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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder whose prevalence has an
incidence in senior citizens. Unfortunately, current pharmacotherapy only offers symptom relief for
patients with side effects such as bradycardia, nausea, and vomiting. Therefore, there is a present
need to provide other therapeutic alternatives for treatments for these disorders. The 5-HT, receptor
is an attractive therapeutic target since it has a potential role in central and peripheral nervous system
disorders such as AD, irritable bowel syndrome, and gastroparesis. Quantitative structure-activity
relationship analysis of a series of 62 active compounds in the 5-HT4 receptor was carried out in the
present work. The structure-activity relationship was estimated using three-dimensional quantitative
structure-activity relationship (3D-QSAR) techniques based on these structures’ field molecular
(force and Gaussian field). The best force-field QSAR models achieve a value for the coefficient of
determination of the training set of thraining = 0.821, and for the test set R%est = 0.667, while for
Gaussian-field QSAR the training and the test were thraining =0.898 and R2st = 0.695, respectively.
The obtained results were validated using a coefficient of correlation of the leave-one-out cross-
validation of Q%00 = 0.804 and Q%1 oo = 0.886 for force- and Gaussian-field QSAR, respectively.
Based on these results, novel 5-HTy partial agonists with potential biological activity (pECsy 8.209-
9.417 for force-field QSAR and 9.111-9.856 for Gaussian-field QSAR) were designed. In addition, for
the new analogues, their absorption, distribution, metabolism, excretion, and toxicity properties were
also analyzed. The results show that these new derivatives also have reasonable pharmacokinetics
and drug-like properties. Our findings suggest novel routes for the design and development of new
5-HT, partial agonists.

Keywords: Alzheimer’s disease; 5-HTj; partial agonist; 3D-QSAR; force and gaussian fields

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that mainly affects people
over 60 years old. The current pharmacotherapy only provides palliative treatments,
reducing the associated symptoms through the increase of cholinergic function. This
pharmacotherapy can produce unwanted side effects such as abdominal pain, muscle
cramps, tremors, and fatigue, among others [1]. In this sense, there is a need for new
therapeutic targets for the treatment of this disorder.

The 5-HT4 receptor (5-HT4R) belongs to a superfamily of G-protein coupled receptors
(GPCRs) [2—4]. This receptor is highly expressed in the brain regions of the hippocampus,
amygdala, and cerebral cortex, areas of the brain related to short- and long-term memory
and cognitive processing, so that deterioration of this region would be associated with
neurological diseases such as Alzheimer’s disease [5,6]. The 5-HT4R has been reported to
play an essential role in disorders of the central nervous system (CNS) such as AD [7,8],
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peripheral nervous system (PNS) disorders [9], irritable bowel syndrome [10-12], and
gastroparesis [13-15]. Moreover, 5-HT4R agonists modulate peptides derived from the
soluble amyloid precursor protein-« (a non-amyloidogenic protein) that plays a role in
neuroprotection against the neurotoxic effects of 3-amyloid [16]. Therefore, 5-HT4R partial
agonists show very promising activity for symptomatic treatments of cognitive disorders in
AD [17]. Its dual mechanism of action in treating AD and other cognition-related diseases
makes 5-HT4R a very attractive target for new drug discovery. Consequently, several
structurally diverse heteroaromatic compounds [18-21] have been explored as 5-HT4R
total or partial agonists for both CNS and PNS. Nirogi et al. reported a series of 5-HT4R
compounds with 3-isopropylimidazo [1,5-a]-pyridine-carboxamide scaffold, most of which
showed cognition-enhancing properties in animal models [22]. However, their absorption,
distribution, metabolism, excretion, and toxicity (ADMET) properties were not satisfactory
due to their low ability to penetrate the blood-brain barrier. Their results revealed that
these molecules are composed of an aromatic fragment, a coplanar functional group, and
a bulky substituent. Recently, Nirogi reported new 5-HT4R partial agonists with good
ADMET properties and potential drug candidates [23].

To design new 5-HT4R agonists, theoretical studies are substantially essential to
expedite and save resources. Several computational methods simplify the drug discovery
process. Quantitative structure-activity relationship (QSAR) is a ligand-based drug design
method, which relates to the biological activity of compounds with several physicochemical
properties [24]. However, QSAR techniques have limited efficacy for designing new
functional molecules due to the lack of three-dimensional (3D) molecules’ structures.
Consequently, 3D-QSAR averts this problem by using the 3D-attributes of ligands and
chemometric tools. That significantly improves the predictability of the biological activity
of the model [25-28].

In this work, we present a computational study of a three-dimensional quantitative
structure-activity relationship (3D-QSAR) of a set of molecules with agonist activity on
5-HT4 receptors. The calculations were carried out by using force- and Gaussian-field
based QSAR models. Our 3D-QSAR study aims to obtain helpful information to guide
future 5-HT4R agonists” design with promising therapeutic activity and that these new
analogues have good ADMET properties as prospective drug candidates.

