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Abstract: There is an increasing interest in polyphenols, plant secondary metabolites, in terms of
fruit quality and diet, mainly due to their antioxidant effect. However, the identification of key
gene enzymes and their roles in the phenylpropanoid pathway in temperate fruits species remains
uncertain. Apricot (Prunus armeniaca) is a Mediterranean fruit with high diversity and fruit quality
properties, being an excellent source of polyphenol compounds. For a better understanding of the
phenolic pathway in these fruits, we selected a set of accessions with genetic-based differences in
phenolic compounds accumulation. HPLC analysis of the main phenolic compounds and tran-
scriptional analysis of the genes involved in key steps of the polyphenol network were carried out.
Phenylalanine ammonia-lyase (PAL), dihydroflavonol-4-reductase (DFR) and flavonol synthase (FLS)
were the key enzymes selected. Orthologous of the genes involved in transcription of these enzymes
were identified in apricot: ParPAL1, ParPAL2, ParDFR, ParFLS1 and ParFLS2. Transcriptional data of
the genes involved in those critical points and their relationships with the polyphenol compounds
were analyzed. Higher expression of ParDFR and ParPAL2 has been associated with red-blushed
accessions. Differences in expression between paralogues could be related to the presence of a
BOXCOREDCPAL cis-acting element related to the genes involved in anthocyanin synthesis ParFLS2,
ParDFR and ParPAL2.

Keywords: phenolic pathway; FLS; DFR; PAL; fruits

1. Introduction

Apricot (Prunus armeniaca) is an important fruit crop in Mediterranean basin countries
and Asia, with a wide diversity in pomological characteristics and fruit quality properties
due to its different diversification centers [1]. Apricots are a good source of vitamins,
carotenoids, and polyphenols [2], which makes this species a good choice from a nutraceu-
tical point of view [3].

Higher plants have several defense mechanisms against biotic and abiotic stresses.
Some of these mechanisms result in the synthesis of a large number of secondary metabo-
lites. Flavonoids are one of these defense-related secondary metabolites, being a family
of polyphenols synthesized by the phenylpropanoid biosynthetic pathway [4]. These sec-
ondary metabolites remain in different plant organs and accumulate on the plant surface [5].
In the case of flavonoid compounds, their accumulation is unequally distributed within
tissues, as its concentration is higher in the peel of several fruits such as apple [6], peach [7],
or apricot [8].

Polyphenols have been identified as secondary metabolites with great antioxidant
activity [9-11]. In recent years, there is an increasing interest in them as contributors to fruit
quality and dietary properties. In the case of apricot, the fruit peel is an excellent source
of phenolic compounds. The main phenylpropanoid-derivate secondary metabolites in
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apricot are chlorogenic and neochlorogenic acids, two caffeate derivates monolignols, while
the main flavonols are rutin and quercetin-3-glucuronide [12].

Phenylpropanoid biosynthesis starts from the conversion of L-phenylalanine into
cinnamic acid due to the action of phenylalanine ammonia-lyase (PAL) (Figure 1).
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Figure 1. Phenolic biosynthesis pathway. Red arrows represent the key genes studied: PAL (pheny-
lalanine ammonia-lyase), FLS (flavonol synthase), and DFR (dihydroflavonol-4-reductase). Yellow
squares represent the main metabolites contributing to apricot antioxidant capacity.

Phenylalanine ammonia-lyase (PAL) has been described as the first enzyme in the
phenylpropanoid pathway, considered a key regulatory point between primary and sec-
ondary metabolism through conversion of L-phenylalanine into cinnamic acid [13]. PAL is
encoded by a multi-gene family, in which the number of genes involved depends on the
species. In Arabidopsis and Nicotiana, four PAL-encoding genes have been described [14-16],
five in poplar [17], and two in different Prunus species [18]. In the following step, cinnamic
acid 4-hydroxylase converts cinnamic acid into 4-coumaric acid, to which a coenzyme-A is
added due to the action of 4-coumarate-CoA ligase, giving 4-coumaroyl-CoA as a result.
At this point, the pathway can branch off to the caffeate derivates biosynthesis, producing
chlorogenic and neochlorogenic acids. Alternatively, 4-coumaroyl-CoA is also used by
chalcone synthase to catalyze the synthesis of chalcone, which is isomerized to colorless
flavanones. These compounds can be hydroxylated at three different positions, by three
different flavonoid hydroxylases, producing a group of dihydroflavonols. Then, the phe-
nolic pathway can branch off to the flavonols biosynthesis due to the action of flavonol
synthase (FLS). This enzyme uses dihydroflavonols (dihydroquercetin, dihydrokaempferol,
or dihydromyricetin) as a substrate to produce kaempferol, quercetin, or myricetin, the
main precursors of some flavonols such as rutin or quercetin-3-glucuronide. Previous
works have identified FLS-encoding genes in Arabidopsis [19,20]. In addition, FLS has
been related with dihydroflavonols catalysis to flavonol but also it has been related to
anthocyanin accumulation [20,21]. On the other hand, dihydroflavonol-4-reductase (DFR)
enzyme controls one of the limiting steps of the anthocyanin pathway, reducing dihy-
droflavonols to leucoanthocyanidins [22-24], therefore using the same substrate as FLS.
Several DFR-encoding genes have been identified in different species [23,25-27]. Although
phenolic metabolism regulation remains ambiguous in some points, various studies have
identified the role of MYB transcription factors in phenolic synthesis regulation [28-30].

