Switching Ion Binding Selectivity of Thiacalix[4]arene Monocrowns at Liquid–Liquid and 2D-Confined Interfaces

Anton Muravev^{1,}*, Ayrat Yakupov², Tatiana Gerasimova¹, Ramil Nugmanov², Ekaterina Trushina³, Olga Babaeva¹, Guliya Nizameeva⁴, Viktor Syakaev¹, Sergey Katsyuba¹, Sofiya Selektor⁵, Svetlana Solovieva², and Igor Antipin²

¹Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

²Kazan Federal University, Kazan, 420008 Russia

³School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, United Kingdom

⁴Kazan National Research Technological University, Kazan, 420015 Russia

⁵Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071 Russia Corresponding author e-mail: antonm@iopc.ru

Table of contents

Structures of the compounds	2
Physical characteristics of compounds 2 , 5 , and 6	3
Gas-phase complexation data of thiacalixcrown receptors	13
Dynamic light scattering data of thiacalixcrown receptors	15
Computational data of thiacalix[4]monocrown-ethers	16
Langmuir monolayer measurements of thiacalix[4]crown-ethers	17

^{*} Corresponding author. Tel.: +7-843-273-9365; fax: +7-843-273-1872; e-mail: antonm@iopc.ru

Structures of the compounds

2b

5b

6a

6b

5c

Fig. S1. ¹H NMR spectrum of compound **2a** (CDCl₃, 400 MHz, 303 K).

Fig. S2. MALDI mass spectrum of compound 2a (p-nitroaniline matrix).

Fig. S3. ¹H NMR spectrum of compound **2b** (CDCl₃, 400 MHz, 303 K).

Fig. S4. MALDI mass spectrum of compound 2b (p-nitroaniline matrix).

Fig. S5. ¹H NMR spectrum of compound **2c** (CDCl₃, 400 MHz, 303 K).

Fig. S6. MALDI mass spectrum of compound 2c (p-nitroaniline matrix).

Fig. S8. ¹³C NMR spectrum and DEPT-135 experiment of compound **5a** (CDCl₃, 100 MHz, 303 K).

Fig. S9. MALDI mass spectrum of compound 5a (p-nitroaniline matrix).

Fig. S10. IR spectrum of compound 5a (KBr).

Fig. S12. ¹³C NMR spectrum and DEPT-135 experiment of compound **5b** (CDCl₃, 126 MHz, 303 K).

Fig. S13. MALDI mass spectrum of compound **5b** (*p*-nitroaniline matrix).

Fig. S14. IR spectrum of compound **5b** (KBr).

Fig. S16. ^{13}C NMR spectrum of compound 5c (CDCl_3, 100 MHz, 295 K).

Fig. S17. MALDI mass spectrum of compound 5c (p-nitroaniline matrix).

Fig. S18. IR spectrum of compound 5c (KBr).

Fig. S20. ¹H NMR spectrum of compound **6b** (CDCl₃, 400 MHz, 303 K).

