAP2K1, MAP2K2, MIB1, MURC, MYBPC3, MYH11,
MYHe6, MYH7, MYL2, MYL3, MYLK, MYLK2, MYO6, MYOZ2, MYPN, NEXN, NKX2-
5, NODAL, NOTCH1, NPPA, NRAS, PCSK9, PDLIM3, PKP2, PLN, PRDM16, PRKAG2,
PRKAR1A, PTPN11, RAF1, RANGRF, RBM20, RYR1, RYR2, SALL4, SCN1B, SCN2B, SCN3B,
SCN4B, SCN5A, SCO2, SDHA, SEPN1, SGCB, SGCD, SGCG, SHOC2, SLC25A4, SLC2A10,
SMAD3, SMAD4, SNTA1, SOS1, SREBF2, TAZ, TBX20, TBX3, TBX5, TCAP, TGFB2, TGFB3,
TGFBR1, TGFBR2, TMEM43, TMPO, TNNC1, TNNI3, TNNT2, TPM1, TRDN, TRIM63,
TRPM4, TTN, TITR, TXNRD2, VCL, ZBTB17, ZHX3, ZIC3.

Appendix B

Genes associated with different cardiomyopathies: AARS2, ABCC9, ACAD9, ACADVL,
ACTA1, ACTA2, AGK, AGL, AGPAT2, ALMS1, ANK2, ATP5E, ATPAF2, BRAF, BSCL2, CALR3,
CAV3, CBL, COA5, COQ2, COX15, COX6B1, CRELD1, CRYAB, CTF1, CTNNA3, DES, DLD,
DNMI1L, DOLK, DSC2, DSG2, ELN, EMD, EYA4, FAH, FHL1, FHL2, FHOD3, FKRP, FKTN,
FLNA, FOXD4, FOXRED1, FXN, GAA, GATA4, GATA6, GATAD1, GFM1, GJA1, GJA5, GLB1,
GNPTAB, GUSB, HFE, HRAS, ILK, JAG1, JPH2, JUP, KCNJ2, KCNJ8, KLF10, KRAS, LAMA?2,
LAMAA4, LIAS, MAP2K1, MAP2K2, MRPL3, MRPS22, MTO1, MURC, MYH11, MYLK2,
MYOM1, MYOT, MYOZ2, NEBL, NEXN, NRAS, OBSL1, PDHA1, PDLIM3, PHKA1, PITX2,
PMM?2, PRKAG2, PSEN1, PSEN2, RAF1, RBM20, SCO2, SGCA, SGCB, SGCD, SHOC2,
SLC22A5, SLC25A3, SLC25A4, SMAD3, SOS1, SPHA, SPRED1, SURF1, SYNE1, SYNE?2,
TBX1, TBX20, TBX5, TCAP, TGFB3, TMEM43, TMEM70, TMPO, TRIM63, TSFM, TTR,
TXNRD?2, VCL, XK.

Genes associated with LVNC: ACTC1, ACTN2, AMPD1, ANKRD1, ARFGEF2, BAG3,
CASQ2, CNBP, CSRP3, DMD, DMPK, DNAJC19, DSP, DTNA, EYA1, FBN2, FLNC, GBE1,
GLA, HADHB, HBB, HCCS, HCN4, HMGCL, ITGA7, KCNH2, KCNQ1, LAMP2, LDB3,
LMNA, MIB1, MLYCD, MMACHC, MYBPC3, MYH6, MYH7, MYH7B, MYL2, MYL3, MYPN,
NKX2-5, NNT, NOTCH1, PKP2, PLEC, PLEKHM?2, PLN, PMP22, PRDM16, PTPN11, RYRI,
RYR2, SCN5A, SDHA, SDHD, SIX1, SIX5, TAZ, TEAP2A, TNNC1, TNNI3, TNNT2, TNNT3,
TPM1, TTN, YWHAE.
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