Nevertheless, although the main steps of the metabolic pathway are described, the
identification of key gene enzymes and their roles in the phenylpropanoid pathway of some
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fruit crops remain uncertain. As the first step for a better understanding of the phenolic
pathway in fruits, we selected a set of apricot accessions from the IVIA’s apricot breeding
program with genetic-based differences in phenolic compound accumulation [8].

Fruit phenolic content of the genotypes selected was evaluated and compared with
the genetic expression of genes encoding key enzymes of the phenolic biosynthesis path-
way related to primary phenolic compounds (PAL), anthocyanin biosynthesis (DFR), and
secondary phenolic metabolites (FLS). Since FLS and DFR use the same substrate for
producing either flavonols or anthocyanins, respectively, their possible role in flavonol
accumulation in apricot should be studied. Characterization of the expression of main
genes acting in the phenolic pathway and its relationship with fruit polyphenol content
will provide tools to unravel the phenolic pathway of fruit species. This information will
be of interest in breeding programs aimed at increasing fruit quality and useful for the
promotion of fruit consumption.

2. Results
2.1. Apricot Polyphenol Content

Total polyphenol content and the main phenolic compounds were evaluated for each
year of study, including the two-years average content. Results are indicated in Table 1
and Table S1. Significant differences were found among all genotypes studied. The higher
values were obtained in genotypes with an important red-blush color on the skin: ‘Dama
Rosa’, ‘GG9310’, “‘GG979’, ‘GP9817’, and ‘HM964".

Table 1. Polyphenol total content (mg/100 g DW). Average + standard deviation. Different letter
means significant differences among genotypes. Varieties with * produced fruits with a red-blush on
the skin >50%.

Genotype

2019

2020

Two-Years Average

Canino
Dama Rosa *
Dama Taronja *

539.63 £+ 12.81 ab
172521 £22212 g
699.71 £ 27.00 bed

669.52 £ 30.03 a
1565.50 £ 64.26 e
1171.19 £ 286.97 cd

604.58 £ 74.08 a
1645.36 £170.41 d
935.45 + 316.10 abc

GG9310 * 1024.98 £ 9.58 ef 1008.08 £ 80.72 abc 1016.53 £ 52.23 bc
GG979 * 630.10 £ 11.57 abc 1018.73 £ 159.22 bc 824.41 £+ 235.59 abc
Goldrich 894.02 &+ 25.15 de 876.18 £ 22.06 abc 885.10 & 23.31 abc
GP9817 * 1167.16 £17.91 f 916.08 £ 67.15 abc 1041.62 + 144.38 bc
HG9821 514.38 4+ 3.73 ab 814.96 + 51.46 ab 664.67 + 167.84 ab
HG9850 42275 + 1896 a 695.63 + 39.43 ab 559.19 £+ 152.00 a
HM964 * 822.83 4 28.91 cde 825.43 + 23.56 ab 824.13 4 23.63 abc
Mitger 832.44 £ 28.91 cde 1509.14 £+ 76.83 de 1170.79 £ 374.27 ¢
SEOP934 497.04 + 20.18 ab 738.04 £+ 75.04 ab 617.54 £ 140.85 a

The most important disease affecting Prunus species is caused by the Plum Pox Virus
(PPV). The donor of PPV resistance ‘Goldrich” and hybrids between ‘Goldrich” and the
Mediterranean autochthonous varieties (Ginesta and Palau) (Figure 2), presented more
than 50% of red-blush in the skin and the highest amounts of total polyphenol content.
The variety ‘Mitger” contributes as well to the total polyphenol content of hybrids. Results
indicated that hybrids from these three varieties (Ginesta, Palau and Mitger) crossed with
‘Goldrich’ produced genotypes with interesting polyphenol content.

The main secondary phenolic compounds: rutin, quercetin, chlorogenic, and neochloro-
genic acid were analyzed and a similar trend was obtained. ‘Dama Rosa’” showed the
highest concentrations for all the studied compounds. ‘Goldrich” hybrids ‘Dama Rosa’,
‘Dama Taronja’, and ‘GP9817" showed higher content of neochlorogenic acid and rutin
compared to the other accessions (Figure 3). Differences among cultivars were found in
both years (Table S1).
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Figure 2. Examples of apricot fruits from Mediterranean varieties used as genitors in the breeding
program with high red-blush on the skin. This trait is related to anthocyanin content. (A). Fruits from
‘Ginesta’ (B). Fruits from ‘Palau’.
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Figure 3. Chlorogenic (A), neochlorogenic (B), rutin (C) and quercetin-3-glucuronide (D) contents (mg/100 g DW) in 2019

(red) and 2020 (blue). Values represent the mean of 3 biological replicates, bars represent standard deviation. Different

letters represent statistical differences between genotypes.

2.2. Putative Orthologous and Phylogenetic Analysis

BLAST analysis using P. persica and A. thaliana DFR, FLS, and PAL identified a to-
tal of five genes in P. armeniaca: ParDFR (PARG07267), ParFLS1 (PARGO08425), ParFLS2
(PARG08426), ParPAL1 (PARG18722), ParPAL2 (PARG02214). Table S2 shows high (>95%)
conservation between peach and apricot for all genes. PAL genes were located in dif-
ferent linkage groups in both species, and as a consequence, in different synteny blocks.
PpePAL1 was located in LG2, meanwhile apricot was located in LG5. However, PpePAL2,
located in LG6, matched in LG1 in apricot. PpeDFR, PpeFLS1, and PpeFLS2 were located
in LG1 in peach, but they match with LG2 in Prunus armeniaca. All the predicted loca-
tions matched with the synteny between these regions in apricot and peach. In addition,
Arabidopsis thaliana and Prunus armeniaca also had a high identity (>80%) for PAL, more
than 70% for ParDFR and 60% for ParFLS1 and 45.65% for ParFLS2 (Table S3). In addition,
protein alignment revealed a high conservation among Prunus and Arabidopsis thaliana
(Tables S4 and S5). ParPAL1 and ParPAL2 showed around 80% of similarity with AtPAL1
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and AtPAL2, respectively. Regarding DFR, similarity was around 70% mean. FLS showed
the lowest similarity with 57% and 43% for FLS1 and FLS2. A similar trend was observed
for Prunus persica and Arabidopsis thaliana.