Gas-phase complexation data of thiacalixcrown receptors

lon	2a	2b	2c	5a	5b	5c
Li⁺	[M+Li] ⁺ 100%	[M+Li] ⁺ 100%	[M+Li] ⁺ 23%	[M+Li] ⁺ 100%	[M+Li] ⁺ 100%	[M+Li] ⁺ 100%
	[M+2Li-H]⁺ 6.4%	[M+2Li-H] ⁺ 28%	[M+2Li-H] ⁺ 100%	[M+Na] ⁺ 3.1%	[M+Na]⁺ 3%	
					[M+K] ⁺ 8%	
Na⁺	[M+H]⁺ 6%	[M+H] ⁺ <1%	[M+Na] ⁺ 100%	[M+Na]⁺ 100%	[M+H]⁺ 1.5%	[M+Na]⁺ 100%
	[M+Na] ⁺ 100%	[M+Na] ⁺ 100%	[M+2Na-H] ⁺ 1.6%	[M+K] ⁺ 1.2%	[M+Na] ⁺ 100%	[M+K]⁺ 4.6%
		[M+K] ⁺ 30%	[M+K] ⁺ 29%		[M+K]⁺ 37%	
K ⁺	[M+H] ⁺ 66.5%	[M+Na]⁺ 3.8%	[M+Na] ⁺ 1.2%	[M+Na] ⁺ 100%	[M+K] ⁺ 100%	[M+H] ⁺ 3.7%
	[M+Na]⁺ 63%	[M+K] ⁺ 100%	[M+K] ⁺ 100%	[M+K]⁺ 3.3%		[M+Na] ⁺ 7%
	[M+K] ⁺ 100%	[M+2K-H] ⁺ 1.4%	[M+2K-H] ⁺ 3%			[M+K] ⁺ 100%
Rb⁺	[M+H] ⁺ 78%	[M+Na] ⁺ 34%	[M+K] ⁺ 2.7%	[M+Na] ⁺ 100%	[M+H] ⁺ <1%	[M+H] ⁺ <1%
	[M+Na] ⁺ 78%	[M+K] ⁺ 31%	[M+Rb] ⁺ 100%	[M+K] ⁺ 2%	[M+Na] ⁺ <1%	[M+Na] ⁺ <1%
	[M+K] ⁺ 22%	[M+Rb] ⁺ 100%	[M+2Rb-H] ⁺ <1%	[M+Rb] ⁺ 4.5%	[M+K]⁺ 5.3%	[M+K] ⁺ <1%
	[M+Rb] ⁺ 100%	[M+2Rb-H] ⁺ <1%			[M+Rb] ⁺ 100%	[M+Rb] ⁺ 100%
Cs⁺	[M+H] ⁺ (7.2%)	[M+H] ⁺ 5%	[M+Na] ⁺ 7.3%	[M+Na] ⁺ 100%	[M+H]⁺ 5.5%	[M+Cs] ⁺ 100%
	[M+Na] ⁺ (99%)	[M+Na] ⁺ 100%	[M+K] ⁺ 2%	[M+K]⁺ 3.5%	[M+Na] ⁺ 19%	
	[M+K] ⁺ (6.6%)	[M+K] ⁺ 18%	[M+Cs] ⁺ 100%	[M+Cs]⁺ 4.5%	[M+K] ⁺ 100%	
	[M+Cs] ⁺ (100%)	[M+Cs]⁺ 78%	[M+2Cs-H] ⁺ <1%		[M+Cs] ⁺ 32%	
		[M+2Cs-H] ⁺ <1%				