2. Results and Discussion
2.1. Studied Compounds

The studied dataset was based on Brodney et al. [18] and Nirogi et al. [22,23]. They
reported different compounds with biological activity (5-HT4 receptor partial agonist.)
expressed in ECsp in nanomolar concentration (see Table S1 of the Supplementary Mate-
rial). In total, 62 compounds were divided in training (43 compounds) and test dataset
(19 compounds), as is shown in Figure 1. The biological activity was expressed in terms of
PECs5 for this study.

Finally, the ADMET properties were estimated by using the pkCSM [29,30] and
SwissADME [31,32] web services. On one hand, pkSCM calculates the pharmacokinetic
properties using structural similarity of the new molecules with molecules with known
pharmacokinetic properties and, from this comparison, the pkSCM program returns es-
timated values for the new molecules. On the other hand, SwissADME calculates the
different drug-likeness parameters by calculating physicochemical descriptors for each of
the designed molecules. These descriptors are lipophilic, water-solubility, surface volume,
among others (an extended description can be found in Section S3 of the Supplementary
Material). From these descriptors, the program generates an estimate of drug-likeness
based on parameters from Lipinski [33], Ghose [34], Veber [35], and Egan [36].
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Figure 1. Dataset of 62 compounds. Structures with an asterisk (*) were used as a test dataset.

2.2. Statistical Results

The statistical results for force- and Gaussian-field QSAR (FFQSAR and GFQSAR,
respectively) are presented in Tables 1 and 2. All possible field combinations were tested
for both FFQSAR and GFQSAR. In the case of FFQSAR, the combination of the steric and
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electrostatic fields was statistically significant (see Table 1) with thrammg of 0.821 and R%est
0.667. The GFQSAR models with the highest R2est values were those that considered the
field combinations (see Figure 2 and Table 2). The best model with the highest R2training
and R?st was chosen for the study. This model presented steric (0.420), electronic (0.125),
acceptor (0.304), and donor hydrogen-bond (0.151) contribution, with a correlation between
experimental and predicted data showing thraming 0.898 and with an external validation
0.695 (R?%est) (see Table S2). The experimental activities, the predicted values, and the
residual values for this model are shown in Table 3. All the compounds showed low
residual values with a range from —1.1 to 1.5 for FFQSAR and —1.2 to 1.2 for GFQSAR.

Table 1. Summary of statistical results from force field quantitative structure-activity relationship (FFQSAR) and field

contributions.
Fraction of Fields Included in the Model
Fields SD R%{raining RZ%g ramble RZfest Stability Steric Electrostatic
S 0.654 0.719 0.554 0.329 0.229 1
E 0.633 0.737 0.230 0.314 0.614 1
All 0.522 0.821 0.188 0.667 0.120 0.574 0.426

SD: Standard deviation of the regression. thraming is the value for the regression (the coefficient of determination) of the training set.
R%ycramble is the average value of R? from a series of models built using scrambled activities; this value measures the degree to which the
molecular fields can fit meaningless data. The value of R% for the predicted activities on the test set. Stability of the model predictions to
changes in the training set composition. The steric (S) and electrostatic (E) field contributions in each model.
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Figure 2. The results of the distribution of R2,.st values were obtained from 31 combinations of Gaussian fields. S, steric; E,
electrostatic; H, hydrophobic; A, hydrogen-bond acceptor; D: hydrogen-bond donor. The best Gaussian fields combination
is highlighted with an asterisk on the bars with R2training 0.898 and RZes; 0.695.

A detailed discussion about the best FFQSAR and GFQSAR models’ internal and
external validation parameters is presented in Section 52.4 of Supplementary Material.
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Table 2. Summary of statistical results from Gaussian field quantitative structure-activity relationship (GFQSAR) and field