ParPAL1 and the putative PALI orthologous from Prunus persica and Malus domestica
were clustered together. ParPAL2 and its putative orthologous were grouped in a different
cluster which showed the differences among both paralogs. The phylogenetic tree of
phenylalanine ammonia-lyase proteins (Figure 4A), showed that all Arabidopsis thaliana
proteins clustered together.

A 100 AtPALI
—_ Arabidopsis thaliana

AtPAL3
4‘“‘"— AtPAL4
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_| Prunus armeniaca
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Figure 4. Neighbor-Joining phylogenetic tree for the proteins encoded by PAL (A), DFR (B), and
FSL (C) genes. Each tree was bootstrapped 1000 times. Numbers close to each branch represent the
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test.
Trees are drawn to scale according to evolutionary distances (p-distance), included under each tree
representing the number of substitutions per site.



Int. J. Mol. Sci. 2021, 22, 3411

60of 17

The phylogenetic tree revealed that DFR proteins of Prunus persica and Prunus armeniaca
clustered together, being closed to its orthologous from Malus domestica (Figure 4B).

The predicted proteins encoded by FLS genes of Arabidopsis thaliana grouped in a
cluster. On the other hand, Prunus persica predicted proteins from PpeFLS2 and ParFLS2
were grouped in the same cluster, as were Prunus armeniaca PpeFLS1 and ParFLS1. However,
Fragaria vesca predicted sequences encoded by FoFLS clustered in another tree branch with
the Malus domestica proteins group (Figure 4C).

2.3. Gene Expression

Genetic expression of the genes studied (ParPAL1, ParPAL2, ParDFR, ParFLS1, ParFLS2)
did not show a year effect but a genotype effect (Kruskal-Wallis test). Subsequently, we
found minor differences in gene expression among genotypes (Figure 5, Table S6).
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Figure 5. Genetic expression (average of both years of study) of ParPAL1 (A), ParPAL2 (B), ParDFR (C), and ParFLS2 (D).
Bars represent standard deviation. Different letters represent statistically significant differences.

Genetic expression of ParPAL1, ParPAL2, ParDFR, and ParFLS2 showed significant
differences among genotypes (Figure 5). Concerning the expression of flavonol-synthase
encoding gene ParFLS1, no significant differences among genotypes were observed.

Regarding the expression of phenylalanine ammonia-lyase (ParPAL1 and ParPAL2),
only the variety ‘Goldrich” showed significant differences on PALI and two genotypes
showed significant differences on PAL2 (‘Mitger” and HG9850).

2.4. Contribution of ‘Goldrich’ to Phenolic Compounds Content and Genetic Expression

In this study, ‘Goldrich” used as donor of resistance to PPV in most apricot breeding
programs worldwide and the main contributor to the hybrids included in this study, was
evaluated as contributor of compounds for fruit quality (Table 2).
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Table 2. ‘Goldrich’ contribution to phenolic content: Sum of squares (SS) and model parameters coefficients. SS;: SS relative;
5S;: SS total; p-v: p-value; G,: Goldrich relative; Sig: Significance.

Year Goldrich Year x Goldrich Residual
SSt SS, p-v SS: SS, p-v SS; SS. p-v SS; SS, Total R2
Neochlogenic 108,653 0.095 0.0039 120,718 0.1051  0.0024 10.0892 0.000 0.9771 826,863 0.720 1.15 x 10° 0.280
Chlorogenic 288,022 0.149 0.0004 134,852 0.0700  0.0124  12,565.3 0.007 0.4359 1.39 x 10° 0.722 1.93 x 10° 0.278
Rutin 1140.39 0.001 0.8023 90,359.6 0.0596  0.0286 92,447 .4 0.061 0.0269 1.23 x 10° 0.811 1.51 x 10° 0.189
glﬁiiﬁ;‘l‘di 26687 0001  0.7803 523664 00208 0219 605821  0.024 01865 231346 0921 251296  0.079
Total content 684,536 0.083 0.0089 1.08 x 10° 0.1312  0.0012 191,481 0.023 0.1591 6.42 x 10° 0.782 8.21 x 10° 0.218
Constant Goldrich
Lower Lower .
Mean Lim Error Mean Lim Error G, Sig
Neochlogenic 228.557 193.471 35.086 12794 46.913 81.027 56.0% i
Chlorogenic 236.938 191.437 45.501 135.222  30.1403 105.082 57.1% *
Rutin 296.716 253.959 42.757  110.689 11.9464 98.743  37.3% *
Quercetin-3-glucurunide 25.4043 19.5356 5.869 84265  —5.12673 13.553  33.2% NS
Total content 787.615 689.815 97.800 382278 156.418 225.860 48.5% i

* Significant differences (p < 0.05); ** Significant differences (p < 0.01); NS: non-significant.