Mg ²⁺	[M+H] ⁺ 10% [M+K] ⁺ 1.3% [M+Mg-H] ⁺ / [M+Na ⁺ 100%	[M+K] ⁺ 4.7% [M+Mg-H] ⁺ / [M+Na] ⁺ 100%	[M+H] ⁺ 80% [M+Na] ⁺ 100% [M+K] 66%	[M+Na] ⁺ 100%	[M+H] ⁺ 1.4% [M+Na] ⁺ 16% [M+K] ⁺ 100%	[M+H] ⁺ 82% [M+Na] ⁺ 100% [M+K] ⁺ 88% [M+MgNO-] ⁺
	[M+NgNO ₃ +Mg -2H] ⁺ 4%	2H] ⁺ 26%				55%
Ca ²⁺	[M+H] ⁺ 22.5% [M+Na] ⁺ 1.2% [M+Ca- H] ⁺ /[M+K] ⁺ 100%	[M+Na] ⁺ (4%) [M+Ca-H] ⁺ / [M+K] ⁺ 100%	[M+H] ⁺ 27% [M+Na] ⁺ 54% [M+Ca-H] ⁺ / [M+K] ⁺ 100% [M+CaNO ₃] ⁺ 12%	[M+Na] ⁺ 100% [M+K] ⁺ 3.4% [M+CaNO ₃] ⁺ 7.5%	[M+H]⁺ 18.5% [M+Na]⁺ 33% [M+K]⁺ 100%	[M+H] ⁺ 73% [M+Na] ⁺ 100% [M+K] ⁺ 32% [M+CaNO ₃] ⁺ 89%
Sr ²⁺	[M+H] ⁺ 48% [M+Na] ⁺ 100% [M+K] ⁺ 18% [M+Sr-H] ⁺ 23%	[M+H] ⁺ 34% [M+Na] ⁺ 31% [M+K] ⁺ 5% [M+Sr-H] ⁺ 100%	[M+H] ⁺ 21% [M+Na] ⁺ 4% [M+K] ⁺ 22% [M+Sr-H] ⁺ 100%	[M+Na]⁺ 100% [M+K]⁺ 1%	[M+H] ⁺ 36% [M+Na] ⁺ 100% [M+K] ⁺ 91%	[M+H] ⁺ 74% [M+Na] ⁺ 100% [M+K] ⁺ 32%
Ba ²⁺	[M+H] ⁺ 20% [M+Na] ⁺ 100% [M+K] ⁺ 49% [M+Ba-H] ⁺ 4.5%	[M+H] ⁺ 6% [M+Na] ⁺ 100% [M+K] ⁺ 15% [M+Ba-H] ⁺ 10%	[M+H] ⁺ 14% [M+Na] ⁺ 100% [M+K] ⁺ 88% [M+Ba-H] ⁺ 89%	[M+Na] ⁺ 100%	[M+Na]⁺ 55.5% [M+K]⁺ 100%	[M+H] ⁺ 14% [M+Na] ⁺ 100% [M+K] ⁺ 89.5%
Pb ²⁺	[M+H] ⁺ 21% [M+Na] ⁺ 100% [M+K] ⁺ 18% [M+Pb-H] ⁺ 67%	[M+H] ⁺ 4% [M+Na] ⁺ 78% [M+K] ⁺ 46% [M+Pb-H] ⁺ 100%	[M+H] ⁺ 4% [M+Na] ⁺ 57% [M+K] ⁺ 18% [M+Pb-H] ⁺ 100%	[M+Na] ⁺ 100% [M+K] ⁺ 1%	[M+Na] ⁺ 92% [M+K] ⁺ 100%	[M+H] ⁺ 10.5% [M+Na] ⁺ 100% [M+K] ⁺ 33%
Cu ²⁺	[M+H] ⁺ 100% [M+Na] ⁺ 11% [M+K] ⁺ 35% [M+Cu] ⁺ 22%	[M+H] ⁺ 99% [M+Na] ⁺ 100% [M+K] ⁺ 31% [M+Cu] ⁺ 37%	[M+H] ⁺ 9% [M+Na] ⁺ 94% [M+K] ⁺ 57% [M+Cu] ⁺ 100% [M+2Cu-H] ⁺ 10%	[M+Na]⁺ 5.5% [M+Cu]⁺ 100%	[M+Na]⁺ 6% [M+K]⁺ 100% [M+Cu]⁺ 33%	[M+Cu] ⁺ 100%
Ag ⁺	[M+Ag] ⁺ 100% [M+2Ag-H] ⁺ 1%	[M+Na] ⁺ 2.6% [M+Ag] ⁺ 100% [M+2Ag-H] ⁺ 8% [M+3Ag-2H] ⁺ <1%	[M+Ag] ⁺ 100% [M+2Ag-H] ⁺ 6% [M+3Ag-2H] ⁺ <1%	[M+Ag] ⁺ 100%	[M+Na] ⁺ 2.7% [M+K] ⁺ 20% [M+Ag] ⁺ 100%	[M+Na] ⁺ <1% [M+K] ⁺ <1% [M+Ag] ⁺ 100%
Eu ³⁺	[M+H] ⁺ 47% [M+Na] ⁺ 18% [M+K] ⁺ 12% [M+Eu-2H] ⁺ 100%	[M+Na] ⁺ 9% [M+Eu-2H] ⁺ 100% [M+EuNO₃-H] ⁺ 2.8%	[M+H] ⁺ 100% [M+Na] ⁺ 32% [M+K] ⁺ 79% [M+Eu-2H] ⁺ 69%	[M+Na] ⁺ 100%	[M+H] ⁺ 5% [M+Na] ⁺ 47% [M+K] ⁺ 100% [M+EuNO ₃ -H] ⁺ 4.3%	[M+H] ⁺ 100% [M+Na] ⁺ 53% [M+K] ⁺ 32% [M+EuNO ₃ -H] ⁺ 85%
Tb ³⁺	[M+H] ⁺ 88% [M+Na] ⁺ 3.9% [M+K] ⁺ 11% [M+Tb-2H] ⁺ 100%	[M+H] ⁺ 20% [M+Na] ⁺ 100% [M+K] ⁺ 9% [M+Tb-2H] ⁺ 70%	[M+H] ⁺ 100% [M+Na] ⁺ 58% [M+K] ⁺ 79% [M+Tb-2H] ⁺ 96%	[M+Na] ⁺ 100%	[M+Na]⁺ 8.4% [M+K]⁺ 100%	[M+H] ⁺ 100% [M+Na] ⁺ 41% [M+K] ⁺ 45%
Gd ³⁺	[M+H] ⁺ 27% [M+Na] ⁺ 10% [M+Gd-2H] ⁺ 100%	[M+H] ⁺ 8% [M+Na] ⁺ 98% [M+K] ⁺ 9% [M+Gd-2H] ⁺ 100%	[M+H] ⁺ 35% [M+Na] ⁺ 43% [M+K] ⁺ 27% [M+Gd-2H] ⁺ 100%	[M+Na] ⁺ 100%	[M+H] ⁺ 1.6% [M+Na] ⁺ 24% [M+K] ⁺ 100%	[M+H] ⁺ 34% [M+Na] ⁺ 72% [M+K] ⁺ 100%

Fig. S22. MALDI mass spectra of the ligands **5a-c** mixed with metal nitrate salts.