contributions.
Field Contributions
Fields SD R%yaining  R%Scramble  RZtest  Stability S E H A D
S 0.742 0.639 0.681 0.229 0.507 1.000
E 0.362 0.914 0.769 0.573 0.688 1.000
H 0.498 0.837 0.804 0.460 0.341 1.000
A 0.567 0.789 0.645 0.548 0.587 1.000
D 0.810 0.570 0.382 0.178 0.362 1.000
SE 0.563 0.792 0.765 0.557 0.017 0.708 0.293
SH 0.565 0.791 0.784 0.405 0.019 0.509 0.491
SA 0.507 0.831 0.790 0.319 0.253 0.534 0.466
SD 0.572 0.785 0.763 0.657 0.226 0.675 0.325
EH 0.343 0.923 0.862 0.577 0.431 0.304 0.696
EA 0.479 0.849 0.743 0.656 0.593 0.345 0.655
ED 0.431 0.878 0.702 0.548 0.475 0.609 0.391
HA 0.387 0.902 0.835 0.615 0.453 0.561 0.440
HD 0.473 0.853 0.824 0.405 0.217 0.734 0.266
AD 0.504 0.833 0.681 0.526 0.328 0.710 0.290
SEH 0.483 0.847 0.817 0.560 0.141 0.417 0.170 0413
SHA 0.443 0.871 0.824 0.628 0.225 0.356 0.326 0.318
SHD 0.498 0.838 0.817 0.422 0.017 0.416 0.375 0.210
SEA 0.467 0.857 0.807 0.681 0.250 0.466 0.147 0.387
SED 0.498 0.837 0.799 0.492 0.027 0.555 0.194 0.251
SAD 0.486 0.845 0.812 0.617 0.148 0.470 0.356 0.175
EHA 0.332 0.928 0.846 0.604 0.454 0.171 0.481 0.348
EHD 0.368 0911 0.846 0.627 0.344 0.230 0.576 0.194
EAD 0.455 0.864 0.739 0.611 0.447 0.275 0.504 0.221
HAD 0.377 0.907 0.844 0.601 0.346 0.490 0.366 0.145
SEHA 0.410 0.890 0.834 0.670 0.257 0.321 0.109 0.295 0.275
SEHD 0.443 0.871 0.836 0.556 0.099 0.365 0.131 0.331 0.172
SEAD 0.442 0.898 0.826 0.695 0.172 0.420 0.125 0.304 0.151
SHAD 0.430 0.879 0.840 0.644 0.186 0.328 0.281 0.260 0.132
EHAD 0.356 0.917 0.850 0.639 0.396 0.145 0.426 0.305 0.125
SEHAD 0.395 0.898 0.847 0.674 0.213 0.302 0.095 0.258 0.228 0.117

SD is the standard deviation of the regression. RZtrainmg is the value for the regression (the coefficient of determination) of the training set.

RZramble is the average value of R2 from a series of models built using scrambled activities; this value measures the degree to which the
molecular fields can fit meaningless data. The value of R2\eqt for the predicted activities on the test set. Stability of the model predictions to
changes in the training set composition. The steric (S), electronic (E), hydrophobic (H), hydrogen-bond donor (D), and hydrogen-bond
acceptor (A) field contributions in each model.

Table 3. Experimental and calculated pECsy and residual values for the analyzed compounds obtained with the force-field
QSAR (FFQSAR) and Gaussian-field QSAR (GFQSAR) model. The highlighted rows show the test set compounds.

FFQSAR GFQSAR FFQSAR GFQSAR
Comp. PEC507exp PECs0 calc  Res. PECs0 calc  Res. Comp. PEC507exp PECs0 calc  Res. PECs0 calc  Res.
1 8.921 8.996 —0.075 8.404 0.518 32 7.246 6.825 0.421 6.993 0.253
2 8.585 8.836 —0.251 9.127 —0.542 33 6.842 7.797 —0.955 8.065 —1.223
3 7.398 8.416 —1.018 7.211 0.187 34 6.315 6.676 —0.361 6.240 0.076
4 7.509 7.745 —0.236 7.716 —0.207 35 7.268 6.893 0.375 7.441 -0.173
5 5.648 6.033 —0.385 5.894 —0.246 36 6.942 6.924 0.018 7.180 —0.238
6 6.284 6.418 —0.134 6.683 —0.399 37 8.310 8.321 —0.011 8.586 —0.276
7 6.331 5.984 0.347 6.177 0.154 38 9.523 9.551 —0.028 9.631 —0.108
8 6.133 6.173 —0.040 6.098 0.035 39 8.060 7.735 0.325 7.305 0.755
9 8.699 8.736 —0.037 8.733 —0.034 40 8.076 8.292 —0.216 7911 0.165
10 7.141 8.076 —0.935 7.222 —0.081 41 7.102 8.080 —0.978 8.083 —0.981
11 7.703 7.675 0.028 7.967 —0.264 42 6.223 5.805 0.418 5.591 0.632
12 6.067 6.801 —0.734 6.559 —0.492 43 5.712 6.893 —1.181 6.000 —0.288
13 8.244 7.459 0.785 8.088 0.156 44 7.983 7.459 0.524 7.512 0.471
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Table 3. Cont.
FFQSAR GFQSAR FFQSAR GFQSAR