The variety ‘Goldrich” showed a significant genetic effect on total polyphenol content.
A coefficient of 382.28 mg 100 g~! DW, which represents more than 45% of the general
average of the population. A similar genetic effect was observed for the specific phenolic
compounds, except quercetin-3-glucuronide, in which the genetic effect of ‘Goldrich” was
not significant. The genetic effect of ‘Goldrich” for neochlorogenic and chlorogenic acids
were 127.94 and 135.22 mg 100g !, representing 56% and 57% of the general average,
respectively. For rutin, the coefficient was 110.7 mg 100g ™! (37.3% of the general average).

Concerning genetic expression, the cultivar ‘Goldrich” had a genetic effect on the
expression of all the genes studied. This effect was significant for the five genes studied
ParPAL1, ParPAL2 ParDFR, ParFLS1, ParFLS2, (Table 3). The genetic effect of ‘Goldrich’
varies from 58.2% in ParFLS2 to 98.7% in ParDFR.

Table 3. ‘Goldrich’ contribution to genetic expression: Sum of squares and model parameters coefficients. SS;: SS relative;
SS;: SS total; p-v: p-value; G,: Goldrich relative; Sig: Significance.

Year Goldrich Year x Goldrich Residual
SSt SS, p-v SS¢ SS, p-v SS; SS, p-v SS; SS,

Total R2

ParDFR 2.2294 0.023  0.1686 17738 0.1795 0.0002 24002 0.024 0.1534 782977 0.792  98.8062 0.208
ParFLS1 17.9388 0.073 0.002 8.0677 0.0327 0.0362 11.5896 0.047 0.0124 2194 0.888 246939 0.112
ParFLS2 0.0474 0.000  0.8526 6.7223  0.0636 0.0297 2.8529  0.027 0.1527 927271 0.878 105.665 0.122
ParPAL1 0.3709 0.006 05249  4.2923 0.0655 0.0332 0.3443 0.005 0.5401 60.8265 0.928 65.5523 0.072
ParPAL2 1.0437 0.009 0.4138 16.03  0.1310 0.0020 0.1313 0.001 0.7714 104974 0.859 122217 0.141

Constant Goldrich
Lower Lower .
Mean Lim Error Mean Lim Error G, Sig
ParDFR 1.57183 1.2304 0.341 —1.5509 —2.3393 0.788 —98.7% x*
ParFLS1 1.54347 12259 0318 —0.7697 —1.4891 0.719 —49.9% *
ParFLS2 1.64119 12696 0372 —0.9547 —1.8128 0.858 —58.2% *
ParParPAL1 1.08334 0.7799 0303 0.7652 0.0628  0.702 70.6% *
ParPAL2 1.80279 14075 0395 —14731 —23861 0913 —81.7% **

* Significant differences (p < 0.05); ** Significant differences (p < 0.01); NS: non-significant.

2.5. Relationships between Gene Expression and Phenolic Compound Accumulation

A correlation analysis performed among compounds and expression of genes studied
revealed a significant correlation between neochlorogenic acid and the rest of the phenolic
compounds. (Table 4).
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Table 4. Pearson correlation coefficients among compounds and gene expression.

Parameter ParPAL1 ParPAL2  ParDFR  ParFLS1  ParFLS2  Neochlorogenic Chlorogenic Rutin
ParPAL1
ParPAL2 0.1507
ParDFR —0.0163 0.8098 **
ParFLS1 —0.1899 0.3408 **  0.3139 **
ParFLS2 —0.2726 * 0.0273 0.1629 0.1261
Neochlorogenic —0.1951 —0.1369 —0.0258 —0.1043 0.2919 *
Chlorogenic —0.1317 —0.1216 —0.017 0.0051 —0.011 0.6835 **
Rutin 0.0283 0.1635 0.0568 —0.2062 0.1943 0.2929 * 0.0734
Quercetin3- 535 0.0083 0.0477  —0.144  0.1216 0.4452 ** 0.2233 0.7407 **
glucuronide

* Significant differences (p < 0.05); ** Significant differences (p < 0.01).

ParDFR expression revealed a positive correlation with ParAL2 (0.8) but also showed
positive correlation with ParFLS1, which also correlated positively with ParPAL2. The gene
expression obtained indicates interaction among the genes selected in key steps of the
polyphenol pathway.

To complete the previous study, we studied the relationships between the gene
expression and each phenolic compound content through a linear regression model
(Tables S7 and S8). Ratios such as PAL/FLS, PAL/DFR or FLS/DFR were analyzed in
order to study the differences in gene expression balance and its possible relationship
with a preferential biosynthesis of anthocyanins, flavonols or caffeate-derivates. The
trend between the phenolic compounds content and the expression of genes obtained is
summarized in Figure 6.

N

Neochlorogenic —<|: =ParPAL2/ParFLS1

Chlorogenic { - ParPAL2/ParFLS1

2019-202(0 | —=  Neochlorogenic + Chlorogenic —[ = ParPAL2/ParFLS1

Rutin - None

Quercetin-3-glucuronide -[None

| . Rutin + Quercetin-3-glucuronide ‘{ None

Figure 6. Significant effects of gene expression data from the linear regression model contributing to
the content of each compound in both years studied. Negative symbol means negative contribution.

Both neochlorogenic and chlorogenic acid content were negatively influenced by
ParPAL2 /ParFLS2 ratio. Due to neochlorogenic and chlorogenic acids being synthetized in
the same pathway branch, the correlation between their content and the gene expression
was also evaluated together. Data from the two-years average revealed a negative impact
of ParPAL2/ParFLS1 in the neochlorogenic and chlorogenic total content. Concerning
rutin and quercetin-3-glucuronide content, no significant correlation was found. The gene
expression effect on the levels of accumulation of all the compounds was low.