Dynamic light scattering data of thiacalixcrown receptors

Fig. S23. Number-averaged particle size distribution plots and corresponding correlation functions of compound **2c** in organic phase (green line) and aqueous phase (red line) after extraction of CsNO₃.

Fig. S24. Number-averaged PSD and corresponding correlation functions of compound **5c** in organic phase after mixing CH_2CI_2 and water solvents (blue line); organic phase after extraction of CsPic (red line) and CsNO₃ (pink line); and aqueous phase after extraction of cesium picrate (green line) and cesium nitrate (black line).

Fig. S25. Number-averaged PSD and corresponding correlation functions of compound **6c** in aqueous phase after mixing CH₂Cl₂ and water (red line) and organic phase after extraction of CsPic (blue line) and CsNO₃ (green line).

Fig. S26. Number-averaged PSD and corresponding correlation functions of compound (a) **2c** and (b) **5c** in aqueous phase after extraction of NaPic (red line) and RbPic (green line).

Fig. S27. MM+ minimized geometries of *PC/DC* stereoisomeric forms of ligands **2a**–**c** and *1,3-alternate* **5a–c** and **6a–c**.

Langmuir monolayer measurements of thiacalix[4]crown-ethers

Fig. S28. Evolution of the mean molecular area of compounds **2a** (black, π = 11 mN/m), **2b** (red, π = 15 mN/m), and **2c** (green, π = 20 mN/m) in monolayers at constant surface pressure.

Fig. S29. (a) Electronic absorption spectra of compounds **2**, **5**, and **6** in CHCl₃ ($c = (1.0-5.0) \times 10^{-5}$ mol L⁻¹). (b) UVRAS spectra of compounds **2**, **5**, and **6** at the air–water interface (c = 0.1 mM (compounds **2** and **5**) and 0.01 mM (compounds **6**) in CHCl₃). (c) Electronic absorption spectra of **2c** in CH₂Cl₂–(0–3)MeOH. $c_0 = 1.0 \times 10^{-4}$ mol L⁻¹.

Fig. S30. Height image of bare quartz substrate (AFM, tapping mode, 5 μ m × 5 μ m).

Fig. S31. Height image of quartz substrate with 1 monolayer of thiacalixcrown **2a** transferred at surface pressure of 10 mN/m (AFM, tapping mode, 1 μ m × 1 μ m) and the histogram corresponding to topography.

Fig. S32. Height image of quartz substrate with 1 monolayer of thiacalixcrown **2b** transferred at surface pressure of 12 mN/m (AFM, tapping mode, 1 μm × 1 μm) and the histogram corresponding to topography.

Fig. S33. Height image of quartz substrate with 1 monolayer of thiacalixcrown **5a** transferred at surface pressure of 6 mN/m (AFM, tapping mode, 1 μm × 1 μm) and the histogram corresponding to topography.

Fig. S34. Height image of quartz substrate with 1 monolayer of thiacalixcrown **5b** transferred at surface pressure of 6 mN/m (AFM, tapping mode, 1 μm × 1 μm) and the histogram corresponding to topography.

Fig. S35. Height image of quartz substrate with 1 monolayer of thiacalixcrown **6a** transferred at surface pressure of 10 mN/m (AFM, tapping mode, 1 μm × 1 μm) and the histogram corresponding to topography.

Fig. S36. UVRAS spectra of (a) 2c and (b-d) 5a-c at the air-0.01 M salt water interface (c = 0.1 mM in CHCl₃).

Fig. S37. Surface pressure/SPOT–molecular area isotherms of monolayers of thiacalixcrowns **6a–c** on water or 0.01 M salt water subphase. Concentration of the ligands in spreading solvent is 1×10^{-5} M.

Fig. S38. UVRAS spectra of compound 8 at the air-water interface over monolayer compression (c = 0.1 mM in CHCl₃).

Fig. S39. Evolution of ¹H NMR spectra of compounds **6c** and **2c** on exposure to $AgCIO_4$ in $CDCI_3$ (**6c**) and $CDCI_3$: CD_3OD (10:1) (**2c**) (numbering of protons is given in Scheme S1).

Fig. S40. The π -A isotherms of compound **9** on water or 0.01 M AgNO₃ subphase. $c = 1 \times 10^{-4}$ M in CHCl₃.

Fig. S41. Frontier molecular orbitals contributing to low-energy absorption bands: a) **5b'** HOMO, b) **5b'** LUMO + 1, c) **5b'**-Ca HOMO-2, d) **5b'**-Ca LUMO + 1,