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Abstract: All molecular systems, from small molecules to macromolecules, exhibit specific character-
istics for a specific environment and time. In order to gain an accurate understanding of the functions
of all types of molecules, studies of their structure and dynamics are essential. Through dynamic
studies, using techniques such as spectroscopy, structure determination, and computer analysis, it is
possible to collect functional information on molecules at specific times and in specific environments.
Such information not only reveals the properties and mechanisms of action of molecules but also
provides insights that can be applied to various industries, such as the development of new materials
and drugs. Herein, I discuss the importance of molecular dynamics studies, present the time scale of
molecular motion, and review techniques for analyzing molecular dynamics.
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Imagine this example of why molecular dynamics research is important. There is
an advertisement for a new vehicle in the newspaper. It is built primarily for driving
on the road like a car, but it can fly like a light aircraft and can be sailed like a ship on
rivers or seas. Of course, it is equipped with fully autonomous driving capability, and
powered by sustainable energy. Below the introduction to each of these versatile features
is a picture of the vehicle engaged in each mode of transport (ground, air, and sea). We
can extrapolate a lot from these three pictures by imagination, but some key questions
remain unanswered. How will this vehicle transform from one mode of transport to another
(i.e., car to plane to ship)? How long will each transformation take? How long can this
transport run without replacing its energy source? How perfect/safe is its autonomous
driving? How does it handle traffic conditions on the road, sky, and sea? We cannot say
anything with confidence with just three pictures. Each mode of transport will have its own
operating characteristics, and these characteristics will also change in adaptation to changes
in operating environment. We will need tons of pictures and/or intelligently produced
videos to accurately understand the vehicle’s characteristics under all conditions we may
encounter in each mode of transportation. With continuous information (as is provided
by videos), we can accurately understand the vehicle’s performance, whereas fragmented
information (such as that from pictures) is insufficient to understand the new vehicle.

This transportation-based analogy illustrates the importance of continuous observa-
tion, like movies, for the understanding of complex processes such as those studied in the
sciences. In nature, there are many molecules (ranging from small molecules to macro-
molecules) with interesting and important molecular properties that can be elucidated
using various scientific techniques.

Among these, techniques for obtaining high-resolution structural information are
essential as they provide intuitive insights into important structural and functional char-
acteristics of molecules that play important roles in life. Currently, the three dimensional
structures of small molecules can be obtained from repositories such as the Cambridge
Structural Database (CSD) [1], which contains 1,123,962 small-molecule organic or metal-
organic structures obtained using X-ray, neutron diffraction, or microcrystal electron diffrac-
tion (MicroED) techniques [2]. The three dimensional structure of macromolecules can be
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obtained from repositories such as the Protein Data Bank (PDB) [3] and Electron Microscopy
Data Bank (EMDB), containing 175,759 and 14,493 macromolecular structures (protein,
DNA, RNA, virus, or protein-nucleic acid complexes), respectively, determined using X-ray,
nuclear magnetic resonance (NMR), cryogenic electron microscopy (Cryo-EM), or MicroED
techniques. These structures are very useful for describing molecular functions and features
and are applied as inputs for computational analysis models such as molecular dynamics
(MD) simulation [4]. However, since most of this structural information mainly deals with
static information in a specific state, it cannot provide accurate information on structural
changes caused by external environments or stimuli. Interpretation of a molecule’s function
using static information cannot explain the complete underlying mechanism and can be
misleading [5]. In order to understand the exact function of a molecule, it is necessary to
obtain dynamic information about the molecule in a spatiotemporal context [6], as the
molecular functions are intimately related to structure and dynamics [7]. In order to ob-
serve the dynamics of a molecule, it is important to understand the time scale of the motion
of the target molecule (Figure 1). The time scales of molecular motion such as electronic mo-
tion, photodissociation, photoionization, bond vibrations, molecular collisions, vibration
relaxation, solvation, proton transfer, temperature jump Raman, fluorescence, molecular
rotations, large molecule relaxation, molecular diffusion, and phosphorescence motion
varies between a few seconds to femtoseconds [8–10]. When observing the dynamics of a
molecule, the movement time scale of the molecule must be considered and an appropriate
experimental technique must be applied to observe it.
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Figure 1. Overview of time scales of molecular motions. The contents of this figure were excerpted from the contents of the
study mentioned in [8–10].