2.6. Cis-Acting Elements Analysis

Due to the correlation among expression of some genes, a study of upstream sequences to
find cis-acting elements recognized by MYB-like transcription factors was carried out (Figure 7).
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Figure 7. Analysis of cis-acting elements on 1500 bp upstream from start codon (ATG) sequences of
Prunus armeniaca DFR, PAL, and FLS genes. MRE: MYB-like Recognition Element; MYC: MYC-like
recognition sequence; TATA: TATA box-like; BOXLCOREDCPAL: Consensus of the putative “core”
sequences of box-L-like PAL promoter region.

In ParDFR, we found at 694 bp upstream from ATG, a TATA-BOX-PAL related, next to
other TATA-box-like motif and MRE (a MYB-recognition element). In addition, a MYC motif
was found together with a TATA-box-like. Furthermore, at 238 bp upstream from ATG, a
MRE was found encoding also a BOXLCOREDCPAL, a motif related with the PAL promoter
region. This MRE was closed to a MYC motif.

In ParPAL2, 403 bp and 255 bp upstream from ATG we found an MRE encoding a
BOXLCOREDCPAL with a different sequence from the one found in ParDFR. However,
220 bp upstream from ATG we found the same MRE encoding a BOXLCOREDCPAL as
found in DFR. In addition, a TATA-BOX-PAL related was found 139 bp upstream.

However, in ParPAL1 we did not find the same MRE encoding the BOXLCOREDCPAL,
found in ParDRF and PAL2 upstream. Indeed, we found 551 bp upstream from ATG,



Int. J. Mol. Sci. 2021, 22, 3411

10 of 17

also the same MRE motif but differing only in a nucleotide. On the other hand, in 276 bp
upstream we found an MRE encoding a PAL-box-like motif, identical as found twice in PAL2.

In ParFLS1, we found four MRE, but none of them encoded a PAL-box-like motif.
However, 438 bp upstream from ATG, we found a MYC motif, but also an MRE antisense.

In ParFLS2, we found 572 bp upstream the same MRE encoding a BOXLCOREDCPAL,
as found in ParDFR and ParPAL2. Furthermore, 765 bp upstream we found the same
MYC/MRE motif found in ParFLS1. Moreover, the same cis-acting element was found
antisense 289 bp upstream from ATG, but antisense.

3. Discussion
3.1. Polyphenol Content

The total polyphenol and individual phenolic compounds analyzed were genotype-
dependent. The higher values corresponded to genotypes derived from varieties charac-
terized by important red skin color, such as the Mediterranean autochthonous varieties
‘Ginesta’, ‘Palau’, and ‘Mitger’ or the donor of resistance to PPV ‘Goldrich’. This fact agrees
with the references in which polyphenol content, anthocyanins and red color of fruits
are related [31,32]. On the other hand, the linear model indicates that contribution of the
variety ‘Goldrich’ to the content of polyphenols is remarkable in agreement with previous
results [8]. This suggests that the introgression of resistance to PPV (the most important
objective of the apricot breeding programs worldwide) is not negatively affecting the fruit
quality of apricot, another important objective of the apricot breeding programs from the
Mediterranean basin.

Genetic expression of ParPAL1 was the highest in ‘Goldrich’. This accession has
been previously identified as a contributor of phenolic compounds content in its derived
hybrids [8]. Indeed, phenylalanine ammonia-lyase (PAL) plays a significant role in the
phenylpropanoid metabolism pathway. PAL, as the first key enzyme in phenylpropanoid
biosynthesis, catalyzes the conversion of L-phenylalanine to cinnamic acid, linking primary
metabolism with secondary metabolism and becoming a speed-limiting step in phenyl-
propanoid metabolism [33]. In Prunus species, this genetic family consists of two PAL
members [18] and in our study they were identified in apricot by synteny with peach
(ParPAL1 and ParPAL2). We have identified the ‘Goldrich’ genetic effect in increasing
ParPAL1 expression. This result, along with the previously described effect in the increase
of phenolic compounds [8], suggests that this gene contributes to phenolic accumulation in
the group of genotypes studied.

The next critical step analyzed is the one where the phenolic pathway branches off to-
wards anthocyanins or flavonol synthesis. Dihydroflavonol reductase (DFR) is an enzyme
that catalyzes the reduction from dihydroflavonols to anthocyanins biosynthesis [22-24].
Our results revealed major ParDFR expression in hybrids from cultivars with high per-
centages of red-blush [34]. This red coloration could be associated with anthocyanin
accumulation as shown by previous studies in apricot [35]. Consequently, our results may
suggest a higher ParDFR expression in those cultivars with high percentages of red-blush
on the fruit skin.

Alternatively, flavonol synthase (FLS) catalyzes the reaction from dihydroflavonols
to flavanols, a group of flavonoids in which rutin and quercetin-3-glucuronide are found.
In apricot, two FLS encoding genes are present: ParFLS1 and ParFLS2. A two crop years
average revealed lower expression of ParFLS2 in those genotypes without contribution of
autochthonous genitors characterized by red-blush fruits. High expression was obtained
in hybrids from cultivars with an important percentage (>50%) of fruit skin covered by a
red-blush with a high intensity of over color [34]. Additionally, most of the cultivars of this
group were also reported as the accessions with major total content in polyphenols. These
results are in agreement with previous works, indicating that expression of FLS could be
related to phenolic biosynthesis and also linked with anthocyanins accumulation [20,21].