Comp. pECSO,exp pEC5O_calc Res. pECSO_calc Res. Comp. pECSO,exp PECSO_calc Res. pECSO_calc Res.
14 8.000 7.932 0.068 8.196 —-0.196 45 5.712 5.226 0.486 6.499 —0.787
15 8.009 7.568 0.441 7.775 0.234 46 8.824 9.078 —0.254 9.024 —0.200
16 8.824 8.294 0.530 8.722 0.102 47 9.155 8.822 0.333 8.597 0.558
17 8.469 7.331 1.138 7.541 0.928 48 7.208 7.169 0.039 6.673 0.535
18 9.301 8.681 0.620 9.184 0.117 49 7.009 6.466 0.543 7.435 —0.426
19 6.301 6.646 —0.345 5.982 0.319 50 6.120 6.400 —0.280 6.303 —0.183
20 5.867 6.333 —0.466 6.292 —0.425 51 9.222 9.270 —0.048 9.368 —0.146
21 7.658 7.808 —0.150 7.641 0.017 52 7.866 7.670 0.196 7.525 0.341
22 7.237 7.235 0.002 7.383 —0.146 53 10.000 8.778 1.222 8.970 1.030
23 7.469 8.233 —0.764 7.944 —0.475 54 8.046 8.168 —-0.122 7.983 0.063
24 7.745 7.490 0.255 7.766 —0.021 55 6.099 6.030 0.069 5.722 0.377
25 7.738 7.225 0.513 7.848 —0.110 56 8.056 7.701 0.355 8.100 —0.044
26 7.409 7.349 0.060 7.366 0.043 57 8.886 8.488 0.398 9.006 —0.120
27 7.301 7.367 —0.066 7.527 —0.226 58 9.523 8.838 0.685 8.928 0.595
28 7.959 8.241 —0.282 7.843 0.116 59 9.398 9.487 —0.089 9.815 —0.417
29 6.076 6.727 —0.651 6.162 —0.086 60 5.963 6.700 -0.737 6.536 —0.573
30 8.319 7.986 0.333 7.491 0.829 61 7.678 6.177 1.501 6.403 1.275
31 8.284 8.662 —0.378 8.659 —0.375 62 7.377 7.497 —0.120 8.061 —0.684

Res.: Residual value. Comp.: Compound number

2.3. Analysis of the 3D-QSAR Models

The dataset of 62 compounds was randomly separated into a training set (43 compos-
ites) and a test set (19 composites). The training set was used to run different 3D-QSAR
models with FFQSAR and GFQSAR (different field combinations). The best models were
evaluated with the test set. The visualization of the best 3D-QSAR models were analyzed by
recognizing the colored regions highlighting the favored and disfavored areas that explain
the 5-HT4R partial agonist activity of the different compounds studied. For FFQSAR, the
best model was achieved with the combination of steric and electrostatic fields with R?
0.821 for the training set and R? 0.667 for the test set, respectively.

2.3.1. Force-Field Based 3D-QSAR Model—Steric and Electrostatic Contour Map

Green and yellow colors represent the force field-based steric interactions. The green
and the yellow regions represent zones where bulky substituents” addition can increase
or decrease activity, respectively (see Figure 3A). In the most active molecule (compound
53) the green contours surround the tetrahydropyran and the heterocyclic aromatic ring.
In contrast, the less active compounds have an aromatic ring, whose orientation is in the
yellow regions, resulting in decreased biological activity.

Figure 3B shows field-based electrostatic interactions which are represented by red
(electronegative) and blue (electropositive) contours. The regions coloured in blue and red
represent the most influential electropositive and electronegative zones in biological activity.
One of the largest regions for electronegative interactions is around the tertiary amine of
the piperidine and the amide’s carbonyl. Moreover, electropositive regions corresponding
to the nitrogen atoms of the oxadiazole ring are present in some compounds. The less active
molecules of the dataset have a disfavored conformation due to the imidazo[1,5-a]pyridine
heterocyclic ring. We observed that all compounds with low partial 5-HT4R agonist activity
had a chain length from amide to morpholine N of three carbon atoms. It suggests that this
distance is responsible for the decrease in biological activity.
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Figure 3. (A) Steric contour and (B) electrostatic contour maps for the best force-field based 3D-QSAR model. The active
molecules are shown in sticks for (A) and (B), respectively. The favorable and disfavored regions of the steric field shown
in (A) are highlighted in green and yellow, respectively, while the electrostatic regions are shown in (B), the favorable
electropositive and unfavorable electronegative regions are highlighted in blue and red, respectively.

2.3.2. Gaussian-Field Based 3D-QSAR Model—Steric Contour Map

The GFQSAR was generated using five-factors partial least squares (PLS) and correlat-
ing four fields: steric (S), electrostatic (E), hydrogen bond donors (HBD), and hydrogen
bond acceptor (HBA). A Q? value of 0.886 was derived from the leave-one-out (LOO) cross-
validation method. A non-cross-validation analysis yielded an R? = 0.898 with a standard
error of estimate SD = 0.377 and F ratio of 360.13 (see Table S2). The steric, electrostatic,
HBA, and HBD fields contributions (ranging from 0 to 1) were 0.420, 0.125, 0.304, and
0.151, respectively (see Table 2). The field contributions of steric (0.420) and HBA (0.304)
intensities were higher than the electrostatic (0.125) and HBD (0.151), indicating a larger
requirement of steric and hydrogen-bond acceptor for protein-ligand interactions.

The steric interactions represented in green and yellow contour are shown in Figure 4.
The green regions of the molecules represent the favorable effect of the bulky substituents,
i.e., at these positions, the bulky groups will have higher activity. Conversely, the yellow
outlines represent the regions where the bulky groups will reduce activity.