Various techniques such as spectroscopy, structure determination and computer analysis
are applied to the study of molecular dynamics (Figure 2). In order to observe the dynamics
of a molecule at a specific time, it is necessary to observe the molecule at much shorter
time intervals. In this context, ultrafast lasers have a shorter pulse duration than most
characteristic relaxation times of the condensed phase, making it possible to carry out
detailed characterization of the temporal, spatial, and spectral properties of materials [11].
The development of femtosecond spectroscopy ushered in the era of real-time investigation
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of the motion of atoms in solid, liquid, and gaseous state molecules [12,13]. Furthermore,
advances in time-resolved spectroscopy allows us to visualize the dynamics of the various
types of atoms and molecules at dynamic time units (up to tens of femtoseconds) [12].
Time-resolved vibrational spectroscopies, such as infrared absorption spectroscopy (time-
resolved IR spectroscopy) and Raman scattering (time-resolved Raman spectroscopy), have
been widely applied as a solution for studying molecular dynamics [14].
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Figure 2. Techniques for structure and dynamics. THz: terahertz spectroscopy, EPR: electron paramagnetic resonance spec-
troscopy, FTIR: Fourier-transform infrared spectroscopy, smFRET: single molecule fluorescence resonance energy transfer,
SMX: serial millisecond crystallography, SSX: serial synchrotron crystallography, SFX: serial femtosecond crystallography,
hNOE: heteronuclear nuclear Overhauser effect, CPMG: Carr–Purcell–Meiboom–Gill, AFM: atomic force microscopy, ED:
electron diffraction, SAXS: small angle X-ray scattering, SANS: small angle neutron scattering, MD: molecular dynamics,
QM: quantum mechanics, MM: molecular mechanics. The contents of this figure were excerpted from the contents of the
study mentioned in [15–19].

Meanwhile, techniques such as X-ray diffraction/scattering, NMR, Cryo-EM, MicroED,
and neutron scattering/diffraction are widely applied to study the mechanism of action
by revealing the structure of a molecule [2,15,20]. These techniques enable the study of
the flexibility of a molecule within a single static structure, and they provide dynamic
information by collecting data regarding external stimuli/environment or other static data
in a complex. With the development of X-ray technology, an X-ray free electron laser (XFEL)
with ultrashort pulse width has been created, which generates more intense X-rays than
does the existing synchrotron radiation [21–23]. The serial femtosecond crystallography
(SFX) or spectroscopic techniques using XFEL enables the determination of the molecular
structures at room temperature without radiation damage [24–26]. Additionally, time-
resolved SFX studies using an optical laser or mix-and-inject technique contribute to
the making movies with high resolution molecular dynamics [15,27]. Moreover, due to
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advances in X-ray-focusing technology and detectors, time-resolved serial millisecond
crystallography (SMX) studies as well as general serial synchrotron crystallography (SSX)
are being performed at the existing synchrotron facilities [28–30]. Recently, the analysis of
large complex structures using Cryo-EM technology has been in the spotlight [31], and the
time-resolved EM technique is expected to be useful in the future for obtaining molecular
dynamics information [32].

Additionally, computational molecular dynamics analysis by density-functional theory
(DFT) or MD simulation provides an understanding of the functions of molecules and
insights into their industrial or medical applications, such as in drug design [33–37].

Comprehensive molecular dynamics information for pinpointing the functions and
properties of molecules can be inferred from information gleaned from multiple snapshots
obtained using traditional techniques and the most advanced techniques. Examples of these
include temporal characterization based on autocorrelation and pump probe technology
combined with microscopy, spatial evolution analysis using X-ray and electron diffraction
techniques, and monitoring of the temporal and spatial evolution of materials using
nonlinear time-resolved spectroscopy [11].

In this special issue, we deal with the topic of molecular dynamics—those of small
molecules to macromolecules. The issue includes a collection of comprehensive articles
and reviews of research findings on a wide range of subjects related to molecular dynamics
and the development of the technologies that makes its study possible. The results from
this broad range of studies not only provide important insights about the technology
but also facilitate a broader understanding of molecular dynamics studies across the
various sciences.
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