At gene expression level, the ‘Goldrich’ effect was correlated positively with ParPALI.
Taking into account that ‘Goldrich’ has a positive contribution on polyphenol content, this
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fact suggests that ParPAL1 expression levels are related to the accumulation of phenolic
compounds. On the other hand, we have not found correlations between individual
ParPAL1 gene expression and any studied compound (Table 4). This fact can be explained
because the analysis was carried out at full maturity, whereas main polyphenol compounds
biosynthesis might occur in previous fruit stages. As neochlorogenic and chlorogenic
content were influenced negatively with ParPAL2/ParFLS1 ratio (Figure 6), we suggest that
ParPAL?2 could be unbalancing the pathway to anthocyanin biosynthesis, having a negative
impact on the synthesis of these compounds.

3.2. Genes and Its Inference in Polyphenols Pathway

Both PAL and FLS putative orthologous analysis resulted in two genes per enzyme
identified in the P. armeniaca genome. Genome duplication is common among plants,
leading to the duplication of genes [36]. Indeed, it has been described that the Rosaceae
family origin comes from a polyploidization event, explaining the presence of two of
these genes in the Rosaceae species [37]. In agreement, A. thaliana presents three copies
of FLS and four of PAL, as result of the two polyploidization events that originated this
species [38,39]. Functional redundancy and natural selection lead to gene loss, silenc-
ing or neo-functionalization [40]. Dosage-dependent genes are usually retained in the
duplicated genomes [41], suggesting the dosage dependence of FLS and PAL in the phenyl-
propanoid pathway:.

Previous studies related MYB transcription factors with phenolic biosynthesis in
various species [29,30]. In fact, Hartmann et al. [28] showed a relation between cis-acting
elements recognized by R2R3-MYB (or MYB-recognition element (MRE)), BZIP (ACGT-
element), and BHLH (CANNTG motif) with phenylpropanoid biosynthesis genes.

Taking into account this information, we did a screening of possible MRE cis-acting
elements involved in phenolic biosynthesis. Results revealed a common MRE (MYBCORE)
containing also a BOXLCOREDCPAL motif in ParDFR and ParPAL2, which suggested that
both genes can be regulated by the same transcription factor. However, this MRE was
not found in ParPAL1. This fact suggests different regulation or even different roles of
each identified PAL paralogues in apricot. This is also supported by the high correlation
of ParDFR and ParPAL2 expression (Table 4), which indicates that they share the same
regulation and supports the existence of different regulation for each paralogue. This
specialization between paralogues that result from ancestral genomic duplications has been
previously described [42] and even can lead to neo-functionalization of genes. In addition,
most of the accessions with a high expression for ParFLS2, such as ‘Dama Rosa’, are siblings
of the traditional cultivar ‘Ginesta’, a cultivar that had more than 50% of red-blush [34].
These results suggest a possible role of ParFLS2 in anthocyanin synthesis, in agreement
with previous studies that proposed a disequilibrium in the expression of FLS and DFR
enzymes determine the accumulation of flavonols and anthocyanins [20,21,30].

The transcriptional study was made at fruit maturity. From the results obtained, a
further analysis of ParPAL1 in different immature fruit stages would contribute to identify
accurately its role in peel polyphenol content. Furthermore, the results obtained indicated
a possible shared regulation for ParFLS2 and ParDFR expression related to anthocyanin
biosynthesis in apricot. Our results contribute to unravel the relationship between genetic
of red-blush trait and polyphenol compounds and the relationship between ParFLS2 and
anthocyanin biosynthesis in apricot.

4. Materials and Methods
4.1. Plant Material

A set of 2 Mediterranean cultivars (‘Canino” and ‘Mitger’) a North American vari-
ety (‘Goldrich’) and 9 hybrids from the IVIA’s apricot breeding program were analyzed
(Table 5). ‘Goldrich” used as the main donor of resistance to PPV at the breeding program
is one of the parents in most of the resistant hybrids obtained. ‘Canino” and ‘Mitger’
are two autochthonous varieties used for introgression of adaptability to Mediterranean
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conditions. The trees are maintained at the IVIA’s apricot collection located in Moncada
(latitude 37°45'31.5” N, longitude 1°01'35.1” W), Spain.

Table 5. Plant material used in the study, pedigree, and origin.

Genotype Pedigree Origin
Canino Unknown Spain
Dama Rosa Goldrich x Ginesta IVIA
Dama Taronja Goldrich x Katy IVIA
GG9310 Goldrich x Ginesta IVIA
GG979 Goldrich x Ginesta IVIA
Goldrich Sunglo x Perfection USA
GP9817 Goldrich x Palau IVIA
HG9821 Harcot x Ginesta IVIA
HG9850 Harcot x Ginesta IVIA
HM964 Harcot x Mitger IVIA
Mitger Unknown Spain
SEOP934 SEO x Palau IVIA

Five fruits per tree were harvested at the ripening stage during two growing seasons
(2019 and 2020). For each fruit, the peel was separated from the flesh with a peeler. The
samples consisted of a mix of the peel from 5 fruits per genotype and year. Samples were
frozen with liquid nitrogen and kept at —80 °C until processing.