For case 53 (Figure 4A,B), the S*; contour (green contour) shows a favorable activity
closer to the isopropyl of the aromatic ring. This trend was also observed for the highly
active molecules 38, 58, and 59. On the other hand, an opposite behavior was observed for
moderately and less active molecules with substitutions with different orientations on the
aromatic ring, as is compound 5 (Figure 4C,D), a molecule that shows a deficient biological
activity, whose isopropyl orientation is opposite to that of compound 53. Similar behavior
was also observed for compounds 45, 43, and 20 with imidazo[1,5-a]pyridine ring.
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Figure 4. Contour maps obtained for the best Gaussian-based 3D-QSAR model steric (hydrogen
bond donors, HD), green and yellow regions indicate a favorable and unfavorable steric interaction,
respectively. An active molecule (53) is represented in (A) (sticks representation) and (B) (as draw
representation). Less active molecule (5) is shown in (C) (sticks representation) and (D) (as draw
representation).

2.3.3. Gaussian-Field Based 3D-QSAR Model—Electrostatic Contour Map

As for the electrostatic contour maps, the blue (E*1, E*, E*3 and E*4) and red (E7 4,
E75, E73 and E™4) contours represent the favorable and unfavorable components of the
electrostatic field (Figure 5). The bulky E*; contour surrounding the tetrahydropyran ring
(Figure 5A,B) provides information on analogues that have electron-donating substituents
that favor biological activity, such as compounds 18, 38, and 59 (pECsg 9.301, 9.523, and
9.398, respectively), compounds that have a tertiary hydroxyl group on the tetrahydropyran
ring (compounds 18 and 58). The electropositive E*3 contour highlights the importance of
amide hydrogen for biological activity (contour that reappears in the study of hydrogen-
bonding donor groups, Section 2.3.5).

The electronegative E™ 3 and E™4 contours highlight the importance of the nitrogen
specificity of the aromatic ring that would provide electron density and answer biological
activity; however, the E™3 contour stands out (Figure 5A,B), in proportion, more than the
E~ 4 contour, therefore, compounds that have a nitrogen in E™ 3 are more active than those
that have a nitrogen in E~4 (Figure 5C,D). Finally, the electropositive contours E*, and
E*4 would respond to compounds with 1,3,4-oxadiazole groups; however, their biological
activity is moderate to low (61 with pECsq 7.678, 48 with pECs( 7.208 and 35 with pECsg
7.268, see Table 3).
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Figure 5. Contour maps obtained for the best Gaussian-based 3D-QSAR model with electrostatic
interaction (HD), blue and red regions indicate favorable electropositive and electronegative inter-
actions, respectively. Active molecule (53) is represented in (A) (sticks representation) and (B) (as
draw representation). Less active molecule (5) is represented in (C) (sticks representation) and (D)
(as draw representation).

2.3.4. Gaussian-Field Based 3D-QSAR Model—Hydrogen Bond Acceptor Contour Maps

Hydrogen bond acceptor functional groups provide properties that determine the
biological activity of a drug candidate compound. Therefore, the contour map obtained
with the GFQSAR model establishes which HBA regions would help in the biological
activity of the molecule. Figure 6 shows the impact of the HBA groups on the 5-HT4R
partial agonist activity of the molecules. The regions of highest and lowest affinity are
shown with red and magenta contours, respectively. In general, in all the studied molecules,
the tetrahydropyran group is responsible for establishing hydrogen bonds (HA*3 contour).
The large affinity region (HA*; contour) near the amide carbonyl suggests that it favours
5-HT4R partial agonist activity. In contrast, fewer affinity regions indicate that functional
groups attached directly to the amide, such as hydroxyl on the piperidine ring or replacing
the piperidine with morpholine will reduce biological activity such as compounds 5, 10,
and 32 with ECs of 5.648, 7.141, and 7.246 (see Table 3), respectively. That finding is
represented by a large magenta colored area (HA ™).

2.3.5. Gaussian-Field Based 3D-QSAR Model—Hydrogen Bond Donor Contour Maps

The contour of hydrogen bond donor (HBD) maps provides significant information
about the functional groups involved in the biological activity in these compounds. Figure 7
shows the favorable (purple) and unfavorable (cyan) HBD regions. The favorable contour
(HD*1) highlights the hydrogen atom of the amide, suggesting that HBDs are favored at
that position and explaining why molecules with 1,3,4-oxadiazole have less 5-HT4R partial
agonist activity (compounds 8, 12, 19, 34, 35, 42, 48, 50, 55, and 61; EC5, values between
6.067 to 7.678), due to the change of the hydrogen bond donor capacity of the amide by the
hydrogen bond acceptor group such as the oxadiazole ring.
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Figure 6. Contour maps obtained for the best Gaussian-based 3D-QSAR model hydrogen bond accep-
tors (HBA), red and magenta regions indicate a favourable and unfavourable hydrogen bond donor
interaction, respectively. The active molecule (53) is represented in (A) (sticks representation) and (B)
(as draw representation). The less active molecule (5) is represented in (C) (sticks representation) and
(D) (as draw representation).