4.2. HPLC Analysis

For HPLC analysis, the tissue was processed to lyophilized powder. Tissue homoge-
nization was carried out using a vortex. Phenolic compounds were extracted and deter-
mined according to the procedure described by [43,44]. Briefly, 10 mg of freeze-dried peel
were mixed with 1 mL of DMSO/MeOH (1:1, v/v). Then, the sample was centrifuged
(Eppendorf 5810R centrifuge; Eppendorf Iberica, Madrid, Spain) at 4 °C for 20 min at
10,000 rpm. The supernatant was filtered through a 0.45 pm nylon filter and analyzed by
HPLC-DAD and HPLC-MS in a reverse-phase column C18 Tracer Excel 5 um 120 OSDB
(250 mm x 4.6 mm) (Teknokroma, Barcelona, Spain). An Alliance liquid chromatographic
system (Waters, Barcelona, Spain) equipped with a 2695 separation module, was coupled
to a 2996 photodiode array detector and a ZQ2000 mass detector. A gradient mobile phase
consisting of acetonitrile (solvent A) and 0.6% acetic acid (solvent B) was used at a flow rate
of 1 mL/min, with an injection volume of 10 puL. The gradient change was as follows: 10%
2 min, 10-75% 28 min, 75-10% 1 min, and hold at 10% 5 min. An HPLC-MS analysis was
performed and worked under electrospray ion positive (flavonoids) and negative (phenolic
acids) conditions. Capillary voltage was 3.50 kV, cone voltage was 20 V, source temperature
was 100 °C, desolvation temperature was 225 °C, cone gas flow was 70 L/h.

Chromatograms were recorded at 340 nm absorbance. Chlorogenic acid and rutin
were identified by comparison with pure standards obtained from Sigma-Aldrich (Sigma
Co., Barcelona, Spain) using an external calibration curve. In addition, standards were run
daily with samples for validation. Neochlorogenic acid and quercetin-3-glucuronide were
tentatively identified based on their retention times, UV-vis spectra and mass spectrum
characteristics and mass spectrum data with available data described in the literature. For
the quantitative analysis, an external calibration curve with available standards chlorogenic
acid and rutin was carried out. In addition, standards were run daily with samples for
validation. All the solvents used were of LC-MS grade. Three samples per cultivar were
analyzed and all the samples were run in triplicate. The Empower 2 software (Waters,
Spain) was used for data processing. Standard measurements (Figure S1) and a sample of
the chromatograms in apricot peel sample (Figure S2) are included.
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4.3. Obtention of Gene Sequences and Cis-Acting Elements Motif Identification

To identify the genetic regulation in the phenolics biosynthesis pathway, a set of genes
encoding for dihydroflavonol-4-reductase (DFR), flavonol synthase (FLS) and phenylala-
nine ammonia-lyase (PAL) were selected. To obtain putative orthologs of apricot species,
a BLAST search was performed using A. thaliana and P. persica described genes in GDR
(Genome Database of Rosaceae) [45] on Prunus armeniaca genome.

Identification of cis-acting elements was made from a total sequence of 1500 bp
upstream of the start codons from the Prunus armeniaca genome published at Genomic
Database of Rosaceae (GDR). Analysis of cis-acting elements was made using PLACE
(Plant cis-acting Elements) database [46] and searching for described motifs related to the
phenolic pathway.

In addition, to check the sequence conservation among species, a phylogenetic analysis
was made with the obtained Prunus armeniaca genes predicted proteins and Prunus persica
(PpeDFR (Prupe.1G376400.1), PpeFLS1 (Prupe.1G502700.1), PpeFLS2 (Prupe.1G502800.1),
PpePAL1 (ppa002328m), PpePAL2 (ppa002099m)), Fragaria vesca (FvDFR (mrnal5174.1-
v1.0-hybrid), FvFLS1 (mrnall126.1-v1.0-hybrid), FvPALI (mrna23261.1-v1.0-hybrid), Fo-
PAL2 (mrna09753.1-v1.0-hybrid)), Vitis vinifera (VoDFR (GSVIVT01009742001), VoFLS1
(GSVIVT01008913001), VoPAL1 (GSVIVT01016257001)), Malus domestica (MdDFR(MDP0000
734274), MAFLS1 (MDP0000311541), MdFLS2 (MDP0000294667), MdPAL1 (MDP0000668828),
MdPAL2 (MDP0000261492)) and Arabidopsis thaliana (AtDFR (NM_123645.4), AtFLS1 (U84259.1),
AtFLS2 (BT003134.1), AtFLS3 (NM_125754.3), AtPAL1 (AY303128.1), AtPAL2 (AY303129.1),
AtPAL3 (NM_001203294.1), AtPAL4 (AY303130.1)) predicted proteins. For apricot, coding
sequences (ParDFR (PARG07267m); ParPAL1 (PARG18722m), ParPAL2 (PARG02214m),
ParFLS1 (PARG08425m), ParFLS2 (PARGO08426m), were translated into proteins with a
DNA translate tool from Expasy [47]. Multiple protein sequence alignment was performed
with the Clustal W program with MEGA X v.10.1.8 software [48], and a phylogenetic tree was
built with the Neighbor-Joining method using MEGA X v.10.1.8 software with a bootstrap
value of 1000 replicates.

The number of amino acid differences per site from between sequences (p-distance)
was calculated with MEGA X Software with bootstrap method with 1000 replications. 1-
p-distance was calculated to similarity estimation among proteins. In addition, a BLAST and
a synteny of Prunus persica against and Prunus armeniaca reference genome was performed
in the GDR database. Moreover, a BLAST of Arabidopsis thaliana against Prunus armeniaca
genome was also performed in GDR database [45].