N (o]
HD,,

N

L

Figure 7. Contour maps obtained for the best Gaussian-based 3D-QSAR model hydrogen bond
donors (HD), violet regions indicate favorable hydrogen bond donor interactions and cyan regions
indicate unfavorable hydrogen bond donor interactions. The active molecule (53) is represented in (A)
(sticks representation) and (B) (as draw representation). The less active molecule (5) is represented in
(C) (sticks representation) and (D) (as draw representation).

2.4. Design of New Derivatives

Based on the results of the 3D-QSAR studies, thirty-nine new compounds (see Table S3,
Supplementary Material) were designed and evaluated using molecule 53 as a template.
Ten new 5-HT4R partial agonists with bioactivity greater than that predicted from the tem-
plate molecule were selected using the GFQSAR model from these thirty-nine compounds.
The structures of the ten new designed compounds and their pECs values predicted by
the constructed FFQSAR and GFQSAR models are shown in Table 4. The design of these
new derivatives seeks to enhance the steric (S*1), electrostatic (E*;), and hydrogen bond
acceptor (HA*3 and HA*,) regions by modifying fragment 3 of the template molecule (see
Figure 8). All the proposed molecules have a predicted activity better than the template
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molecule (53, pECs = 8.970) according to the GFQSAR model. However, only compound
var8 showed higher activity than 53 using both models.

Table 4. The proposed structures of new derivates and their predicted pECs values using the FFQSAR and GFQSAR
models.

ID Structures FFQSAR GFQSAR ID Structures FFQSAR GFQSAR
0.
o, Sas!
varl 8.283 9.221 var6 ”“‘5“’\%< 8.698 9.111
[ <5

(ON ™
var2 N0 8.209 9.375 var? o ““5;{ 8.690 9.547
Z>N-N,
NN x <

o HN__O
var3 HN._O 8.285 9.432 var8 Ao 9.417 9.259
Z>N-N X \\
P

HO A~y ~ OVO\

var4 ”"51)_< 8.719 9.114 var9 Do 8.818 9.700
= N/N\ -N
=, 7N N

var5 HN._0 8.775 9.513 varl0 ”“50\){ 8.641 9.849
ZINN NN

Optimun spacing 4
carbon atoms

fragment 2

fragment 3 .-~

_______________

fragment 1 .-~

FFQSAR GFQSAR
53 8.778 8.970

Figure 8. Template molecule (53) used for the derivation of new molecules/compounds with
enhanced bioactivity.

In general, the presence of the pyrazolo[1,5-a]pyridine ring provides more active
analogues. This aromatic heterocyclic system provides lipophilic and electronic features.
Furthermore, the amide attached to the heterocyclic ring at position 7 has higher biological
activity. On the other hand, all the analogues have a fragment 3 whose extension is four
carbon atoms from the amide’s nitrogen to the heterocycle’s nitrogen except compound
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var8, which has a secondary aliphatic amine. This extension of fragment 3 provides good
biological activity, where varl, var2, var3, var6, var7, and var9 have an aliphatic ring that
favors the steric region (green color, see Figure 3) of the 3D-QSAR models. These rings have
at least one functional group with hydrogen bond acceptor properties favoring the HA*3
regions’ interaction (see Figure 6). In contrast, var4, var5, var8, and varl0 compounds have
an aliphatic chain with an oxygenated functional group interacting in the HA™, hydrogen
bond acceptor region.

2.5. ADMET Predictions

Most drug candidates fail to make it through clinical trials in the drug discovery
process because of their poor pharmacokinetics. To assess whether all newly designed
compounds could become potential drugs, we perform ADMET predictions.

ADMET properties are shown in Table 5, and drug similarity predictions are shown
in Table 6. The intestine is the main site of absorption of an orally administered drug. A
molecule with an absorbance of more than 30% is considered well absorbed. As shown
in Table 5, the intestinal absorbance of ten molecules is between 92.7% and 96.3%, which
reveals a very good absorption in the human gut. Significantly, the intestinal absorbance of
compound varé is higher than 96%. A volume of distribution (VDss) greater than 0.45 is
considered high. High VDss indicates that more drugs are distributed in tissues than in
plasma. The VDss of the ten new compounds were higher than 0.45. %clearpage

Table 5. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of new designed molecules.

Absorption  Distribution Metabolism Excretion Toxicity
Substrate Inhibitor
ID IA1 VDss 2 2D6 3A4 1A2 2C19 2C9 2D6 3A4 TC® AMES Hepatotoxicity S Skin
ensitization
53 92.738 1.473 Yes Yes No No No Yes Yes 0.825 No Yes No
varl 95.344 1.158 No Yes No No No No Yes 0.626 No Yes No
var2 95.054 1.152 No Yes No No No No No 0.776 No Yes No
var3 94.483 1.084 No Yes No No No No No 0.789 No Yes No
var4 95.045 0.941 No Yes No No No No No 0.837 No Yes No
var5 95.572 0.826 No Yes No No No No No 1.258 No Yes No
varé 96.306 0.84 No Yes No No No No No 0.936 No Yes No
var7 95.844 0.952 No Yes No No No No No 1.06 No Yes No
var8 94.815 0.584 No No No No No No No 1.171 No Yes No
var9 92.905 0.961 No No No No No No Yes 0.719 No Yes No
varl0  95.300 0.671 No No No No No No Yes 0.881 No Yes No

1 1A is intestinal absorption, values expressed in % absorption. 2 VDss is volume of distribution, values expressed in log L kg~!. 3 TC is
total clearance, values expressed in log mL min—! kg 1.

Table 6. Drug likeness of novel designed molecules based on Lipinski, Ghose, Veber, and Egan rules,
and their synthetic accessibility.

ID Lipinski Ghose Veber Egan Synthetic Accessibility

53 Yes Yes Yes Yes 3.26
varl Yes No Yes Yes 4.77
var2 Yes Yes Yes Yes 4.55
var3 Yes Yes Yes Yes 4.4
vard Yes Yes Yes Yes 3.52
varb Yes Yes No Yes 3.68
var6 Yes Yes Yes Yes 4.07
var7 Yes Yes Yes Yes 3.97
var8 Yes Yes Yes Yes 2.71
var9 Yes No Yes Yes 4.89

varl0 Yes Yes Yes Yes 3.48
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Metabolism plays an essential role in converting pharmacological compounds. Cy-
tochromes CYP2D6 and CYP3A4 are the two main P450 isoforms responsible for drug
metabolism. As indicated in Table 5, all designed small molecules were neither substrate
nor inhibitor of CYP2D6, a feature that may be an advantage since compound 53 is in-
hibitory to CYP2D6. Furthermore, the compounds were substrates of CYP3A4 except for
compounds var8, var9, and varl10, indicating that CYP3A4 can metabolize compounds varl-
var7. Compounds var2, var3, var4, var5, var6, var7, and var8 are not CYP3A4 inhibitors,
implying that they will not affect normal drug metabolism.

Drug clearance related to bioavailability is essential in determining dosing rates to
achieve steady-state concentrations in the body. From the predicted total clearance, all
compounds can be excreted without problems at the renal level.

Furthermore, drug toxicity is another important index for drug screening. Drugs
should be as non-toxic to human health as possible or have a wide therapeutic margin. All
new derivatives are non-toxic to AMES (estimation of the mutagenic potential of chemical
compounds) and do not cause skin sensitization. However, all new compounds have
potential hepatotoxicity, which could possibly alter normal liver function. To further
understand this unfavorable side effect, the synthesis of the proposed compounds must
be tested in a living organism. However, such studies go beyond the current stage of
this study.

Finally, the online tool SwissADME (http://www.swissadme.ch/, accessed on 19
February 2021), which provides access to several different rule-based filters, was used
to predict drug similarity. As shown in Table 6, all new compounds meet the Lipinski
and Egan drug similarity rules; only compounds varl and var9 fail the Ghose filter, and
compound var> fails the Veber filter. According to Lipinski and Egan’s drug similarity
rules, the results of multiple evaluations indicate that these computationally designed
compounds can be converted into oral drugs. The synthetic accessibility values of all
designed molecules are approximately 4, meaning that they are synthesizable compounds
(synthetic accessibility ranges from 1-10).

3. Materials and Methods
3.1. Dataset Collection

A total of 62 partial agonists of the 5-HTy receptor (Figure 1), which showed promis-
sory potency, were collected from the literature [18,22,23]. All the compounds with pECsg
values ranging from 5.64 to 10.0 were used in this study. The geometry for all these
molecules was converted into a 3D structure using OCHEM. The 3D structure of the
molecules was processed with OMEGA [37] module using the following parameters: (i)
AM1_BCC Forece field, (ii) FixpKa from the QUAPAC package for all possible ionization
states at a given biological pH, (iii) one low energy conformation per ligand. Force- and
Gaussian-field 3D-QSAR calculations were performed for all the molecules. All the training
and test set molecules with experimental and predicted ECsy values were listed in Table S1
of the Supplementary Material.

3.2. Alignment

The alignment of molecules is the most crucial input for the generation of 3D-QSAR
models. The compound with the highest activity (53) was used as the template molecule.
A shape-based alignment was used for all conformers of each ligand. These alignments
were carried out with ROCS suite [38]. Finally, each ligand’s best conformer was filtered
considering electrostatic field compound 53, as is shown in Figure 51 of the Supplementary
Material.

3.3. Field-Based QSAR Model

The 3D-QSAR analysis using field-based methods was performed with the QSAR
tool of the Schrodinger Suite. The 3D-QSAR method builds the model by relating the
known activities and molecular elements of the training set using the OPLS_2005 force
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field. The steric and electrostatic field around the ligand on a 3D grid was calculated using
the field-based 3D-QSAR. The force-field-based QSAR model is an alignment-dependent
method in which the interaction energy terms of the molecular field are correlated with
biological activities using multivariate statistical analysis. In the 3D-QSAR model based
on Gaussian force fields, interaction energy calculations were performed using steric,
electrostatic, hydrogen bond donor (HBD), and hydrogen bond acceptor (HBA) potential
fields using Gaussian equations for the field calculations. The fields were calculated on an
orthohedral grid enclosing the training set molecules, with a spacing of 1 A and extending
3 A beyond the boundaries of this set. The threshold for van der Waals and electrostatic
interactions was set at 30 kcal/mol, eliminating points closer than 2 A from any of the
atoms in the training set. During the PLS procedure, all variables (grid points) with a
standard deviation less than 0.05 were removed.