4.4. Gene Expression

Samples consisted of 80 mg of powered tissue. RNA isolation was made using
Plant/Fungi Total RNA Purification Kit (NORGEN, Thorold, ON, Canada) with some modi-
fications. Frozen power tissue was diluted in 600 mL of lysis buffer C, a 2% PVP-40 and
2% B-mercaptoethanol was added. Purified RNA quality and integrity were checked by
agarose gel electrophoresis, RNA was quantified by Qubit (Invitrogen, Carlsbad, CA, USA).

cDNA synthesis was obtained from 500 ng of RNA diluted in 10 pL reaction using the
PrimeScript RT Reagent kit ('Perfect Real Time’) (Takara Bio, Otsu, Japan).

Amplification was carried out with StepOnePLus Real-Time PCR System (Life Tech-
nologies, Carlsbad, CA, USA) software and TB Green Premix Ex Taq (Tli RNaseH Plus)
(Takara Bio, Otsu, Japan) kit was used. Mix reaction contained 7.5 uL enzyme, 0.09 uL of
primers (100 uM), 0.3 mL ROX, 5.02 nL. H20, and 1 pL of cDNA. Mix was incubated at 95 °C
for 30 s, followed by 40 cycles of 5 s at 95 °C and 30 s at 60 °C. Finally, the mix was incubated
for 15 s at 95 °C, followed by a minute at 60 °C and 15 s at 95 °C. Apricot ACTIN and SAND
geometric mean expression was used as housekeeping gene for normalization. Primers
used are indicated in Table 6. For each year and genotype, the calculated expression was
the mean of three biological replicates. Relative expression of each gene was calculated
using the relative standard curve method.
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Table 6. Genes and primers.

Gen

Forward

Reverse

ParPAL1
ParPAL2
ParFLS1F
ParFLS2F
ParDFR
ACTIN
SAND

CGACTGGGTTATGGATAGCATGA
TAAAGAGGTGGATAGTGCAAGGG
TGGAGGGGATGACATGGTTTATC
ACAGGAGGAAAAGGAGGCTTATG
GTTCGAAGGCTGGTGTTTACATC

CAATGTGTGGGTAGATTCTGTGC
GAGAACACCTTGTCGCATTCTTC
CCGTTGCTCATAATCTCCATCTG
GGCCAGAACCGGTAATTAATGAC
GAGAAATGGGCCAATCACAAGAG

CTTCTTACTGAGGCACCCCTGAAT
TCGTGGGTACCAGGAAAACGACAT

AGCATAGAGGGAGAGAACTGCTTG
CCTGCTAGCTTGTGTTCATCTCCA

4.5. Data Analysis

Data were statistically analyzed by Statgraphics Centurion VII version 17.2.00 software
(Statpoint Technologies Inc., Warrenton, VA, USA). Differences among samples and years
were analyzed with the Kruskal-Wallis test (p < 0.05) and averages were compared using
the Multiple Range Test with Bonferroni method.

For testing the contribution of ‘Goldrich’ to the phenolic content and genetic expression
in the set of accessions, we performed a regression of the data to a general linear model [8].
In the model, the phenotype is linearly explained as follows:

Phenotype = C + Ggoldrich + Year + Ggoldrich X Year + Residual.

where C is the general average of the population (constant), Ggoldrich is the genetic effect of
‘Goldrich’, Year is the environmental effect due to the year and Residual is the residual effect.
The model was calculated using the Statgraphics Centurion VII version 17.2.00 software
(Statpoint Technologies, Warrenton, VA, USA). A quantitative variable for evaluating the
genetic effect of ‘Goldrich” was included with a value of 1 for ‘Goldrich’, 0.5 value for
‘Goldrich x X’ hybrids, and a null value for the other genotypes non-related to ‘Goldrich’.
Model parameters were estimated with a 95% confidence level (p < 0.05).

Elucidation of parameters significantly influent in phenolic content was made by a
linear regression model with Statgraphics Centurion VII version 17.2.00 software (Statpoint
Technologies, Warrenton, VA, USA). Parameters included in the linear regression were:
genetic expression in apricot of ParDFR, ParFLS1, ParFLS2, ParPAL1, and ParPAL2, and the
following genetic expression ratios: ParPAL1/ParPAL2, ParPAL1/ParFLS1, ParPAL1/ParFLS2,
ParPAL2/ParFLS1, ParPAL2/ParFLS2, and ParFLS1/ParFLS2. Non-significant parameters
were excluded from each model and only those significant were maintained.

In addition, a multivariate analysis was performed with Statgraphics XVII software
(Statpoint Technologies, Warrenton, VA, USA) to study Pearson correlation among gene
expression, phenolic contents, and the relationships among all of them. Correlation with a
p < 0.05 was considered significant.

Graphics were made using R-studio software (Version 1.1.463, 2009-2018, Rstudio,
Inc., Boston, MA, USA) with ‘stats’, grDevices’, and ‘graphics’ (R Core Team), ‘dplyr” [49],
‘readxl’ [50], “plyr” [51], ‘scales’ [52] and ‘ggplot2” [53] packages.

5. Conclusions

The set of accessions studied showed the levels of expression of key genes in the
polyphenol biosynthesis pathway are genotype-dependent. In addition, cultivar ‘Goldrich’,
used as donor of PPV resistance, contributed positively to ParPAL1 expression levels. This
genetic expression agrees with the previously described contribution to total polyphenol
content. Transcriptional data of the main genes involved in critical points at the polyphe-
nol pathway have been described and their relationships with the different polyphenol
compounds identified. Higher expression of ParDFR and ParPAL2 has been associated
to red-blushed accessions. Differences in expression between paralogues in the phenolic
pathway can be linked to the presence of a BOXCOREDLPAL cis-acting element related to
the genes involved in anthocyanin synthesis: ParDFR, ParFLS2, and ParPAL2.
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