The lattice and probe step sizes were adjusted automatically. The partial least squares
(PLS) analysis is applied to construct the best model through the linear correlation of
FFQSAR and GFQSAR concerning pECsg [18,22,23]. The maximum number of PLS factors
was set to 5. A cross-validation analysis was performed using the leave-one-out method.

The external predictive ability of each model constructed was assessed by calculating
the predictive correlation coefficient (R%4est). In addition, the models were also subjected to
external validation criteria according to the test proposed by Golbraikh and Tropsha (see
Supplementary Material in Section 52.4) [39,40]. All these calculations were carried out
with the DTC Lab software tools (https://dtclab.webs.com/software-tools, accessed on 25
March 2021).

3.4. Prediction ADMET Properties

Drug candidates need to have good ADMET (absorption, distribution, metabolism,
excretion, and toxicity) and drug-likeness profiles to initially estimate pharmacokinetic
and drug-likeness parameters in the drug discovery process [41].

In this work, new candidates with ADMET properties include human intestinal
absorption, steady-state volume of distribution (VDss), hepatic metabolism, total clearance,
AMES toxicity, hepatotoxicity, and skin sensitization properties. ADMET can be predicted
using pkCSM [29].

The prediction of drug similarity of new molecules is estimated using parameters
based on Lipinski, Ghose, Veber, and Egan rules and their synthetic accessibility by ap-
plying the SwissADME web tool [31] (http:/ /www.swissadme.ch, accessed on 25 March
2021). The SwissADME synthetic accessibility score is mainly based on the assumption of
the molecular fragments in the “actually” obtainable molecules, which correlates with the
ease of synthesis. The score is normalized to range from 1 (very easy) to 10 (very difficult
to synthesise).

4. Conclusions

The structures included in this study have a reasonable structure-activity relationship
and good correlation. The force and Gaussian-field models were generated and showed
good R? and Q?% oo values for the models. The field-based model has R? = 0.821 and
Q? = 0.804 based on the steric and electrostatic fields. The Gaussian model has R? = 0.898
and Q? = 0.886 based on the four field intensities of steric, electrostatic, hydrogen-bond
acceptor (HBA), and hydrogen-bond donor (HBD). The analysis of both 3D-QSAR models
indicates that the largest contributions are provided by steric and hydrogen bond acceptors
properties (0.420 and 0.304, respectively). The models developed herein can be further
applied to design new compounds with potent 5-HT, receptor partial agonists. Finally, we
found three factors that could effectively enhance the activity of 5-HT4R partial agonists:

(1) The four-carbon atom distance between the amide nitrogen and the aliphatic amine
corresponding to fragment 3.

(2) Structural variability in fragment 3 considering aliphatic rings that provide a favourable
hydrophobic source for activity
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(3) The hydrogen bond acceptor groups in fragment 3 can enhance the activity of com-
pounds.

The structural elements related to the biological activity of these compounds studied
are shown in Figure 9.

Bulky substituents in one of Fragment 3 Onti -
the two regions N S , 4p:;Tbuonn saptz;c:sg
Hydrogen bond aceptor ' Hydrogen bond aceptor
group is important N /! K group is important
N ONG™ /
Electronegative
favoured region

Hydrogen bond donnor UL
group is important -

Heterocyclic aromatic
ring required

Bulky and hydrophobic
substituents

Figure 9. Main structure-activity relationships derived from this study.

Finally, the combination of the three factors showed better predicted biological ac-
tivity than the single or the two factors (var 8). According to these rules, thirty-nine new
molecules were designed, and the constructed 3D-QSAR models were used to predict
the pECsg value of the newly designed molecules. Ten new 5-HT4R partial agonists were
selected as having promised biological activity compared to the studied compounds. Fur-
thermore, the results of in silico studies suggested that these new 5-HT4R partial agonists
have reasonable ADMET properties and drug-likeness. These results establish a theoretical
basis for further study of these compounds. A deeper study focused on synthesizing of
these compounds and the experimental study of their biological activity will pursue in
future research.
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Abbreviations

5-HT4R Receptor 5-HT,

AD Alzheimer’s disease

S Steric

E Electrostatic

H Hydrophobic

HBA Hydrogen bond acceptor
HBD Hydrogen bond donor

ADMET Absorption, distribution, metabolism, excretion, and toxicity
FFQSAR Force-field based QSAR

GFQSAR  Gaussian-field based QSAR

CCC Correlation coefficient of concordance

3D-QSAR  Three-dimensional quantitative structure-activity relationship
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